中职数学基础模块上册实数指数幂及其运算法则word教案
实数指数幂及运算法则教案

实数指数幂及运算法则一、教学目标知识目标:1、掌握实数指数幂的运算法则; 2、会用实数指数幂运算法则进行化简; 3、能运用实数指数幂的运算法则及分数指数幂和根式之间的互化进行计算; 能力目标:1、培养学生的观察、分析、归纳等逻辑思维能力; 2、培养学生勇于发现、勇于探索、勇于创新的精神; 3、培养学生用事物之间普遍联系的观点看问题; 二、教学重点、难点1、重点 实数指数幂的运算法则及应用2、难点 运用实数指数幂的运算法则及分数指数幂和根式之间的互化进行计算 三.学法与教具:1.学法:讲授法、讨论法. 2.教具:投影仪 四、教学过程 1、温知(1)0a =1(非零数的零次方等于1)1n na a -=(一个非零数的负指数幂等于它的正指数幂的倒数)(2m na (根式与分数指数幂的互化)练:将下列各根式写成分数指数幂的形式:(1(2将下列各分数指数幂写成根式的形式:(1)323; (2)258-2、新课•=3,即123•123=11223+;4=9,即142(3)=23=1423⨯;……猜想:有理数指数幂的运算法则与整数指数幂的运算法则完全相同. 可以证明对有理数指数幂,原整数指数幂的运算法则保持不变,即 (1)rsr sa a a +=(a>0,r,s ∈Q );同底数幂相乘,底数不变,指数相加. (2)()r srsa a =(a>0,r,s ∈Q ); 幂的乘方,底数不变,指数相乘. (3)()rr rab a b =(a>0,b>0,r ∈Q );积的乘方,等于把积的各个因式分别乘方.显然,整数指数幂的运算法则是有理数指数幂运算法则的特殊情况.3、知识巩固例1求下列各式的值:(1)238;(2)348116⎛⎫⎪⎝⎭;(3)3416-;(4)3•••解:分析先将根式转化为分数指数幂,在计算会更简便快捷.(1)238=233(2)=2332⨯=22=4;(2)348116⎛⎫⎪⎝⎭=34432⎡⎤⎛⎫⎢⎥⎪⎝⎭⎢⎥⎣⎦=34432⨯⎛⎫⎪⎝⎭=332⎛⎫⎪⎝⎭=278;(3)3416-=344(2)-=34()42⨯-=32-=18;(4)3•••=(4)13•123•133•163=11112363+++=23=9.练一练求值:(1)120.01;(2)1232-;(3)1264121-⎛⎫⎪⎝⎭;(4)2327.解:(1)120.01=()1220.1⎡⎤⎣⎦=1220.1⨯=0.1;(2)1532-=155(2)-=15()52⨯-=12-=12;(3)1264121-⎛⎫⎪⎝⎭=122811-⎡⎤⎛⎫⎢⎥⎪⎝⎭⎢⎥⎣⎦=12()2811⨯-⎛⎫⎪⎝⎭=1811-⎛⎫⎪⎝⎭=118;(4)2327=233(3)=2333⨯=23=9.例2计算下列各式(a>0,b>0):(1;(2)2133215(3)a b a b-÷.解:分析系数与系数做运算;同底的幂按法则进行运算;不同底的幂不进行运算.(1=213a a-=213a-=13a-;(2)2133215(3)a b a b-÷=12233153a ba b-=121(3)235a b---=1465a b-.练一练化简下列各式(a>0):(1•(2•解:(1•1134a a•=1134a+=712a;(2•2332a a•=2332a+=496a+=136a.实际上,当底数大于0时,我们可以将指数的取值范围由有理数推广到实数.有理数指数幂和无理数指数幂统称为实数指数幂.有理数指数幂的运算法则同样适用于无理数指数幂. 4、小结(1)实数指数幂的运算法则r s r sa a a+=(a>0,r,s∈Q);()r s rsa a=(a>0,r,s∈Q);()r r rab a b=(a>0,b>0,r∈Q);(2)化简要遵循运算顺序进行,一般“先括号里再括号外,先乘方再乘除,最后加减”;如果有根式,先把根式化成分数指数幂在进行化简;5、作业练习4.1.2 1、2。
教案数学中职实数指数幂

教案数学中职实数指数幂教案标题:数学中职实数指数幂教案目标:1. 了解实数的定义和性质;2. 掌握指数的定义和运算规则;3. 理解实数指数幂的概念和运算法则;4. 能够应用实数指数幂解决实际问题。
教案步骤:引入(5分钟):引导学生回顾实数的定义和性质,例如实数的分类、实数的运算法则等。
提醒学生实数的重要性和应用领域。
概念讲解(15分钟):1. 介绍指数的定义和运算规则,包括指数的基数、指数和幂的关系等。
通过示例和图表展示指数的计算过程和结果。
2. 引入实数指数幂的概念,解释实数指数幂的定义和特点。
通过示例和图表展示实数指数幂的计算过程和结果。
练习与讨论(20分钟):1. 分发练习题,让学生独立完成。
练习题涵盖指数的基本运算、实数指数幂的计算等。
2. 引导学生讨论解题思路和方法,解答他们在练习中遇到的问题。
鼓励学生积极参与讨论,互相学习和帮助。
应用与拓展(15分钟):1. 设计一些实际问题,让学生应用实数指数幂解决。
例如,计算物体的面积、体积等问题。
2. 引导学生思考实数指数幂在实际生活中的应用,如科学计数法、金融利息计算等。
鼓励学生分享自己的观点和经验。
总结与反思(5分钟):回顾本节课的重点内容和学习收获,引导学生总结实数指数幂的定义和运算法则。
鼓励学生提出问题和疑惑,解答他们的疑问。
作业布置:布置相关的作业,巩固学生对实数指数幂的理解和应用能力。
要求学生按时提交作业,并指导他们如何自主学习和提高。
教学资源:1. 教科书或教学参考书;2. 练习题和答案;3. 多媒体设备,如投影仪、电脑等。
教学评估:1. 观察学生在课堂上的参与度和学习态度;2. 检查学生在练习中的答题情况,评估他们对实数指数幂的理解和应用能力;3. 收集学生的作业,检查他们的独立思考和解题能力;4. 针对学生的表现,提供个别辅导和指导,帮助他们克服困难,提高学习效果。
高教版中职数学基础模块上册《实数指数幂》教案 (一)

高教版中职数学基础模块上册《实数指数幂》教案 (一)高教版中职数学基础模块上册《实数指数幂》教案一、教学目标1. 理解实数、指数和幂的基本概念及其性质。
2. 掌握实数的运算法则。
3. 熟练掌握指数和幂的运算法则。
4. 初步掌握实际问题中应用指数和幂的方法。
二、教学重难点1. 指数与幂的定义和性质。
2. 指数与幂的运算法则。
3. 实际问题的应用。
三、教学内容及步骤A. 呈现1. 引出实数的概念及表示法。
2. 引出指数与幂的概念及表示法。
B. 模拟与探究1. 通过教师提问和学生讨论,让学生深入理解指数和幂的定义和性质,并进行探究。
2. 教师引导学生进行实数的基本运算。
3. 教师组织学生练习指数和幂的运算法则。
C. 引申与拓展1. 教师引导学生从实际问题中得出指数和幂的应用方法。
2. 教师提供案例,让学生自己解决问题,并进行讨论和分享。
四、教学方法1. 教师引导学生参与讨论,深化对概念的理解。
2. 教师演示指数和幂的运算方法,引导学生模仿操作。
3. 多媒体课件展示案例,引导学生思考和解决问题。
4. 学生个人或小组探究问题,教师辅导和引导。
五、教学过程设计1. 引入部分学生根据教师提供的问题和资料,思考和分享实数、指数和幂的概念,并探究实数的运算规律。
2. 模拟与探究部分2.1 指数和幂的定义和性质:问题:什么是指数?什么是幂?它们有什么性质?探究:学生分组自主探究指数和幂的定义和性质,并通过PPT展示学习成果。
2.2 实数的基本运算:问题:实数的四则运算规则是什么?探究:教师演示实数的基本运算,然后引导学生独立解决一道题。
2.3 指数和幂的运算法则:问题:如何计算指数和幂的运算?探究:教师演示指数和幂的运算法则,让学生跟随操作并练习。
