核反应堆安全 4.1运行工况和事故分类
核反应堆安全事故分析及预防研究

核反应堆安全事故分析及预防研究核反应堆作为人类利用核能的主要设备,其安全性一直备受关注。
但是,尽管反应堆的设计和运行都严格遵守安全规范,事故仍然时有发生。
事故的发生不仅会对人类生命和环境造成极大的损害,也会对核能的发展产生不利影响。
因此,核反应堆事故的分析和预防研究显得至关重要。
一、核反应堆安全事故的类型核反应堆事故是指在核反应堆运行过程中,由于设计、运行、人为操作等原因引起的反应堆失控,导致严重核辐射泄漏或燃料释放的事件。
核反应堆事故大致分为以下几种类型:1、金属膨胀事故由于核反应堆中使用的燃料材料是铀或钚等金属,在反应过程中会发生膨胀。
如果这种膨胀过程无法被控制或被觉察到,就可能导致反应堆中燃料棒间距变窄,引发严重的事故。
2、核燃料棒失效事故核燃料棒失效是指核反应堆使用的燃料棒因长时间的使用,或其他不稳定因素导致燃料包壳失效。
当燃料包壳破裂或变形时,燃料核素可能泄漏,导致核反应堆事故。
3、燃料完全熔化事故燃料完全熔化通常发生在外部事件引发的严重事故中,如地震、台风等。
当反应堆无法正常工作时,燃料棒内的核燃料可能被加热,最终熔化。
这种事故会导致燃料棒及周围的核材料向外泄漏。
4、冷却系统失效事故核反应堆需要冷却液来去除燃料棒、反应堆内部组件及结构的热量,以保证反应堆的安全。
如果冷却系统失效或冷却液泄漏,冷却液不足,就会发生反应堆失控,严重的事故就有可能发生。
二、核反应堆安全事故的预防研究为了预防核反应堆事故的发生,需要从根本上解决安全问题。
核反应堆的设计、建设、运营和维护都需要从安全考虑。
主要预防方法包括:1、设计防范措施核反应堆的保安设施和安全控制设备应当进行严格的设计和测试,确保其能够承受各种突发事件的冲击和影响。
此外,设计中应当预留一定的安全舱以分离核反应堆核素和人员,防止事故扩散。
2、运营操作规范运行核反应堆需要专业的人员,专业化的工作流程和科学的管理机制。
同时,应采用定期巡检,监测参数等手段,对核反应堆进行严格的检测和评估。
压水堆核电站基础:第八章 专设安全系统

压水堆核电站基础
第八章 专设安全系统
核反应堆运行工况与事故分类
按反应堆事故出现的预计概率和可能的放射性后 果,把核电厂运行工况分为四类: 工况Ⅰ——正常运行和运行瞬变 工况Ⅱ——中等频率事件,或称预期运行事件 工况Ⅲ——稀有事故 工况Ⅳ——极限事故
系统与设备(4)
技术安全目标
对于核电厂设计中考虑的所有事故,甚至对于那些 发生概率极小的事故都要确保其放射性后果(如果有的 话)是小的;确保那些会带来严重放射性后果的严重事 故发生的概率非常低。
系统与设备(4)
12
事故的预防和缓解
事故的预防是设计人员和运行人员应尽的安全职责。 为了防止事故的发生,从设计到运行都要贯彻一系列 的安全原则。 合理的设计; 可靠的设备; 各种完善的规程; 运行人员具有良好的安全素养。
事件本身并不是事故。如果附加故障后会导致运行事件、 设计基准事故或严重事故的事件。典型的假设始发事件例 子是设备故障(包括管道破裂)、人员差错、人为事件和 自然事件。
假设始发事件的后果可能较小(如某一多重部件的失 效),也可能很严重(如反应堆冷却剂系统主管道的破 裂)。
设计的主要安全目标在于追求核动力厂所具有的特性能够 保证:大部分假设始发事件的后果较小或甚至无足轻重; 其余的假设始发事件导致设计基准事故,其后果是可以接 受的;而如果导致严重事故,其后果可以通过设计措施和 事故管理加以限制。
带有允许偏差的极限运行,如在允许范围内带 有燃料包壳缺陷或蒸汽发生器泄漏等;
运行瞬变。
系统与设备(4)
4
工况II——中等频率事件(预期运行事件)
常见故障,指在核电厂运行寿期内预计出现一次或数次偏离正常运行的 所有运行过程,即发生频率在10-2次/堆年到1次/堆年。保护系统动作, 反应堆安全停闭,但燃料包壳保持完整性,不会造成燃料元件棒损坏, 系统压力不超过设计值。放射性后果不超过0.001mSv。采取措施后机 组能重新起动。
核反应堆安全分析讲诉

2019年3月23日11时13分
稀有事故
一回路系统管道小破裂(SBLOCA); 二回路系统蒸汽管道小破裂; 燃料组件误装载;
满功率运行时抽出一组控制棒组件;
全厂断电SBO(反应堆失去全部强迫流量);
放射性废气、废液的事故释放;
蒸汽发生器单根传热管断裂事故。
2019年3月23日11时13分
核反应堆安全分析
安全概念
事故分类 部分事故分析
2019年3月23日11时13分
2
No.3
安全概念
人类从事创造物质财富的工业活动或谋求各种利益与方便的同时, 不可避免的会受到来自各种风险的威胁。
核电厂的风险主要来自于事故工况不可控的放射性核素的释放。
核电厂的三个安全目标 总目标:在核电厂建立并维持一套有效的防护措施,以保证工 作人员,社会及环境免遭放射性危害。 辐射防护目标:确保正常运行的核电厂释放的放射性物质辐 照保持合理水平,且事故引起的辐照照射程度得到缓减。 核技术安全目标:有很大把握预防核电厂事故的发生。
事故工况:比预计运行事件更严重的工况,包括设计基准事故和严 重事故。
事故管理:在超设计基准事故发展过程中所采取的一系列行动:
防止事件升级为严重事故(预防); 减轻严重事故的后果(缓解); 实现长期稳定的安全状态。
2019年3月23日11时13分
美国标准协会(ANSI)分类法(1970)
2019年3月23日11时13分
No.4
事故分类
我国HAF102的核电厂事故分类
1970年美国标准协会(ANSI)分类
1975年美国核管会(NRC) 《轻水堆核电厂安全分析报告 标准格式和内容》(第二次修订版)规定需分析的47 种典型始发事件
核电站事故分类和安全分析

核电站事故分类和安全分析1. 引言核电站作为一种重要的能源供应方式,具有高效、清洁的特点,但也存在一定的安全风险。
本文将对核电站事故进行分类和安全分析,旨在更好地了解核电站事故的类型和安全措施,以增加核电站运营的安全性和可靠性。
2. 核电站事故分类根据事故的性质和影响程度,核电站事故可以分为以下几类:2.1 设备故障类事故设备故障类事故指的是核电站中关键设备的损坏或失效,可能导致核电站的运行中断或事故发生。
典型的设备故障包括主泵、汽轮机、操纵系统等的故障或失效。
这类事故的发生往往与设备材料疲劳、操作失误等因素有关。
2.2 燃料管理类事故燃料管理类事故主要与核燃料的管理和处理过程有关。
例如,核燃料的泄露、堆芯过热等问题可能导致严重的事故发生。
这类事故需要注意燃料的存储、处理和运输过程的安全性。
2.3 放射性物质泄漏事故放射性物质泄漏事故指核电站中放射性物质泄漏到环境中,对人体和环境造成潜在威胁的事故。
这类事故的发生可能导致辐射污染,对于周边社区和生态环境造成重大影响。
因此,放射性物质泄漏事故的防范和应急措施尤为重要。
3. 核电站安全分析为保证核电站的安全运行,需要进行全面的安全分析,以下是几种常用的核电站安全分析方法:3.1 事故树分析事故树分析是一种定性、定量相结合的安全分析方法,用于分析事故发生的可能性和事故连锁反应。
该方法通过构建事故树模型,分析各个事件的发生概率和次序,评估事故发生的风险程度和影响范围。
3.2 故障模式和影响分析故障模式和影响分析(FMEA)是一种系统性的分析方法,用于识别和评估潜在故障的影响。
通过分析故障模式、潜在原因和后果,确定关键设备和流程的故障潜在影响,从而采取相应的预防和纠正措施。
3.3 风险评估风险评估是一种定量的分析方法,用于评估核电站事故的潜在风险和影响。
通过确定事故发生的可能性和影响程度,计算风险值,以便采取相应的安全措施和应急预案。
4. 核电站安全措施为了保证核能发电站的安全性,需要采取一系列的安全措施。
反应堆安全分析复习题资料

反应堆安全分析复习题资料2007年李吉根⽼师《反应堆安全》课的复习题资料1、核反应堆安全性特征(即安全考虑的出发点)。
答:a强放射性;b衰变热;c功率可能暴⾛;d⾼温⾼压⽔;e放射性废物的处理与贮存。
2、核安全的总⽬标、辐射防护⽬标和技术安全⽬标。
员、公众及环境免遭过量放射性风险。
照射保持在合理可⾏尽量低的⽔平,并低于国际辐射防护委员会(ICRP)规定的限制;还确保事故引起的辐射照射的程度得到缓解。
故,甚⾄对于那些发⽣概率极⼩的事故都要确保其放射性后果是⼩的;确保那些会带来严重放射性后果的严重事故发⽣的概率⾮常低。
3、核反应堆安全的基本设计思想和主要设计原则。
际屏障。
纵深防御:包含正常运⾏设施、停堆保护系统、专设安全设施、特殊安全设施和⼚外应急设施五个层次。
分别为:1)⾼质量的设计、施⼯和运⾏,防⽌异常⼯况出现;2)停堆保护余热排出,防⽌异常⼯况发展为事故;3)专设安全设施,防⽌事故发展为严重事故;4)事故处置及特殊设施,防⽌放射性⼤量释放到环境;5)⼚外应急计划与措施,限制危害和后果。
多层屏障:轻⽔堆核电⼚普遍采⽤三道实体屏障,即燃料元件包壳、反应堆冷却剂系统承压边界和安全壳及安全壳系统。
另外,燃料芯块、反应堆冷却剂、安全壳内空间及⼚外的防护距离也都可视为缓解放射性危害的屏障。
则、定期试验维护检查的措施、充分采⽤固有安全性的原则、运⾏⼈员操作优化的设计。
4、冗余度和多样性设计原则及其出发点。
⼚的运⾏。
出发点:⾼可靠性、单⼀故障准则的要求。
失效。
5、核反应堆基本安全功能和主要安全系统。
答:核反应堆的基本安全功能:反应性控制、确保堆芯冷却、包容放射性产物。
【法国版】反应性控制、余热导出、控制反应性释放;【美国版】保护反应堆冷却剂系统压⼒便捷的完整性、保证及保持安全停堆、控制放射性释放。
设施。
专设安全系统:应急堆芯冷却剂系统、安全壳本体、安全壳喷淋系统、辅助给⽔系统、安全壳消氢和净化系统。
6、核反应堆的四种安全性要素和反应性反馈机理。
核电站事故分类和安全分析

核爆炸事故的预防措施包括加强核电站安全管理,提高核反应堆的安全 性能,以及建立完善的应急响应机制。
核废料处理事故
核废料处理事故的定义:核废料处理过程中发生的事故,包括放射性物质泄漏、放射性物质污 染等。
心理影响:核电 站事故可能导致 心理影响,如焦 虑、恐惧等
对环境的影响
放射性物质泄 漏:对周围环 境造成污染, 影响生物生存
空气污染:放 射性物质扩散 到空气中,造
成空气污染
水污染:放射 性物质进入水 体,影响水质
和生物生存
土壤污染:放 射性物质进入 土壤,影响土 壤质量和生物
生存
对经济的影响
核电站事故可能导致电力供应中断,影响经济发展
加强核电站安全宣传,提高公 众对核电站安全的关注度
加强核电站安全监管,确保核 电站安全运行,提高公众对核 电站安全的信心
THANK YOU
汇报人:
自然灾害导致的事故
地震:地震可能导致核电站设 备损坏,引发核泄漏事故
海啸:海啸可能导致核电站设 备损坏,引发核泄漏事故
洪水:洪水可能导致核电站设 备损坏,引发核泄漏事故
台风:台风可能导致核电站设 备损坏,引发核泄漏事故
其他因素导致的事故
设计缺陷:设计 不合理,导致设 备故障或安全隐 患
施工质量问题: 施工不规范,导 致设备安装或运 行问题
援等环节
应急处置:在 事故发生时, 迅速启动应急 预案,采取有 效措施控制事
故发展
应急救援:在 事故发生后, 迅速组织救援 力量,开展救 援工作,确保
人员安全
事故调查:在 事故发生后, 对事故原因进 行调查,分析 事故原因,提 出改进措施, 防止类似事故
核反应堆安全分析复习内容

