三角函数的诱导公式教学课件

合集下载

三角函数的诱导公式 课件

三角函数的诱导公式   课件

sincos sin cos
sin cos
sincos
1.
当k为奇数时,设k=2m+1(m∈Z),
原式= sin sin[ 2m
2m cos2m 2 ]cos[2m
1

sin cos
sincos( )
= sinco=s-1.
sin(cos)
【归纳】三角函数式化简的思路以及含有kπ±α形式的处理 方法. 提示:(1)总体思路是利用诱导公式将相应角向角α的三角函数 转化. (2)含有kπ±α形式的化简时,需对k分是偶数还是奇数来确定 选用的公式.
3
三角函数式的化简问题 【技法点拨】
三角函数式化简的常用方法 (1)依据所给式子合理选用诱导公式将所给角的三角函数转化 为角α的三角函数. (2)切化弦:一般需将表达式中的切函数转化为弦函数. (3)注意“1”的应用:1=sin2α+cos2α=tan .
4
【典例训练】
1.化简 sin 540 cos =___________. 2.化简:设kta为n(整 数18,0化) 简:ssiinn[kk1cos[]kcos1k] .
+tan(180°-45°)=sin225°cos210°+cos30°sin210°-tan45°
=sin(180°+45°)cos(180°+30°)+cos30°sin(180°+30°)
-tan45°=sin45°cos30°-cos30°sin30°-tan45°
= 2 3 3 1 1 . 6 3 4
3.在下列各式中: ①sin(α+π)=-sinα, ②cos(-α+β)=-cos(α-β), ③sin(-α-2π)=-sinα, ④cos(-α-β)=cos(α+β). 正确的序号是_________. 【解析】对于②式,cos(-α+β)=cos[-(α-β)]=cos(α-β), 故②错误,而①③④由诱导公式可判定正确. 答案:①③④

人教高中数学必修一A版《诱导公式》三角函数说课教学课件复习(诱导公式二、三、四)

人教高中数学必修一A版《诱导公式》三角函数说课教学课件复习(诱导公式二、三、四)

课件
课件
课件
1.如果 α,β 满足 α+β=π,那么下列式子中正确的个数是( )
①sin α=sin β;②sin α=-sin β;③cos α=-cos β;④cos α=cos β;
⑤tan α=-tan β.
A.1
B.2
C.3
D.4
栏目导航
C [因为 α+β=π,所以 sin α=sin(π-β)=sin β,
栏目导航
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
课件
1.计算:(1)cosπ5+cos25π+cos35π+cos45π; (2)tan 10°+tan 170°+sin 1 866°-sin(-606°).
栏目导航
[解] (1)原式=cosπ5+cos45π+cos25π+cos35π
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
课件
B.
3 3
C.- 3
D. 3
C [tan-43π=tan-2π+23π= 2π tan 3
=tanπ-π3=-tanπ3=- 3.]
栏目导航
3.已知 tan α=3,则 tan(π+α)
=________.
课件
课件
60°)=-sin 60°=- 23. 法二:sin 1 320°=sin(4×360°-120°)=sin(-120°)

三角函数的诱导公式 高中数学课件(人教A版2019必修第一册)

三角函数的诱导公式 高中数学课件(人教A版2019必修第一册)
x
y
在题中横线上。
y
-x
sin(π-α)=
cos(π-α)=
tan(π-α)= -

x
3

tan

( 2)tan
4
4
y
公式四:
sin( ) sin
cos( ) cos
tan( ) tan -1
P′(-x,y)
π-a
α 与π-α关于y轴对称
+(°-°)(°+°)
(2)证明:左边=


(1)解:原式=
( +)( +)


(°+°)+(°+°)

=
=
=
-°°
|°-°|
-
=
=-tan °-°
如:sin(π+a),假设 a 是锐角,则π+a 是第三象
限角,所以sin(π+a)=-sina
思考2:如果α为锐角,你能得到什么结论?
a

-
2

cos( -)=sin
2
c
α
b

sin ( ) cos
2
思考3:若α为一个任意给定的角,那么 的终边与


2
的终边有什么关系?
2k ( k Z ), - , 的三角函数值,等于角
的同名函数值,前面加上一个把 看成锐角时
原函数值的符号。
即:
函数名不变,符号看象限!
“函数名不变”是指等号两边的三角函数同名;
“符号看象限”是指等号右边是正号还是负号,可
以通过先假设a是锐角,然后由等号左边的式子中的

