等式与不等式的总结~!
等式与不等式的认识与运算知识点总结

等式与不等式的认识与运算知识点总结等式和不等式是数学中非常重要的概念。
等式表示两个数量相等的关系,而不等式则表示两个数量之间的大小关系。
在数学中,对这两个概念的理解和应用至关重要。
本文将对等式与不等式的认识和运算知识点进行总结。
一、等式的认识与性质等式是数学中用“=”号表示的两个表达式相等的关系。
对于任意的数值和变量,可以用等式来表达它们之间的相等关系。
1. 等式的性质(1)等式有自反性:对于任意的数值或表达式,它永远等于自己,即a = a。
(2)等式有对称性:如果a = b,则b = a。
(3)等式有传递性:如果a = b,且b = c,则a = c。
(4)等式可以进行加、减、乘、除的运算。
对等式的两边同时进行相同的运算,等式仍然成立。
二、不等式的认识与性质不等式是用“<”、“>”、“≤”、“≥”等符号表示的两个数量大小关系的式子。
不等式可以表示两个数的大小关系,也可以表示一组数的大小关系。
1. 符号的含义(1)< 符号表示小于,表示左边的数小于右边的数。
(2)> 符号表示大于,表示左边的数大于右边的数。
(3)≤ 符号表示小于等于,表示左边的数小于或等于右边的数。
(4)≥ 符号表示大于等于,表示左边的数大于或等于右边的数。
2. 不等式的性质(1)不等式有传递性:如果a < b,且b < c,则a < c。
(2)对于不等式,可以进行加、减、乘、除运算,但需要注意不等号的方向。
三、等式与不等式的运算1. 等式的运算对于等式,可以进行以下运算:(1)加法运算:若a = b,则a + c = b + c。
(2)减法运算:若a = b,则a - c = b - c。
(3)乘法运算:若a = b,则a * c = b * c。
(4)除法运算:若a = b,则a / c = b / c(其中c ≠ 0)。
2. 不等式的运算对于不等式,可以进行以下运算:(1)加法运算:若a < b,则a + c < b + c。
不等式总结

不等式总结一、不等式的性质1.(不等式建立的基础)两个实数a 与b 之间的大小关系(1)a b 0a b (2)a b =0a =b (3)a b 0a b ->>;-;-<<.⇔⇔⇔⎧⎨⎪⎩⎪若、,则>>;;<<. a b R (4)a b 1a b (5)a b =1a =b (6)a b 1a b ∈⇔⇔⇔⎧⎨⎪⎪⎪⎩⎪⎪⎪+2.不等式的性质(1)a b b a()><对称性⇔(2)a b b c a c()>>>传递性⎫⎬⎭⇒(3)a b a c b c()>+>+加法单调性⇔a b c 0 ac bc >>>⎫⎬⎭⇒(4) (乘法单调性)a b c 0 ac bc ><<⎫⎬⎭⇒(5)a b c a c b()+>>-移项法则⇒(6)a b c d a c b d()>>+>+同向不等式可加⎫⎬⎭⇒ ---不等式相加(7)a b c d a c b d()><->-异向不等式可减⎫⎬⎭⇒ ---不等式相减(8)a b 0c d 0ac bd()>>>>>同向正数不等式可乘⎫⎬⎭⇒---不等式相乘(9)a b 00c d b d ()>><<>异向正数不等式可除⎫⎬⎭⇒a c --不等式相除(10)a b 0n N a b ()n n >>>正数不等式可乘方∈⎫⎬⎭⇒ 乘方法则(11)a b 0n N a ()n >>>正数不等式可开方∈⎫⎬⎭⇒b n 开方(12)a b 01a ()>><正数不等式两边取倒数⇒1b ----倒数法则3.绝对值不等式的性质 (1)|a|a |a|= a (a 0)a (a 0)≥;≥,-<.⎧⎨⎩(2)如果a >0,那么|x|a x a a x a 22<<-<<;⇔⇔|x|a x a x a x a 22>>>或<-.⇔⇔(3)|a ·b|=|a|·|b|.(4)|a b | (b 0)=≠.||||a b(5)|a|-|b|≤|a ±b|≤|a|+|b|.(6)|a 1+a 2+……+a n |≤|a 1|+|a 2|+……+|a n |.4. 基本不等式(1)如果a ,b 是正数,那么ab ≤2b a +,当且仅当a=b 时,等号成立。
初中数学方程与不等式知识点总结

初中数学方程与不等式知识点总结方程和不等式是初中数学中的重要内容,它们在解决实际问题和数学运算中都有着广泛的应用。
接下来,让我们一起系统地梳理一下这部分的知识点。
一、方程(一)一元一次方程1、定义:只含有一个未知数,并且未知数的最高次数是 1 的整式方程叫做一元一次方程。
一般形式为:$ax + b = 0$($a \neq 0$,$a$,$b$为常数)。
2、解法:(1)移项:把含未知数的项移到方程的一边,常数项移到方程的另一边。
(2)合并同类项:将同类项进行合并,化简方程。
(3)系数化为 1:方程两边同时除以未知数的系数,得到方程的解。
例如:解方程$3x + 5 = 14$移项得:$3x = 14 5$合并同类项得:$3x = 9$系数化为 1 得:$x = 3$(二)二元一次方程组1、定义:由两个含有两个未知数,且未知数的次数都是 1 的整式方程组成的方程组叫做二元一次方程组。
2、解法:(1)代入消元法:将一个方程中的某个未知数用含有另一个未知数的代数式表示出来,然后代入另一个方程,消去一个未知数,得到一个一元一次方程,解这个一元一次方程,求得一个未知数的值,再将其代入原方程组中的一个方程,求得另一个未知数的值。
例如:解方程组$\begin{cases}x + y = 5 \\ x y = 1\end{cases}$由第一个方程得:$x = 5 y$,将其代入第二个方程得:$5 y y = 1$$5 2y = 1$$-2y =-4$$y = 2$将$y = 2$代入$x = 5 y$得:$x = 3$所以方程组的解为$\begin{cases}x = 3 \\ y = 2\end{cases}$(2)加减消元法:当两个方程中同一未知数的系数相等或互为相反数时,将两个方程的两边分别相加或相减,消去这个未知数,得到一个一元一次方程,解这个一元一次方程,求得一个未知数的值,再将其代入原方程组中的一个方程,求得另一个未知数的值。
不等式的总复习——常见题型总结

不等式的总复习一、知识点归纳1、用不等号连接的式子叫不等式。
2、不等式的基本性质:(1)不等式的两边都加上(或减去)同一个整式,不等号的方向不变。
(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
思考:举例说明不等式与等式的基本性质的区别?3、不等式的解集:(1)能使不等式成立的未知数的值,叫做不等式的解;(2)一个含有未知数的不等式的所有解,组成这个不等式的解集。
(3)求不等式解集的过程叫做解不等式。
4、一元一次不等式:不等式的两边都是整式,只含有一个未知数,且未知数的最高次数为1.5、解不等式的步骤:(1)去分母;(2)去括号;(3)移项、合并同类项;(4)系数化为1.例:下面是小明同学解不等式223125+<-+x x 的过程: 去分母,得 2315+<-+x x移项、合并同类项,得 22-<-x两边都除以2-,得 1<x他的解法有错误吗?如果有错误,请你指出错在哪里。
6、在数轴上表示不等式的解集:取等画实心,不等画空心7、常见的不等关系词:不少于、至少(≥);不超过、至多(≤)8、一元一次不等式与一次函数的关系:对于一次函数b kx y +=,它与x 轴的交点坐标为(k b -,0) 当0>k 时,不等式0>+b kx 的解为k b x ->,不等式0<+b kx 的解为kb x -< 当0<k 时,不等式0>+b kx 的解为k b x -<,不等式0<+b kx 的解为kb x -> 因此,在做此类题时,先看一次函数(直线)与x 轴的交点,观察交点左右两边函数值y 的大小关系。
9、一元一次不等式组:一元一次不等式组中各个不等式的解集的公共部分叫做这个一元一次不等式组的解集二、常见题型解析例1 解下列不等式,并把它们的解集分别表示在数轴上。
专题03 等式与不等式的性质 (学生版)高中数学53个题型归纳与方法技巧总结篇

【考点预测】1.高中数学53个题型归纳与方法技巧总结篇专题03等式与不等式的性质比较大小基本方法关系方法做差法与0比较做商法与1比较b a >0>-b a )0(1>>b a b a ,或)0(1<<b a b a ,b a =0=-b a )0(1≠=b baba <0=-b a )0(1><b a b a ,或)0(1<>b a ba ,2.不等式的性质(1)基本性质性质性质内容对称性ab b a a b b a >⇔<<⇔>;传递性c a c b b a c a c b b a <⇒<<>⇒>>,;,可加性cb c a b a >>+⇔>可乘性ac c b a bc ac c b a ⇒<>>⇒>>00,;,同向可加性db c a d c c a +>+⇒>>,同向同正可乘性bdac d c b a >⇒>>>>00,可乘方性nn b a N n b a >⇒∈>>*0,【方法技巧与总结】1.应用不等式的基本性质,不能忽视其性质成立的条件,解题时要做到言必有据,特别提醒的是在解决有关不等式的判断题时,有时可用特殊值验证法,以提高解题的效率.2.比较数(式)的大小常用的方法有比较法、直接应用不等式的性质、基本不等式、利用函数的单调性.比较法又分为作差比较法和作商比较法.作差法比较大小的步骤是:(1)作差;(2)变形;(3)判断差式与0的大小;(4)下结论.作商比较大小(一般用来比较两个正数的大小)的步骤是:(1)作商;(2)变形;(3)判断商式与1的大小;(4)下结论.其中变形是关键,变形的方法主要有通分、因式分解和配方等,变形要彻底,要有利于0或1比较大小.作差法是比较两数(式)大小最为常用的方法,如果要比较的两数(式)均为正数,且是幂或者因式乘积的形式,也可考虑使用作商法.【题型归纳目录】题型一:不等式性质的应用题型二:比较数(式)的大小与比较法证明不等式题型三:已知不等式的关系,求目标式的取值范围题型四:不等式的综合问题【典例例题】题型一:不等式性质的应用例1.(2022·北京海淀·二模)已知,x y ∈R ,且0x y +>,则()A .110x y +>B .330x y +>C .lg()0x y +>D .sin()0x y +>例2.(2022·山东日照·二模)若a ,b ,c 为实数,且a b <,0c >,则下列不等关系一定成立的是()A .a c b c+<+B .11a b<C .ac bc >D .b a c->例3.(2022·山西·模拟预测(文))若0αβ<<,则下列结论中正确的是()A .22αβ<B .2βααβ+>C .1122αβ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭D .sin sin αβ<(多选题)例4.(2022·辽宁·二模)己知非零实数a ,b 满足||1a b >+,则下列不等关系一定成立的是()A .221a b >+B .122a b +>C .24a b>D .1ab b>+(多选题)例5.(2022·重庆八中模拟预测)已知0a >,0b >,且3ab a b ++=,则下列不等关系成立的是()A .1ab ≤B .2a b +≥C .1a b ->D .3a b -<(多选题)例6.(2022·广东汕头·二模)已知a ,b ,c 满足c <a <b ,且ac <0,那么下列各式中一定成立的是()A .ac (a -c )>0B .c (b -a )<0C .22cb ab <D .ab ac>(多选题)例7.(2022·福建三明·模拟预测)设a b c <<,且0a b c ++=,则()A .2ab b <B .ac bc <C .11a c<D .1c ac b-<-【方法技巧与总结】1.判断不等式是否恒成立,需要给出推理或者反例说明.2.充分利用基本初等函数性质进行判断.3.小题可以用特殊值法做快速判断.题型二:比较数(式)的大小与比较法证明不等式例8.(2022·全国·高三专题练习(文))设2312m ⎛⎫= ⎪⎝⎭,1312n ⎛⎫= ⎪⎝⎭,2315p ⎛⎫= ⎪⎝⎭,则()A .m p n<<B .p m n<<C .n m p<<D .p n m<<例9.(2022·全国·高三专题练习)若a =ln 22,b =ln 33,则a ____b (填“>”或“<”).例10.(2022·全国·高一)(1)试比较()()15x x ++与()23x +的大小;(2)已知a b >,11a b<,求证:0ab >.例11.(2022·湖南·高一课时练习)比较()()213a a +-与()()62745a a -++的大小.例12.(2022·湖南·高一课时练习)比较下列各题中两个代数式值的大小:(1))21与)21;(2)()()2211xx ++与()()2211xx x x ++-+.【方法技巧与总结】比较数(式)的大小常用的方法有比较法、直接应用不等式的性质、基本不等式、利用函数的单调性.比较法又分为作差比较法和作商比较法.作差法比较大小的步骤是:(1)作差;(2)变形;(3)判断差式与0的大小;(4)下结论.作商比较大小(一般用来比较两个正数的大小)的步骤是:(1)作商;(2)变形;(3)判断商式与1的大小;(4)下结论.其中变形是关键,变形的方法主要有通分、因式分解和配方等,变形要彻底,要有利于0或1比较大小.作差法是比较两数(式)大小最为常用的方法,如果要比较的两数(式)均为正数,且是幂或者因式乘积的形式,也可考虑使用作商法,作商法比较大小的原理是:若0,0a b >>,则1b b a a >⇔>;1b b a a <⇔<;1bb a a =⇔=;若0,0a b <<,则1b b a a >⇔<;1b b a a <⇔>;1bb a a=⇔=.题型三:已知不等式的关系,求目标式的取值范围例13.(2022·浙江·模拟预测)若实数x ,y 满足1522x y x y +≥⎧⎨+≥⎩,则2x y +的取值范围()A .[1,)+∞B .[3,)+∞C .[4,)+∞D .[9,)+∞例14.(2022·全国·高三专题练习)已知12a ≤≤,14b -≤≤,则2a b -的取值范围是()A .724a b -≤-≤B .629a b -≤-≤C .629a b ≤-≤D .228a b -≤-≤例15.(2022·全国·高三专题练习)若,x y 满足44x y ππ-<<<,则x y -的取值范围是()A .(,0)2π-B .(,22ππ-C .(,0)4π-D .(,44ππ-例16.(2022·全国·高三专题练习(文))已知-3<a <-2,3<b <4,则2a b的取值范围为()A .(1,3)B .4934⎛⎫ ⎪⎝⎭,C .2334⎛⎫ ⎪⎝⎭,D .112⎛⎫ ⎪⎝⎭例17.(2022·江西·二模(文))已知122x y ≤-≤,1231x y -≤+≤,则6x +5y 的取值范围为______.例18.(2022·全国·高三专题练习)设二次函数()()22,f x mx x n m n =-+∈R ,若函数()f x 的值域为[)0,∞+,且()12f ≤,则222211m n n m +++的取值范围为___________.例19.(2022·全国·高三专题练习)已知有理数a ,b ,c ,满足a b c >>,且0a b c ++=,那么ca的取值范围是_________.例20.(2022·全国·高三专题练习)已知函数()34f x x ax b =++,当[]1,1x ∈-时,()1f x ≤恒成立,则a b +=____________.例21.(2022·全国·高三专题练习)已知正数a ,b 满足5﹣3a ≤b ≤4﹣a ,ln b ≥a ,则ba的取值范围是___.例22.(2022·全国·高三专题练习)已知,,a b c 均为正实数,且111,,232425ab bc ca a b b c c a +++,那么111a b c++的大值为__________.【方法技巧与总结】在约束条件下求多变量函数式的范围时,不能脱离变量之间的约束关系而独立分析每个变量的范围,否则会导致范围扩大,而只能建立已知与未知的直接关系.题型四:不等式的综合问题例23.(2022·江西鹰潭·二模(理))已知0,0a b >>,且2e 1b aa b -+=+则下列不等式中恒成立的个数是()①1122b a --<②11b aa b -<-③e e b a b a -<-④5ln5a b +<+A .1B .2C .3D .4例24.(2022·江西·临川一中高三期中(文))若实数a ,b 满足65a a b <,则下列选项中一定成立的有()A .a b<B .33a b <C .e 1a b ->D .ln 0a b ⎛⎫< ⎪⎝⎭例25.(2022·湖南·长沙一中高三阶段练习)若m ,n ∈+N ,则下列选项中正确的是()A .()()1log 1log 2m m m m ++<+B .(n m m n mn ⋅≥C .()()22sin1sin 31n n n n n ππ⋅<+⋅>+D .1121111n n n n n n n n +++++<++(多选题)例26.(2022·江苏连云港·模拟预测)已知0,0a b >>,直线2y x a =+与曲线1e 1x y b -=-+相切,则下列不等式一定成立的是()A .19ab ≤B .219ab+≥C D ≤(多选题)例27.(2022·辽宁辽阳·二模)已知0a >,0b >,且24a b +=,则()A .124a b->B .22log log 1a b +≤C ≥D .412528a b +≥(多选题)例28.(2022·重庆八中模拟预测)已知0a >,0b >,且3ab a b ++=,则下列不等关系成立的是()A .1ab ≤B .2a b +≥C .1a b ->D .3a b -<例29.(2022·全国·高三专题练习)若x ,y R ∈,设2223M x xy y x y =-+-+,则M 的最小值为__.例30.(2022·四川泸州·三模(理))已知x 、y ∈R ,且224x y +=,给出下列四个结论:①2x y +≤;②1xy ≥;③23x y +≤;④448x y +≥.其中一定成立的结论是______(写出所有成立结论的编号).【过关测试】一、单选题1.(2022·湖南·宁乡市教育研究中心模拟预测)小李从甲地到乙地的平均速度为a ,从乙地到甲地的平均速度为(0)b a b >>,他往返甲乙两地的平均速度为v ,则()A .2a bv +=B .v =C 2a b v +<<D .b v <<2.(2022·甘肃省武威第一中学模拟预测(文))已知0a b <<,则()A .110->a bB .sin sin 0a b ->C .0a b -<D .ln()ln()0a b -+->3.(2022·陕西宝鸡·三模(理))若a b <,则下列结论正确的是()A .330a b ->B .22a b <C .()ln 0a b ->D .a b<4.(2022·重庆·二模)若非零实数a ,b 满足a b >,则下列不等式一定成立的是()A .11a b<B .a b +>C .22lg lg a b >D .33a b >5.(2022·安徽黄山·二模(文))设实数a 、b 满足a b >,则下列不等式一定成立的是()A .22a b >B .11b b a a +<+C .22ac bc >D .332a b -+>6.(2022·安徽·芜湖一中高三阶段练习(理))已知0a >,0b >,22a b m +=,则以下正确的是()A .若1m =,则1a b +B .若1m =,则331a b +C .若2m =,则2a b +>D .若2m =,则332a b + 7.(2022·全国·高三专题练习(理))已知32a =,53b =,则下列结论正确的有()①a b <②11a b ab+<+③2a b ab+<④b aa ab b +<+A .1个B .2个C .3个D .4个8.(2022·安徽省舒城中学模拟预测(理))若数列{}n a 为等差数列,数列{}n b 为等比数列,则下列不等式一定成立的是()A .1423b b b b +≤+B .4132b b b b ≤--C .3124a a a a ≥D .3124a a a a ≤二、多选题9.(2022·辽宁·一模)已知不相等的两个正实数a 和b ,满足1ab >,下列不等式正确的是()A .1ab a b +>+B .()2log 1a b +>C .11a b ab+<+D .11a b a b+>+10.(2022·湖南省隆回县第二中学高三阶段练习)已知a b c >>,且0a b c ++=,则下列结论正确的是()A .2ab b >B .ac bc<C .11a c>D .1a cb c->-11.(2022·广东·广州市第四中学高三阶段练习)已知实数a ,b ,c 满足1,01a b c >><<,则下列不等式一定成立的有()A .()()c c a c b c -<-B .log (1)log (1)a b c c +<+C .log log 2a c c a +≥D .22224a cbc c >>12.(2022·河北保定·一模)已知a 、b 分别是方程20x x +=,30x x +=的两个实数根,则下列选项中正确的是().A .10b a -<<<B .10a b -<<<C .33a b b a ⋅<⋅D .22b aa b ⋅<⋅三、填空题13.(2022·四川泸州·三模(文))已知x ,R y ∈,满足224x y +=,给出下列四个结论:①2x y +≤;②1xy ≥;③23x y +<;④448x y +≥.其中一定成立的结论是______(写出所有成立结论的编号).14.(2022·全国·江西科技学院附属中学模拟预测(文))已知实数x 、y 满足223x y -≤+≤,220x y -≤-≤,则34x y -的取值范围为______.15.(2022·全国·高三专题练习)如果a >b ,给出下列不等式:①11a b <;②a 3>b 3>2ac 2>2bc 2;⑤ab>1;⑥a 2+b 2+1>ab +a +b .其中一定成立的不等式的序号是________.16.(2022·全国·高三专题练习)设x ,y 为实数,满足238xy ