克里金插值方法介绍 武汉大学 高等水文学

合集下载

克里金插值-Kriging插值-空间统计-空间分析

克里金插值-Kriging插值-空间统计-空间分析

克里金插值方法-Kriging 插值-空间统计-空间分析1.1 Kriging 插值克里金插值(Kriging 插值)又称为地统计学,是以空间自相关为前提,以区域化变量理论为基础,以变异函数为主要工具的一种空间插值方法。

克里金插值的实质是利用区域化变量的原始数据和变异函数的结构特点,对未采样点的区域化变量的取值进行线性无偏、最优估计。

克里金插值包括普通克里金插值、泛克里金插值、指示克里金插值、简单克里金插值、协同克里金插值等,其中普通克里金插值是最为常用的克里金插值方法。

以下介绍普通克里金插值的原理。

包括普通克里金方法在内的各种克里金插值方法的使用前提是空间数据存在着显著的空间相关性。

判断数据空间相关性是否显著的工具是半变异函数(semi-variogram ),该函数以任意两个样本点之间的距离h 为自变量,在h 给定的条件下,其函数值估计方法如下:2||||1()[()()]2()i j i j s s h h z s z s N h γ-==-∑其中()N h 是距离为h 的样本点对的个数。

()h γ最大值与最小值的差m a x m i n γγ-可以度量空间相关性的强度。

max min γγ-越大,空间相关性越强。

如果()h γ是常数,即max min 0γγ-=,则说明无论样本点之间的距离是多少,样本点之间的差异不变,也就是说样本点上的值与其周围样本点的值无关。

在实际操作中,会取一些离散的h 值,当||s s ||i j -接近某个h 时,即视为||||i j s s h -=。

然后会通过这些离散点拟合成连续的半变异函数。

拟合函数的形式有球状、指数、高斯等。

在数据存在显著的空间相关性的前提下,可以采用普通克里金方法估计未知点上的值。

普通克里金方法的基本公式如下:01ˆ()()()n i ii Z s w s Z s ==∑普通克里金方法的基本思想是:通过调整i s 的权重()i w s ,使未知点的估计值0ˆ()Z s 满足两个要求:1.0ˆ()Z s 是无偏估计,即估计误差的期望值为0,2.估计误差的方差达到最小。

克里金(kriging)插值的原理与公式推导

克里金(kriging)插值的原理与公式推导

克里金(kriging)插值的原理与公式推导
克里金插值是一种空间插值方法,用于估计未知区域的数值,其
原理是基于空间数据的空间相关性来进行插值。

具体来说,克里金插
值假设空间数据在不同位置之间具有一定的相关性,即在空间上相邻
的点具有相似的数值。

克里金插值利用这种相关性来进行插值,从而
可以更准确地估计未知位置的数值。

克里金插值的公式推导涉及到半变异函数的定义,通常使用高斯
模型、指数模型或球形模型来描述数据的空间相关性。

在推导过程中,会利用已知数据点的数值和位置信息,以及半变异函数的参数来构建
插值模型,进而估计未知位置的数值。

克里金插值的公式可以表示为:
\[Z(u) = \sum_{i=1}^{n} \lambda_i \cdot Z(u_i)\]
其中,\(Z(u)\)为未知位置的数值,\(Z(u_i)\)为已知数据点的
数值,\(\lambda_i\)为插值权重,通过半变异函数及数据点之间的空
间距离计算得出。

除了基本的克里金插值方法外,还有一些相关的扩展方法,如普通克里金、泛克里金等,这些方法在建模和插值的过程中考虑了更多的因素,如均值趋势、空间方向等,使得插值结果更加准确和可靠。

总的来说,克里金插值是一种常用的空间插值方法,适用于各种地学环境下的数据分析与建模。

在实际应用中,需要根据具体数据的特点选择合适的插值方法和模型参数,以获得准确的插值结果。

克里金插值法.pptx

克里金插值法.pptx
其中 Z(xi)之间存在一定的相关关系,这种相关性除与距离有关外,还与其相对方向变 化有关,克里金插值方法将研究的对象称“区域化变量”
针对克里金方法无偏、最小方差条件可得到无偏条件可得待定权系数i (i=1,2,……,
n)满足关系式:
n
i 1
i 1
以无偏为前提,kriging 方差为最小可得到求解待定权系数i 的方程组:
(5)根据求出的权重值,代入公式(1),即可求得评估领域内 n 个采样值的线性组合[2]。
克里金插值法的方法路线图如下:
3
导入数据
数据分析
是否服从 正态分布

是否存在 趋势

否 数据变换
是 泛克里金方法
根据数据选择 合适的方法
进行预测
计算克里金系数
拟合理论半 变异函数图
绘制经验半 变异函数图
绘制方差 变异云图
c 1
i
ni
dw 1
i1 c d w
(2)根据搜索策略选择合适的参估点,如图 2:
(4)
2
图 2 参估点图示
(3)根据已经求出的变异函数以及采样点数量,三个采样点列出三个等式,求出方程 组的系数,公式为:
C(1,1) C(2,1)
C(3,1)
C(1,2) C(2,2) C(3,2)
C(1,3)1 C(0,1) C(2,3)2 C(0,2)
不取决于 s 点的位置,而取决于位移量 h。为了确保自相关方程有解,必须允许某两点间自 相关可以相等。
然后,可以对方程式左边 Z(s) 进行变换。例如,可以将其转换成指示变量,即如果Z(s)
低于一定的阈值,则将其值转换为 0,将高于阈值的部分转换为 1,然后对高于阈值部分作 出预测,基于此模型作出预测便形成了指示克里金模型。如果将指示值转变成含有变量的

(完整)克里金插值法

(完整)克里金插值法

克里金插值法克里金插值法又称空间局部插值法,是以变异函数理论和结构分析为基础,在有限区域内对区域化变量进行无偏最优估计的一种方法,是地统计学的主要内容之一,由南非矿产工程师D. Matheron 于1951年在寻找金矿时首次提出,法国著名统计学家G. Matheron 随后将该方法理论化、系统化,并命名为Kriging ,即克里金插值法。

1 克里金插值法原理克里金插值法的适用范围为区域化变量存在空间相关性,即如果变异函数和结构分析的结果表明区域化变量存在空间相关性,则可以利用克里金插值法进行内插或外推。

其实质是利用区域化变量的原始数据和变异函数的结构特点,对未知样点进行线性无偏、最优估计,无偏是指偏差的数学期望为0,最优是指估计值与实际值之差的平方和最小[1].因此,克里金插值法是根据未知样点有限领域内的若干已知样本点数据,在考虑了样本点的形状、大小和空间方位,与未知样点的相互空间关系,以及变异函数提供的结构信息之后,对未知样点进行的一种线性无偏最优估计。

假设研究区域a 上研究变量Z (x ),在点x i ∈A (i=1,2,……,n )处属性值为Z (x i ),则待插点x 0∈A 处的属性值Z (x 0)的克里金插值结果Z *(x 0)是已知采样点属性值Z (x i )(i=1,2,……,n )的加权和,即:)()(10*i ni i x Z x Z ∑==λ (1) 式中i λ是待定权重系数.其中Z (x i )之间存在一定的相关关系,这种相关性除与距离有关外,还与其相对方向变化有关,克里金插值方法将研究的对象称“区域化变量"针对克里金方法无偏、最小方差条件可得到无偏条件可得待定权系数i λ (i=1,2,……,n)满足关系式:11=∑=n i i λ(2)以无偏为前提,kriging 方差为最小可得到求解待定权系数i λ的方程组:⎪⎪⎩⎪⎪⎨⎧=⋯⋯==+∑∑==1)n ,2,1)(,(),(101n i i j j i n i i j x x C x x C λμλ, (3) 式中,C (x i ,x j )是Z (x i )和Z (x j )的协方差函数.2 方法步骤克里金插值法的应用步骤如下:1、输入原始数据,即采样点,下面以输入三个采样点求待估插值为例来进行说明。