高中数学三角函数的诱导公式PPT课件

高中数学三角函数的诱导公式PPT课件

谢谢聆听
02
弧度制
以弧长与半径之比作为角的度量单位,一周角等于2π弧 度。
03
角度与弧度的转换公式
1度=π/180弧度,1弧度=180/π度。
三角函数定义域与值域
正弦函数(sin)
定义域为全体实数,值域为[-1,1]。
余弦函数(cos)
定义域为全体实数,值域为[-1,1]。
正切函数(tan)
定义域为{x|x≠kπ+π/2,k∈Z},值域为全体实数。
电磁波
三角函数在电磁学中描述电场和磁场的振动,以 及电磁波(如光波、无线电波)的传播。
工程技术中的测量和计算问题
1 2 3
角度测量
三角函数在测量学中用于计算角度、距离和高程 等问题,如使用全站仪进行地形测量。
建筑设计
在建筑设计中,三角函数用于计算建筑物的角度 、高度和间距等参数,确保建筑结构的稳定性和 安全性。
错误产生原因分析
基础知识不扎实
学生对三角函数的基本概念和性 质理解不深入,导致在记忆和使
用诱导公式时出错。
思维方式僵化
学生可能过于依赖记忆而非理解, 导致在面对灵活多变的题目时无法 灵活运用诱导公式。
训练不足
学生可能缺乏足够的练习,无法熟 练掌握诱导公式的使用方法和技巧 。
针对性纠正措施建议
A
强化基础知识
04 学生易错点剖析及纠正措施
常见错误类型总结
公式记忆错误
学生常常将三角函数的诱 导公式混淆,例如将正弦 、余弦、正切的诱导公式 记混。
角度转换错误
在解题过程中,学生可能 会将角度制与弧度制混淆 ,或者在角度加减时出错 。
符号判断错误
在使用诱导公式时,学生 可能会忽略符号的判断, 导致最终结果错误。

三角函数的诱导公式 课件

三角函数的诱导公式 课件
诱导公式五、六
自学导引
1.诱导公式五、六
公式五:sin π2-α= cos α ,cos π2-α= sin α ; 公式六:sin π2+α= cos α ,cos π2+α=-sin α . 公式五和公式六可以概括如下:
π 2±α
的正弦(余弦)函数值,分别等于
α
的余弦(正弦)函数值,前
面加上一个把 α 看成锐角时原函数值的符号.
由 cos α≤0 可知,角 α 的终边也可以在坐标轴上.
[正解] 由|cos α|=sin 32π-α得,|cos α|=-cos α,所以 cos α≤0. 故角 α 的终边在第二或第三象限或 x 轴的非正半轴上或 y 轴上.
角的概念推广后,按角的终边的位置,可以将角分为 象限角与坐标轴上的角.同学们在学习过程中,不能只记住了 象限角,而把终边在坐标轴上的角遗忘了.
2.利用诱导公式可得到如下结论: sin 32π-α=-cos α,cos 32π-α=-sin α; sin 32π+α=-cos α,cos 32π+α=sin α.
想一想:你能结合诱导公式三、五推导出诱导公式六吗? 提示 诱导公式六的推导: ∵π2+α=π2-(-α),由诱导公式五得: sin π2+α=sin π2--α=cos (-α)=cos α, cos 2π+α=cos 2π--α=sin (-α)=-sin α. 即 sin π2+α=cos α,cos 2π+α=-sin α.
-cos 3π=-12.
(12 分)
【题后反思】 这是一个与函数相结合的问题,解决此类问题时, 可先用诱导公式化简变形,将三角函数的角度统一后再用同角 三角函数关系式,这样可避免公式交错使用而导致的混乱.
误区警示 对角的终边位置考虑不全面而出错 【示例】 若|cos α|=sin 32π-α,请指出角 α 的终边的位置. [错解] 由|cos α|=sin 32π-α得,|cos α|=-cos α,所以 cos α≤0. 故角 α 的终边在第二或第三象限.

三角函数的诱导公式ppt课件

三角函数的诱导公式ppt课件
这些公式通过角度的加、减、乘、除和周期性,将任意角度的三角函数转换为基 本角度(0度、90度、180度、270度、360度)的三角函数。
三角函数诱导公式的重要性
三角函数诱导公式是学习和研究三角函数的基础,是解决三角函数问题的重要工具。
通过诱导公式,我们可以简化复杂的三角函数表达式,求解三角函数的值,以及进 行三角函数的化简和恒等变换。
利用三角函数的和差角公式推导
和差角公式总结
三角函数还有一些和差角公式,如$sin(x+y) = sin x cos y + cos x sin y$和$cos(x+y) = cos x cos y - sin x sin y$。利用这些公式可以推导出一些诱导公式。
具体推导
例如,利用和差角公式,我们可以推导出$sin(180^circห้องสมุดไป่ตู้- x) = sin 180^circ cos x + cos 180^circ sin x = cos x$。同样地,利用和差角公式,也可以推导出其他诱导公式。
在工程领域的应用
在工程领域中,三角函数诱导公式被 广泛应用于各种实际问题的解决。例 如,在机械工程中,三角函数诱导公 式可以帮助我们更好地设计和分析机 械零件的力学性能。
VS
在航空航天工程中,三角函数诱导公 式被用于分析和设计飞行器的姿态控 制和导航系统。此外,在土木工程、 水利工程和交通运输等领域中,三角 函数诱导公式也有着广泛的应用。
已知$tangamma = -frac{1}{3}$,求 $tan(180^circ + gamma)$的值。
高阶练习题
总结词
综合运用诱导公式解决复杂问题
练习题7
已知$cos(180^circ + alpha) = -frac{4}{5}$,求$sin(270^circ + alpha)$的值。

诱导公式的应用教学课件

诱导公式的应用教学课件

在积分运算中的应用
积分运算
诱导公式在积分运 算中有着广泛的应 用,通过诱导公式 可以将复杂的积分 问题化简为简单的 计算。
三角函数积 分
利用诱导公式,可 以快速求解三角函 数的积分,提高解 题效率。
拓展应用
诱导公式不仅在积 分运算中有应用, 还可以拓展到其他 数学领域,如求解 微分方程等。
04
诱导公式的应用 实例
诱导公式的应用教 学课件
目录
01 诱导公式的基本概念 02 诱导公式的基本应用 03 诱导公式的拓展应用 04 诱导公式的应用实例 05 诱导公式的注意事项
01
诱导公式的基本 概念
诱导公式定义
基本概念
诱导公式是三角函数中一些具有 特殊性质的恒等式。
应用领域
诱导公式在三角函数的化简、求 值、证明等方面有广泛应用。
导公式来解决一些复杂的数学问题。
解决实际问题
三角函数的图像变换
诱导公式可以应用于三角函数的图像变换中, 例如平移、伸缩和对称变换等,以帮助我们更
好地理解和分析函数的性质。
03
诱导公式的拓展 应用
在解三角形中的应用
解决角度问题
诱导公式可以用于解决解三角形 中的角度问题,通过将角度转换 到已知的坐标系中,简化计算过 程。
角度的化简
利用诱导公式,将角度化简到0到 360度之间,便于后续的三角函数 计算。
特殊角的三角函数值
利用诱导公式,求出特殊角的三 角函数值,为解决实际问题提供 基础数据。
三角函数的求值
在解决三角函数的求值问题时,需 要将角度与弧度制进行转换,利用 诱导公式简化计算。
利用诱导公式,可以快速求出特殊 角的三角函数值,如30°、45°、 60°等。

高中数学《诱导公式》课件

高中数学《诱导公式》课件

sin
α=y,cos
α=x,当x≠0时,tan
α=
y x
.
(1)如图5.2-8(1),作点P(x,y)关于x轴的对称点P1(x,-y),则∠xOP1=-α.
由三角函数的定义可得
sin(-α)=-y=-sin α,
cos(-α)=x=cos α,
当x≠0时,tan(-α)=
y x
y x
tan.
(1) 图5.2-8
2 诱导公式.
诱导公式揭示了终边具 有某种对称关系的两个角三 角函数之间的关系.
一 诱导公式

12
化简:
(1)
sin
3
2

(2)
cos
3
2
.

(1)
sin
3
2
sin
2
sin
2
cos

(2)
cos
3
2
cos
2
cos
2
sin
.
一 诱导公式

13
化简:cos cos
探究α与π -α之间的函数 关系,我们还可以从这两个角 的终边关于y轴对称来推导,试 试看.
一 诱导公式
为了使用方便,我们将上述探究得到的公式总结如下:
公式二 sin(-α)=-sin α, cos(-α)=cos α, tan(-α)=-tan α.
公式三 sin(π+α)=-sin α, cos(π+α)=-cos α, tan(π+α)=tan α.
利用公式五,可以实现正弦函数与余弦函数的相互转化.
一 诱导公式
当角α的终边不在坐标轴上时,还可以得出以下公式:
公式六
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

公式 三或一
任意正角的三角 函数
公式一
0-2Π的角的三角 函数
公式 二或三
锐角的三角函数
y=sinx
y=cosx
c2=a2+b2
Y
推导
O
设任意角α的终边与单位圆的交点坐标为 P的1(终x边,关y于)y。=x由对于称角,(角Π2(-Π2α-)α的)终的边终与边角与单α 位圆的交点P2与点P1关于y=x对称,因此点P2的 坐标是(y,x),由三角函数的定义得:
y=cosx
X
c2=a2+b2
Y
观察
O
观察图像,易知: Π-α的终边与角α的终边关于y轴对称; Π+α的终边与角α的终边关于原点对称; 角-α的终边与角α的终边关于x轴对称; 角Π/2 -α的终边与角α的终边关于y=x
对称。
那么,这些角的三角函数又有什么关系呢?
y=sinx
y=cosx
X
c2=a2+b2
y=sinx
y=cosx
c2=a2+b2
Y
探究
O
给定一个角α. 角Π-α、Π+α的终边与角α的终边有
什么关系?它们的三角函数之间有什么 关系? 角-α的终边与角α的终边有什么关系? 它们的三角函数之间有什么关系? 角Π/2 -α的终边与角α有什么关系它 们的三角函数之间有什么关系?
y=sinx
sinα=y sin(Π -α)=x
2
cosα=x cos( Π -α)=y
2
y=sinx
y=cosx
X
c2=a2+b2
Y
结论
O
Xபைடு நூலகம்
由上述推导可得公式五
,又
Π 2
+α=Π-(
Π 2

),由公式四、五
可得公式六。
sin( Π -α)= cosα
2
cos(Π -α)= sinα
2
sin(Π2 +α)= cosα cos( Π +α)= - sinα
y=cosx
c2=a2+b2
Y
例题
O
X
cos(-2040°) = cos2040° = cos(6*360°-120°) = cos120°=cos(180°-60°) = -cos60°= - 1
2
由例题可得出:利用公式一~四把任意角的三角函数转化为锐角 三角函数,一般可按下边步骤进行:
任意负角的三角 函数
三角函数的诱导公式
sinx cosx tanx cotx
正弦
余弦
余切 正切
Y
思考
O
X
我们利用单位圆定义了三角函数,而圆 具有很好的对称性,能否利用圆的这种对称 性来研究三角函数的性质呢?例如,能否从 单位圆关于x轴、y轴、直线y=x的轴对称性 以及关于原点O的中心对称性等出发,获取 一些三角函数的性质呢?
Y
推导
O
设任意角α的终边与单位圆的交点坐标为
P1(x,y)。由于角Π+α的终边与角α的终 边关于原点对称,角Π+α的终边与单位圆的
交点P2与点P1关于原点O对称,因此点P2的坐标 是(-x,-y),由三角函数的定义得:
sinα=y sin(Π+α)=-y
cosα=x cos(Π+α)=-x
tanα=y/x tan(Π+α)=y/x
2
y=sinx
y=cosx
c2=a2+b2
Y
归纳
O
X
归纳概括公式五和六,可得:
Π/2 +α和 Π/2 -α的正弦(余弦) 函数值,分别等于α的余弦(正弦) 函数值,前面加上一个把α看成锐角 时原函数值得符号。
y=sinx
y=cosx
c2=a2+b2
Y
本章小结
O
X
公式一~六都叫做诱导公式。(要理解并熟记)
sin(2kΠ+α) sin(Π+α) sin(-α)= sin(Π-α)
= sinα,k∈Z = -sinα
-sinα
= sinα
cos(2kΠ+α) = cosα,k∈Z
cos(Π+α) = cosα
cos(-α)= cosα
cos(Π-α) = -cosα
sin( Π -α)= cosα sin( Π +α)= cosα
c2=a2+b2
Y
归纳
O
X
回忆公式一﹝sin(2kΠ+α)= sinα,cos(2kΠ+α)=
cosα,tan(2kΠ+α)= tanα),k∈Z﹞
可归纳概括公式一至四:
2kΠ+α(k∈Z),-α,Π+α,Π-α的三角函数值, 等于α的同名函数值,前面加上一个吧α看成锐角时 原函数值得符号。
y=sinx
2
2
cos(Π -α)= sinα cos(Π +α)= - sinα
2
2
tan(2kΠ+α)
= tanα), tan(Π+α) tan(-α)= tan(Π-α)
k∈Z
= tanα
-tanα
= -tanα
tan(Π -α)= ?
2
tan(Π +α)= ?
2
思考?
y=sinx
y=cosx
c2=a2+b2
y=sinx
y=cosx
X
c2=a2+b2
Y
结论
O
X
由上述推导可得公式二,同理可证公式三和四。
sin(Π+α)= -sinα cos(Π+α)= cosα tan(Π+α)= tanα
sin(-α)= -sinα cos(-α)= cosα tan(-α)= -tanα
y=sinx
y=cosx
sin(Π-α)= sinα cos(Π-α)= -cosα tan(Π-α)= -tanα
相关文档
最新文档