核反应堆安全分析Ch1:1.1安全总目标与两个辅助目标1.2安全设计的基本原则1.3核安全文化的定义和含义1.4不要求Ch2:2.1四种安全性因素2.2反应堆的三种安全功能及其如何实现2.3专设安全设施的功能及设计原则Ch3:不要求Ch4:4.1:四类运行工况的定义,八种典型始发事故,核电厂运行状态示意图4.2:看看吧4.3:P66页的图看懂,反馈的作用4.4—4.8:主要是事故过程分析,解释事故曲线的变化趋势。
(个人认为4.6,4.7两节最重要)4.9:单老师说这一节不会考读图题,看看概念吧4.10:大体看看吧Ch5:5.1:高压熔堆与低压熔堆的特点5.2—5.4:大体了解堆芯的融化过程及压力容器与安全壳内的过程5.5---5.6:大体看看吧,好好看看应急计划区Ch7:单老师说可能考PSA的三个等级,同时会有故障树分析的大题,选了PSA的同学窃喜,没选的就好好看看吧答疑情报:题型有填空,简答与读图题,1.4与第三章不考,失水事故不考读图题,带公式的都不用看,最后他说他出题很随意,卷子还没出,那就最后出成啥样就只有天知地知他知了。
先把重点的看完了,时间充裕的话那些非安全级的也大体看看吧,有点印象就行了,好好复习吧。
1、安全的总的目标:在核电厂里建立并维持一套有效的防护措施,以保证工作人员、社会及环境免遭放射性危害。
2、辅助目标:辐射防护目标:确保在正常运行时核电厂及从核电厂释放出的放射性物质引起的辐射照射保持在合理可行尽量低的水平,并且低于规定的限值,还确保事故引起的辐射照射的程度得到缓解。
技术安全目标:有很大把握预防核电厂事故的发生;对于核电厂设计中考虑的所有事故,甚至对于那些发生概率极小的事故都要确保其放射性后果(如果有的话)是小的;确保那些会带来严重放射性后果的严重事故发生的概率非常低。
3、核设施的设计基准事故:每项专设安全设施都有其特定控制的事故,对其控制效率进行确定性分析来决定这些设施的设计参量,要求安全设施达到最极端设计参量的事故称为核设施的设计基准事故。
核反应堆安全 运行工况和事故分类

设计基准事故
每项专设安全设施都有其特定控制的事故,对其控制 效率进行确定性分析来决定这些设施的设计参量,要 求安全设施达到最极端设计参量的事故称为核设施的 设计基准事故(Design Basic Accident,DBA)。
核电厂按确定的设计准则在设计中采取了针对性措施 的那些事故工况。(HAF定义)
3稀有事故:动用安全设施,少元件破裂;放射性全身不大于 5mSv,甲状腺不大于15mSv;
4极限事故:动用安全设施,元件破裂数量有限量,安全设施 可用,一回路及安全壳功能有保障。 放射性全身不大于0.15Sv,甲状腺不大于0.45Sv;
这是对4种工况(condition)下,具体要求,通过才能 允许建造。
故,包括沸水堆安全壳内蒸汽管道破裂 6.6 各种沸水堆瞬变,包括1.3、2.7和2.8
安全分析报告分析的典型始发事故
7. 系统或设备的放射性释放 7.1 放射性气体废物系统泄漏或破损 7.2 放射性液体废物系统泄漏或破损 7.3 假想的液体贮箱破损而产生的放射性释放 7.4 设计基准燃料操作事故 7.5乏燃料贮罐掉落事故 8. 未能紧急停堆的预期瞬变 8.1 误提出控制棒 8.2 失去给水 8.3 失去交流电源 8.4 失去电负荷 8.5 凝汽器真空破坏 8.6 汽轮机跳闸 8.7 主蒸汽管道隔离阀关闭
安全分析报告分析的典型始发事故
4.2 在特定功率水平下非可控抽出控制棒组件(假定堆芯和反应堆冷 却剂系统处于最不利反应性状态),产生了最严重后果(低功率到满 功率) 4.3 控制棒误操作(系统故障或运行人员误操作),包括部分长度控制 棒误操作 4.4 启动一条未投入运行的反应堆冷却剂环路或在不适当的温度下 启动一条再循环环路 4.5 一条沸水堆环路的流量控制器故障或损坏,使反应堆冷却剂流 量增加 4.6 化学和容积控制系统故障使压水堆冷却剂中硼浓度降低 4.7 在不适当的位置误装或操作一组燃料组件 4.8 压水堆各种控制棒弹出事故 4.9 沸水堆各种控制棒跌落事故