克里金插值法原理

克里金插值法原理

克里金插值法原理克里金插值法是一种用于插值运算的重要数学方法,它可以根据已知的数据点来求出某函数在某一特定点的值,受到许多工程师和科学家的广泛应用。

本文旨在介绍克里金插值法的原理、它的优点和应用,以及一些计算机实际应用中的解决方案。

(正文)一、里金插值法的原理克里金插值法是拟合多个已知的数据点,以获取其中某一点的未知函数值的有效方法。

它的核心思想是采用差商的形式来求出拟合的函数的系数,从而求出拟合函数的值。

可以这样来理解:在一组给定的数据点中,求出它们之间的差商,再根据差商来求出拟合数据点的函数值。

克里金插值法的标准公式可以这样表示:P(x) = P0 +(x-x0)[ (P1-P0)/(x1-x0) ] +(x-x0)(x-x1)[ (P2-P1)/(x2-x1)/(x2-x0) ] ++ (x-x0)(x-x1)…(x-xn-1)[ (Pn-Pn-1)/(xn-xn-1)/(xn-xn-2)…(xn-x0) ] 这个公式是基于差商求出数据点的函数值的,其中P0, P1, P2,…, Pn代表的是已知的数据点,x0, x1, x2,…, xn代表的是已知的数据点的坐标。

二、里金插值法的优点克里金插值法具有如下优点:1、算简单:克里金插值法只需要用简单的算法计算即可求出拟合函数的函数值,而且结果对应的误差比较小。

2、合精度高:克里金插值法的拟合精度比较高,能够很好的拟合多个数据点。

3、泛应用:克里金插值法受到了广泛的应用,在计算机科学、工程计算、统计分析以及数据拟合等领域都有重要的应用。

三、里金插值法的应用1、合数据:克里金插值法可以用来拟合有限的数据,从而得到比较精确的拟合函数。

2、解方程:克里金插值法还可以用来求解某个函数的零点,这对于求解一些复杂的方程也可以有效的应用。

3、算机实际应用:克里金插值法在计算机科学中有重要的应用,如图像处理、信号处理等。

在图像处理中,克里金插值法可以用来进行图像放大、缩小等操作,从而获得更加精细的图像。

克里金插值(kriging)

克里金插值(kriging)

随机场:
P
当随机函数依赖于多个
自变量时,称为随机场。
如具有三个自变量(空间
点的三个直角坐标)的随
机场
随机函数的特征值
协方差(Variance): 二个随机变量ξ,η的协方差为二维随机变量(ξ,
η)的二阶混合中心矩μ11,记为Cov(ξ,η),或σξ,η。
Cov(ξ,η) = σξ,η = E[ξ-E(ξ)][η-E(η)]
块金效应的尺度效应
如果品位完全是典型的随机变量,则不论 观测尺度大小,所得到的实验变差函数曲线总 是接近于纯块金效应模型。
当采样网格过大时,将掩盖小尺度的结构, 而将采样尺度内的变化均视为块金常数。这种 现象即为块金效应的尺度效应。
1
3
3
3
1
2
3
1
1
(h) = C(0) – C(h)
基台值(Sill):代表变量在空间上的总变异性大小。即为变 差函数在h大于变程时的值,为块金值c0和拱高cc之和。 拱高为在取得有效数据的尺度上,可观测得到的变异性幅 度大小。当块金值等于0时,基台值即为拱高。
对于单变量而言:
P
F(u;z)F(uh;z)
可从研究区内所有数据的累积直方图推断而得 (将邻近点当成重复取样点)
太强的假设,不符合实际
二阶平稳
当区域化变量Z(u)满足下列二个条件时,则称其 为二阶平稳或弱平稳:
① 在整个研究区内有Z(u)的数学期望存在, 且等于常数,即: E[Z(u)] = E[Z(u+h)] = m(常数) x h
相当于要求:Z(u)的变差函数存在且平稳。
可出现协方差函数不存在,但变差函数存在的情况。
例:物理学上的著名的布朗运动是一种呈现出无限 离散性的物理现象,其随机函数的理论模型就是维 纳-勒维(Wiener-Levy)过程(或随机游走过程)。

克里金是一种什么方法

克里金是一种什么方法

克里金是一种什么方法克里金(Kriging)是一种地质统计学的插值方法,最早由法国地质学家G.M. 克里金(Georges Matheron Krige)于1951年提出,用于空间数据的插值和预测。

克里金插值方法是基于统计学原理和空间相关性的推断方法,在地质学、地理学、地球科学等领域广泛应用。

克里金方法主要应用于连续空间数据的插值,即根据已知的离散点数据推断未知位置的数值,例如地质勘查、大气污染监测、地下水位预测等。

其基本原理是基于已知数据点的空间相关性进行位置预测,预测结果不仅考虑到周围点的值,还考虑到点与点之间的空间自相关性。

克里金方法通常包括以下几个步骤:1. 变异函数模型化:首先需要对已知数据点的空间变异性进行建模。

通过对数据进行统计分析,使用半方差函数(semivariogram)来描述变量之间的空间相关性。

半方差函数是指变量之间的差异程度与距离之间的关系,通过实测数据点的数值差异可以估计半方差函数。

常见的半方差函数有指数模型、高斯模型和球状模型等。

2. 方差-协方差矩阵的计算:根据已知数据点的空间坐标和数值,通过半方差函数估计方差-协方差矩阵。

方差-协方差矩阵用于描述变量之间的协方差关系,便于后续的预测计算。

3. 克里金方程的建立:基于已知数据点的方差-协方差矩阵,建立克里金方程。

克里金方程是一个权重函数,用于计算未知位置处的预测值。

克里金方程考虑到空间数据点之间的距离和空间自相关性,通过调整权重系数,能够提高模型的拟合度。

4. 预测结果的计算:通过克里金方程,对未知位置处的数值进行预测。

在预测过程中,通过已知数据点对未知点进行加权平均,权重系数由克里金方程决定。

根据已知数据点的空间位置和数值,以及未知位置的空间坐标,计算出未知位置处的预测值。

5. 不确定性的估计:克里金方法不仅可以提供预测值,还可以通过计算半方差函数的拟合误差来估计预测结果的不确定性。

通过估计半方差函数的置信限,可以得到预测结果的置信区间,从而对预测结果的准确程度进行评估。

克里金插值(kriging)(推荐完整)

克里金插值(kriging)(推荐完整)
P (ξ=xk)= pk, k=1,2,….

则当级数 xk pk 绝对收敛时,称此级数的 k 1
和为ξ的数学期望,记为E(ξ),或Eξ。

E(ξ) = xk pk k 1
②设连续型随机变量ξ的可能取值区间为(-∞,+∞),
p(x)为其概率密度函数,若无穷积分

xp(x)dx
二、统计推断与平稳要求
•任何统计推断(cdf,数学期望等)均要求重复取样。 •但在储层预测中,一个位置只能有一个样品。 •同一位置重复取样,得到cdf,不现实
P

考虑邻近点,推断待估点
区域化变量: 能用其空间分布来表征一个自然现象的变量。
(将空间位置作为随机函数的自变量)
•空间一点处的观测值可解释为一个随机变量在该点
随机函数在空间上的变化没有明显趋势, 围绕m值上下波动。
② 在整个研究区内,Z(u)的协方差函数存在且平稳 (即只依赖于滞后h,而与u无关), 即
Cov{Z(u),Z(u+h)} = E[Z(u)Z(u+h)]-E[Z(u)]E[Z(u+h)] = E[Z(u)Z(u+h)]-㎡ = C(h)
•协方差不依赖于空间绝对位置,而依赖于相对位置 , 即具有空间的平稳不变性。
H. S. Sichel (1947) D.G. Krige (1951)
应用统计学方法研究金矿品位
Kriging法(克里金法,克立格 法):“根据样品空间位置不同、样 品间相关程度的不同,对每个样品 品位赋予不同的权,进行滑动加权 平均,以估计中心块段平均品位”
G. Materon(1962)
提出了“地质统计学”概念 (法文Geostatistique)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(h) C(0) C(h)
(二阶平稳假设条件下边查函数与写防查的关系)
变程(Range) :指区域化变量在空间上具有相关性的 范围。在变程范围之内,数据具有相关性;而在变 程之外,数据之间互不相关,即在变程以外的观测 值不对估计结果产生影响。
具不同变程 的克里金插 值图象
块金值(Nugget) :变差函数如果在原点间断,在地质统计学中称 为“块金效应”,表现为在很短的距离内有较大的空间变异性, 无论h多小,两个随机变量都不相关 。它可以由测量误差引起, 也可以来自矿化现象的微观变异性。在数学上,块金值c0相当于 变量纯随机性的部分。
E[ξ-E(ξ)]2存在,则称它为ξ的方差,记为D(ξ), 或Var(ξ),或σξ2。
D(ξ)= E[ξ-E(ξ)]2 其简算公式为
D(ξ)=E(ξ2) –[E(ξ)]2
方差的平方根为标准差,记为σξ
σξ=
D( ) E[ - E( )]2 E( 2) -[E( )]2
从矩的角度说,方差是ξ的二阶中心矩。
相当于要求:Z(u)的变差函数存在且平稳。
可出现协方差函数不存在,但变差函数存在的情况。
例:物理学上的著名的布朗运动是一种呈现出无限 离散性的物理现象,其随机函数的理论模型就是维 纳-勒维(Wiener-Levy)过程(或随机游走过程)。
布朗运动:
既不能确定验前方差,也不能确定协方差函数。
但是其增量却具有有限的方差: Var[Z(x)-Z(x+h)] = 2 (h)= A·|h| (其中,A是个常数),

如具有三个自变量(空间
点的三个直角坐标)的随
机场
随机函数的特征值
协方差(Covariance): 二个随机变量ξ,η的协方差为二维随机变量(ξ,
η)的二阶混合中心矩μ11,记为Cov(ξ,η),或σξ,η。
Cov(ξ,η) = σξ,η = E[ξ-E(ξ)][η-E(η)]
其简算公式为 Cov(ξ,η) = E (ξη)-E(ξ) ·E(η)
发表了专著《应用地质统计学论》。
阐明了一整套区域化变量的理论,
为地质统计学奠定了理论基础。
1977年我国开始引入
区域化变量理论 克里金估计 随机模拟
克里金插值方法
n
z* x0 i zxi i 1 (普通克里金)
不仅考虑待估点位置与
已知数据位置的相互关 系,而且还考虑变量的 空间相关性。
特殊地,当h=0时,上式变为 Var[Z(u)]=C(0), 即方差存在且为常数。
u+h u
本征假设 intrinsic hypothese
(比二阶平稳更弱的平稳假设)
当区域化变量Z(u)的增量[Z(u)-Z(u+h)]满足下列二 条件时,称其为满足本征假设或内蕴假设。
①在整个研究区内有 E[Z(u)-Z(u+h)] = 0
2. 随机函数
研究范围内的一组随机变量。
{Z(u),u 研究范围} 简记为 Z(u)
条件累积分布函数(ccdf)
F(u1,,uK ; z1,, zK | (n)) Prob{Z(u1) z1,, Z(uK ) zK | (n)}
随机场:
P
当随机函数依赖于多个
自变量时,称为随机场。
变差函数= A ·|h|,且随着|h|线性地增大。
2
准二阶平稳假设及准本征假设
若区域化变量Z(x)在整个区域内不满足二阶平 稳(或本征假设) ,但在有限大小的邻域内是二阶平 稳(或本征)的,则称Z(x)是准二阶平稳的(或准本征 的)。
三、克里金估计(基本思路)
----以普通克里金为例
设 x1,, xn 为区域上的一系列观测点,zx1 ,, zxn
不同的取值方式:估计(estimation)
模拟(simulation)

连续型地质变量
构造深度 砂体厚度 有效厚度 孔隙度 渗透率 含油饱和度
离散型地质变量
(范畴变量) 类型变量
砂体 相 流动单元 隔夹层 断层
随机变量的特征值:
(1)数学期望 是随机变量ξ的整体代表性特征数。
①设离散型随机变量ξ的所有可能取值为 x1,x2,…,其相应的概率为
(应用随机函数理论)
井眼 地震
第一节 基本原理
一、随机变量与随机函数 1. 随机变量
为一个实值变量,可根据概率分布取不同的值。 每次取值(观测)结果z为一个确定的数值,称为 随机变量Z的一个实现。
P

连续变量:
累积分布函数(cdf)
Z (u)
cumulative distribution function
跃迁现象
一维情况下的定义:
假设空间点x只在一维的x轴上变化,则将区域化 变量Z(x)在x,x+h两点处的值之差的方差之半定义
为Z(x)在x轴方向上的变差函数,记为 (x, h)
(x,h)
=
1 2
Var[Z(x)-Z(x+h)]
=
1 2
E[Z(x)-Z(x+h)]2-{E[Z(x)-Z(x+h)]}2
处的一个随机实现。
空间各点处随机变量的集合构成一个随机函数。
(可以应用随机函数理论解决插值和模拟问题)
考虑邻近点,推断待估点 ----空间统计推断要求平稳假设
严格平稳
F(u1,,uK ; z1,, zK ) F(u1 h,,uK h; z1,, zK )
对于单变量而言:
随机函数在空间上的变化没有明显趋势, 围绕m值上下波动。
② 在整个研究区内,Z(u)的协方差函数存在且平稳 (即只依赖于滞后h,而与u无关), 即
Cov{Z(u),Z(u+h)} = E[Z(u)Z(u+h)]-E[Z(u)]E[Z(u+h)] = E[Z(u)Z(u+h)]-㎡ = C(h)
协方差不依赖于空间绝对位置,而依赖于相对位置 , 即具有空间的平稳不变性。
P (ξ=xk)= pk, k=1,2,….

则当级数 xk pk 绝对收敛时,称此级数的 k 1
和为ξ的数学期望,记为E(ξ),或Eξ。

E(ξ) = xk pk k 1
②设连续型随机变量ξ的可能取值区间为(-∞,+∞),
p(x)为其概率密度函数,若无穷积分

xp(x)dx
为相应的观测值。区域化变量在 x0处的值 z* x0 可
采用一个线性组合来估计:
n
z*x0 i zxi i 1
无偏性和估计方差最小被作为 i 选取的标准
无偏 E Zx0 Z * x0 0 最优 Var Zx0 Z * x0 min
P
F(u; z) F(u h; z)

可从研究区内所有数据的累积直方图推断而得 (将邻近点当成重复取样点)
太强的假设,不符合实际
二阶平稳
当区域化变量Z(u)满足下列二个条件时,则称其 为二阶平稳或弱平稳:
① 在整个研究区内有Z(u)的数学期望存在, 且等于常数,即: E[Z(u)] = E[Z(u+h)] = m(常数) x h
块金效应的尺度效应
如果品位完全是典型的随机变量,则不论 观测尺度大小,所得到的实验变差函数曲线总 是接近于纯块金效应模型。
当采样网格过大时,将掩盖小尺度的结构, 而将采样尺度内的变化均视为块金常数。这种 现象即为块金效应的尺度效应。
1
3
3
3
1
2
3
1
1
(h) = C(0) – C(h)
n

2 k

Cx0

x0


iCxi x0
i 1
n

2 k

i xi x0 x0 x0
i 1
Z*(x0)
四、变差函数及其结构分析
1. 变差函数的概念与参数 变差函数(或叫变程方差函数,或变异函数)是 地质统计学所特有的基本工具。它既能描述区域化 变量的空间结构性变化,又能描述其随机性变化。
j
E
Z *x0 Zx0 2
2
n
ห้องสมุดไป่ตู้

j


0,
i1
j 1,, n
Z*(x0)
进一步推导,可得到n+1阶的线性方程组, 即克里金方程组
n

i
1
C
xi
xj
i

C
x0
n
xj

i 1
i 1
j 1,, n
基台值(Sill):代表变量在空间上的总变异性大小。即为变 差函数在h大于变程时的值,为块金值c0和拱高cc之和。 拱高为在取得有效数据的尺度上,可观测得到的变异性幅 度大小。当块金值等于0时,基台值即为拱高。
可得到关系式:
n
i 1
i 1
Z*(x0)
(2)估计方差最小
k 2 E Z *x0 Zx0 EZ *x0 Zx0 2 E Z *x0 Zx0 2
min
应用拉格朗日乘数法求条件极值

当随机函数不满足二阶平稳,而满足内蕴(本征)假设时, 可用变差函数来表示克里金方程组如下:


i
n 1

xi x j
i
x0 x j
n

i 1
i 1
j 1,, n
Z*(x0)
最小的估计方差,即克里金方差可用以下公式求解:
第二讲
克里金插值
相关文档
最新文档