3. 引申与拓展部分3.1 指数和幂的应用:问题:指数和幂在实际问题中有哪些应用?引申:教师通过多媒体课件展示案例,引导学生思考和解决问题。
3.2 学生自主解决问题:问题:使用指数和幂解决一个实际问题。
实数指数幂及运算法则教案

一、教学目标1. 知识与技能:(1)理解实数指数幂的概念;(2)掌握实数指数幂的运算法则;(3)能够运用实数指数幂及运算法则解决实际问题。
2. 过程与方法:(1)通过观察、分析、归纳实数指数幂的运算法则;(2)培养学生的逻辑思维能力和运算能力。
3. 情感态度与价值观:(1)激发学生对数学的兴趣和好奇心;(2)培养学生的团队合作精神。
二、教学重点与难点1. 教学重点:(1)实数指数幂的概念;(2)实数指数幂的运算法则;(3)运用实数指数幂及运算法则解决实际问题。
2. 教学难点:(1)实数指数幂的运算法则的推导和理解;(2)运用实数指数幂及运算法则解决实际问题。
三、教学准备1. 教师准备:(1)实数指数幂的相关知识;(2)实数指数幂的运算法则的例题和练习题;(3)实数指数幂的实际问题。
2. 学生准备:(1)掌握实数的基本概念;(2)具备一定的数学运算能力。
四、教学过程1. 导入:(1)复习实数的基本概念;(2)引导学生思考实数指数幂的概念。
2. 知识讲解:(1)讲解实数指数幂的概念;(2)推导和讲解实数指数幂的运算法则;(3)运用实际例子解释实数指数幂及运算法则的应用。
3. 课堂练习:(1)让学生独立完成练习题;(2)讲解练习题的解题思路和方法。
4. 课堂小结:(1)回顾本节课所学内容;(2)强调实数指数幂及运算法则的重要性和应用。
五、课后作业1. 复习本节课所学内容;2. 完成课后练习题;3. 思考和解决实际问题。
六、教学评估1. 课堂讲解评估:(1)观察学生对实数指数幂概念的理解程度;(2)评估学生对实数指数幂运算法则的掌握情况;(3)评价学生的课堂参与度和提问回答情况。
2. 课堂练习评估:(1)检查学生练习题的完成情况;(2)分析学生解题思路和方法的正确性;(3)针对学生易错点进行讲解和辅导。
七、教学反思1. 反思教学内容:(1)是否全面讲解了实数指数幂的概念和运算法则;(2)是否结合实际例子让学生更好地理解实数指数幂的应用;(3)是否注重了学生的课堂参与和思维能力的培养。
实数指数幂及运算法则教案

实数指数幂及运算法则教案一、教学目标1. 理解实数指数幂的概念,掌握有理数指数幂的性质。
2. 掌握实数指数幂的运算法则,能够熟练进行相关计算。
3. 能够运用实数指数幂及运算法则解决实际问题。
二、教学重点与难点1. 教学重点:实数指数幂的概念,有理数指数幂的性质,实数指数幂的运算法则。
2. 教学难点:实数指数幂的运算法则的应用。
三、教学方法1. 采用讲授法,讲解实数指数幂的概念、性质和运算法则。
2. 利用例题解析,让学生掌握实数指数幂的运算方法。
3. 开展小组讨论,引导学生探索实数指数幂的运算法则的应用。
四、教学内容1. 实数指数幂的概念2. 有理数指数幂的性质3. 实数指数幂的运算法则4. 实数指数幂的运算法则在实际问题中的应用五、教学安排1. 第一课时:实数指数幂的概念、有理数指数幂的性质2. 第二课时:实数指数幂的运算法则、例题解析3. 第三课时:实数指数幂的运算法则的应用、小组讨论4. 第四课时:课堂小结、作业布置5. 第五课时:作业批改与讲解、课后辅导六、教学过程1. 导入新课:回顾上一节课的内容,引出实数指数幂的运算法则。
2. 讲解实数指数幂的运算法则:引导学生通过观察、分析、归纳实数指数幂的运算法则。
3. 例题解析:讲解典型例题,让学生掌握实数指数幂的运算方法。
4. 小组讨论:让学生探讨实数指数幂的运算法则的应用,分享解题心得。
5. 课堂小结:对本节课的内容进行总结,强调实数指数幂的运算法则的重要性。
七、课后作业1. 复习实数指数幂的运算法则。
2. 完成课后练习题,巩固所学知识。
3. 思考实际问题,运用实数指数幂的运算法则解决问题。
八、作业批改与讲解1. 及时批改学生作业,了解学生掌握情况。
2. 针对学生作业中出现的问题,进行讲解和辅导。
3. 鼓励学生提问,解答学生心中的疑惑。
九、课后辅导1. 针对学习有困难的学生,进行个别辅导。
2. 组织课后讨论小组,帮助学生巩固实数指数幂的运算法则。
实数指数幂及运算法则教案

实数指数幂及运算法则教案一、教学目标1. 理解实数指数幂的概念,掌握有理数指数幂的运算性质。
2. 掌握实数指数幂的运算法则,能够运用运算法则解决实际问题。
3. 培养学生的数学思维能力,提高学生的数学素养。
二、教学重点与难点1. 教学重点:实数指数幂的概念,有理数指数幂的运算性质,实数指数幂的运算法则。
2. 教学难点:实数指数幂的运算法则的应用。
三、教学方法采用问题驱动法、案例分析法、分组讨论法等多种教学方法,引导学生主动探究、合作学习,提高学生解决问题的能力。
四、教学准备1. 教师准备:实数指数幂的相关知识,运算法则的案例,教学PPT等。
2. 学生准备:预习实数指数幂的相关知识,准备好笔记本。
五、教学过程1. 导入新课教师通过复习实数的基本概念,引导学生进入实数指数幂的学习。
2. 知识讲解(1)实数指数幂的概念教师讲解实数指数幂的定义,引导学生理解指数幂的意义。
(2)有理数指数幂的运算性质教师讲解有理数指数幂的运算性质,引导学生掌握运算规律。
(3)实数指数幂的运算法则教师讲解实数指数幂的运算法则,引导学生掌握运算法则。
3. 案例分析教师展示实数指数幂的运算案例,引导学生运用运算法则解决问题。
4. 课堂练习教师布置课堂练习题,学生独立完成,教师进行讲解和辅导。
5. 总结与拓展教师对本节课的知识进行总结,引导学生思考实数指数幂在实际问题中的应用。
6. 课后作业教师布置课后作业,巩固所学知识。
六、教学反思教师在课后对教学情况进行反思,针对学生的掌握情况,调整教学策略,以提高教学效果。
七、教学评价通过课堂表现、课后作业和课堂练习,评价学生对实数指数幂及运算法则的掌握程度。
八、教学时间本节课计划用2课时完成。
九、教学资源1. 教学PPT2. 实数指数幂的案例分析资料3. 课堂练习题十、教学拓展引导学生学习实数指数幂在实际问题中的应用,如科学计算、经济学等领域。
六、教学活动设计1. 导入新课:通过复习实数的乘方概念,引导学生自然过渡到实数指数幂的学习。
(完整)实数指数幂及其运算法则

. (3 2) 23
a 5 5 b5 5
a1b
1 5
(完整)实数指数幂及其运算法则 学生 理解 指数 幂的 运算 法则
引导 学生 体会 化同 的的 数学 思想
注意 观察 学生 是否 理解 知识 点 可以 适当 交给 学生 自我 探究
说明 作为运算的结果,一般不能同时含有根号和分数 指数幂.(3)题的结果也可以写成 1 ,但是不能写成
(2) 3 3 6 .
3 93 2
主动
分析 (1)题中的底为小数,需要首先将其化为分数, 求解
有利于运算法则的利用;(2)题中,首先要把根式化成
领会
分数指数幂,然后再进行化简与计算.
解
(1)
1
0.1253
(1
1
)3
1
(23 )3
31
23
21
1
;
8
2
了解
(2)
1
1
111
3 3 6 32 (3 2)3 32 33 23
用有理数指数幂性质进行化简、求值。
谈谈自己的收获 总评
八、板书设计
教学效果还不错,教学方法还可改进 这是一节成功的教学,基本上达到了教学相长的 效果
运算法则:
整数指数幂的运算法则为:
(1) am an =
;
(2) am n =
;
(3) abn =
.
其中 (m、n Ζ) .
当 p 、 q 为有理数时,
.
建构 基础
其中 m、n N*且n >1.当 n 为奇数时,a R ;当 n 为
了解
偶数时, a 0 .
思考
学生
问题
1.将下列各根式写成分数指数幂:
中职数学基础模块上册《实数指数幂及其运算法则》word教案

教案名称:中职数学基础模块上册《实数指数幂及其运算法则》word教案教案编写:教学目标:1. 理解实数指数幂的概念及其运算法则。
2. 能够运用实数指数幂及其运算法则进行相关计算。
3. 培养学生的逻辑思维能力和解决问题的能力。
教学内容:一、实数指数幂的概念1. 引入实数指数幂的概念,讲解正整数指数幂、零指数幂和负整数指数幂的定义。
二、实数指数幂的运算法则1. 讲解实数指数幂的乘法法则:同底数幂相乘,底数不变,指数相加。
2. 讲解实数指数幂的除法法则:同底数幂相除,底数不变,指数相减。
3. 讲解实数指数幂的乘方法则:底数不变,指数相乘。
4. 讲解实数指数幂的幂的法则:底数不变,指数相除。
三、实数指数幂的应用1. 举例讲解实数指数幂在实际问题中的应用,如计算幂的值、求解指数方程等。
四、练习与巩固1. 安排相关练习题,让学生巩固实数指数幂的概念和运算法则。
2. 引导学生运用所学知识解决实际问题。
2. 评价学生的学习效果,对学生在学习中遇到的问题进行解答和指导。
教学方法:1. 采用讲授法,讲解实数指数幂的概念和运算法则。
2. 运用案例教学法,引导学生运用所学知识解决实际问题。
3. 设计练习题,让学生通过自主练习巩固所学知识。
4. 采用小组讨论法,促进学生之间的交流与合作。
教学资源:1. PPT课件:展示实数指数幂的概念和运算法则。
2. 练习题:用于巩固所学知识。
3. 案例材料:用于讲解实数指数幂在实际问题中的应用。
教学评价:1. 课堂问答:检查学生对实数指数幂概念和运算法则的理解程度。
2. 练习题:评估学生对实数指数幂运算法则的掌握情况。
3. 实际问题解决:评价学生运用实数指数幂知识解决实际问题的能力。
六、教学活动设计1. 导入新课:通过复习幂的概念,引导学生自然过渡到实数指数幂的学习。
2. 讲解实数指数幂的概念:详细讲解正整数指数幂、零指数幂和负整数指数幂的定义。
3. 讲解实数指数幂的运算法则:逐一讲解乘法、除法、乘方和幂的法则。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实数指数幂及运算
课前预习案
【课前自学】
一 、 整数指数
1、正整指数幂的运算法则
(1)m n a a = ,(2)()m n
a = ,(3)m
n a a = ,(4)()m ab = 。
2、对于零指数幂和负整数指数幂,规定:0___(0)a a =≠, ____(0,)n a a n N -+=≠∈。
二、 分数指数幂
1.n 次方根的概念 .
2.n 次算术根的概念 .
3.根式的概念 .
4.正分数指数幂的定义
1n a = ; m n a = .
5.负分数指数幂运算法则: m
n a -= .
6.有理指数幂运算法则:(设a>0,b>0,,αβ是任意有理数)
a a αβ= ;()a αβ= ;()a
b α=
自学检测(C 级)
=-0)1(______ ; =-3)x 2(_______;
3)2
1(--=_______ ; =-223
)y x (_____ 课内探究案
例:化简下列各式
(1 (2;
(3))0(322>a a a a ; (4)232520432()()()a b a b a b --⋅÷;
(5)12
2
31111362515()()46x y x y x y ----- (6)111222m m m m --+++.
当堂检测:
1. (C 级)化简44)a 1(a -+的结果是( )
A. 1
B. 2a-1
C. 1或2a-1
D. 0
2.(C 级) 用分数指数幂表示下列各式:
32x =_________;31a =_________;43)(b a +=_________;
322n m +=_________;32y x
=_________.
3. (C 级) 计算: 21)4964(- =________ 3227=________;________= 41
10000; 课后拓展案
1.(C 级)计算: (1) 21
6531
-÷a
a a (2) )32(431313132----÷
b a b
a
(3) (4). 643
3)1258(b a 2. (C 级)计算:(1)3163)278(--b a ; (2)632x
x x x (3)22
121)(b a -; (4)302
32)()32()2(--⨯÷a b a b a b . 3.(B 级)k 2)1k 2()1k 2(222---+-+-等于( )
A、2-2k
B、2-(2k-1)
C、-2-(2k+1)
D、2
4.(B级)下列根式、分数指数幂的互化中,正确的是()
5.(A级)
.计算。