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
THE END
运行瞬变
• 线性(1-5)%额定功率升降; • 阶跃正负10%额定功率升降; • 以上情况属控制系统能够应对范围,即 不会出现停堆; 超出10%额定功率升降,(各电厂设计 不同)。 总之,运行瞬变是个广泛的概念。
核反应堆运行工况与事故分类
工况Ⅱ—— 中等频率事件 , 或称预期运行 事件。在核电厂运行寿期内预计出现一 次或数次偏离正常运行的所有运行过 程。可能停堆,但不会造成燃料元件损 坏或一回路、二回路系统超压,只要保 护系统能正常动作,就不会导致事故工 况。
4.1反应堆运行工况与事故分类
按反应堆事故出现的预计概率和可能的放射性后果, 核电厂运行工况(condition)分为四类: 工况Ⅰ——正常运行和运行瞬变 (1)正常启动、停闭和稳态运行; (2)带有允许偏差的极限运行; (3)运行瞬变。 这类工况出现较频繁,无需停堆,依靠控制系统进行 调节,到所要求的状态,重新稳定运行。
设计基准事故
每项专设安全设施都有其特定控制的事故,对其控制 效率进行确定性分析来决定这些设施的设计参量,要 求安全设施达到最极端设计参量的事故称为核设施的 设计基准事故(Design Basic Accident,DBA)。 核电厂按确定的设计准则在设计中采取了针对性措施 的那些事故工况。(HAⅣ——极限事故 发生概率约为10-6~10-4次/(堆·年),因此被称 作假想事故。它一旦发生,就会释放出大量 放射性物质,所以在核电厂设计中必须加以 考虑。 如 二 回 路 蒸 汽 管 道 大 破 裂 (MSLB) , 大 LOCA。
事故与事件分类:
(1)瞬变。 主要有:反应性引入事故; 失流事故; 失热阱事故等。 (2)以丧失一回路或二回路流体为特征的 管道破裂事故,如 失水事故(LOCA) 蒸汽管道破裂事故、给水管道破裂事故。
安全分析报告分析的典型始发事故
1. 二回路系统排热增加 1.1 给水系统故障使给水温度降低 1.2 给水系统故障使给水流量增加 1.3 蒸汽压力调节器故障或损坏使蒸汽流量增加 1.4 误打开蒸汽发生器泄放阀或安全阀 1.5 压水堆安全壳内、外各种蒸汽管道破损 危害??
二回路热力循环 简图
安全分析报告分析的典型始发事故
正常运行
• 大亚湾核电厂分9个mode,用热工参数描 述,冷态-热态(RC10ºC-310ºC); 常压-额定压力; 次临界度不小于5000PCM。 • 从一个模式向另一个模式过度;
带有偏差的极限运行
• 一回路不可识别的小泄漏; 例如,法国蒸汽发生器传热管泄漏>72L/h才 停堆; 各个电厂的Technical Specification 有细致的 规定。 为了获得较高的负荷因子等经济性指标,带 有偏差的极限运行是必要的,在安全性和经 济性找到折中。
2. 二回路系统排热减少 2.1 蒸汽压力调节器出故障或损坏使蒸汽流量 减少 2.2 失去外部电负荷 2.3 汽轮机跳闸(截止阀关闭) 2.4 误关主蒸汽管线隔离阀 2.5 凝汽器真空破坏 2.6 同时失去厂内及厂外交流电源 2.7 失去正常给水流量 2.8 给水管道破裂
安全分析报告分析的典型始发事故
这是对4种工况(condition)下,具体要求,通过才能 允许建造。
严重事故
严重事故是指堆芯遭到严重损坏和熔化甚 至安全壳也损坏的一种事故,它将导致放射性 物质大量释放到环境,是一种超设计基准事 故。 在大约 7000 堆 · 年的核电厂运行历史中,已 经发生了两起严重事故。 1979 年 3 月 28 日美国 三哩岛核电厂事故,大约40%堆芯熔化,由于 安全壳保持了完整性,只有极少量气态碘和惰 性气体释放,没有人员死亡。 1986 年 4 月 26 日 前苏联切尔诺贝利核电厂事故,堆芯全部破 坏,房顶被炸飞,导致大量放射性物质释放至 大气中,即发死亡31人。这两起事故使得发生 严重事故的概率达到4×10-4/(堆·年)。
3. 反应堆冷却剂系统流量减少 3.1 一个或多个反应堆主泵停止运行 3.2 沸水堆再循环环路控制器故障使流量减少 3.3 反应堆主泵轴卡死 3.4 反应堆主泵轴断裂 4. 反应性和功率分布异常 4.1 在次临界或低功率启动时,非可控抽出控制棒组件 ( 假定堆芯和反应堆冷却剂系统处于最不利反应性状 态),包括换料时误提出控制棒或暂时取出控制棒驱动 机构
4类运行工况及其安全准则
1正常运行:燃料不受任何损害,不许动用任何保护 系统和安全设施; 2预期运行事件:燃料不受任何损害屏障不受损害, 纠正措施后机组可重新启动,不会发展成更 严重事故。 3稀有事故:动用安全设施,少元件破裂;放射性全身不大于 5mSv,甲状腺不大于15mSv; 4极限事故:动用安全设施,元件破裂数量有限量,安全设施 可用,一回路及安全壳功能有保障。 放射性全身不大于0.15Sv,甲状腺不大于0.45Sv;
安全分析报告分析的典型始发事故
4.2 在特定功率水平下非可控抽出控制棒组件(假定堆芯和反应堆冷 却剂系统处于最不利反应性状态),产生了最严重后果(低功率到满 功率) 4.3 控制棒误操作(系统故障或运行人员误操作),包括部分长度控制 棒误操作 4.4 启动一条未投入运行的反应堆冷却剂环路或在不适当的温度下 启动一条再循环环路 4.5 一条沸水堆环路的流量控制器故障或损坏,使反应堆冷却剂流 量增加 4.6 化学和容积控制系统故障使压水堆冷却剂中硼浓度降低 4.7 在不适当的位置误装或操作一组燃料组件 4.8 压水堆各种控制棒弹出事故 4.9 沸水堆各种控制棒跌落事故
安全分析报告分析的典型始发事故
5. 反应堆冷却剂装量增加 5.1 功率运行时误操作应急堆芯冷却系统 5.2 化学和容积控制系统故障(或运行人员误操作)使反应堆冷却剂装 量增加 5.3 各种沸水堆瞬变,包括1.2和2.1到2.6 6. 反应堆冷却剂装量减少 6.1 误打开压水堆稳压器安全阀或误打开沸水堆的安全阀或泄漏阀 6.2 贯穿安全壳一回路压力边界的仪表或其它线路系统的破裂 6.3 蒸汽发生器传热管破裂 6.4 沸水堆各种安全壳外蒸汽系统管子破损 6.5 反应堆冷却剂压力边界内假想的各种管道破裂所产生的失冷事 故,包括沸水堆安全壳内蒸汽管道破裂 6.6 各种沸水堆瞬变,包括1.3、2.7和2.8
安全分析报告分析的典型始发事故
7. 系统或设备的放射性释放 7.1 放射性气体废物系统泄漏或破损 7.2 放射性液体废物系统泄漏或破损 7.3 假想的液体贮箱破损而产生的放射性释放 7.4 设计基准燃料操作事故 7.5乏燃料贮罐掉落事故 8. 未能紧急停堆的预期瞬变 8.1 误提出控制棒 8.2 失去给水 8.3 失去交流电源 8.4 失去电负荷 8.5 凝汽器真空破坏 8.6 汽轮机跳闸 8.7 主蒸汽管道隔离阀关闭
反应堆运行工况与事故分类
在我国,核电厂设计安全规定中,定义电厂状 态(status)为四类,即: 正常运行; 预期运行事件; 事故工况(设计基准事故) 严重事故 实际上严重事故已经发生过,当然是曾经出现 的状态(status) 。
简单来说,4种工况达标才能建造,申请依据;
对严重事故,强调有对策;
预期运行事件
• • • • • 比如甩负荷; 安注系统误动作; 凝汽器低真空; 主蒸汽管线上阀门误开等。 落棒。
!
• 要区分工况1中的运行瞬变和属于二类工 况的运行事件。
核反应堆运行工况与事故分类
工况Ⅲ——稀有事故 发生概率约为 10-4 ~ 3×10-2 次 /( 堆 · 年 ) 。 为了防止或限制对环境的辐射危害,需 要专设安全设施投入工作。 如单跟蒸汽发生器转热管断裂。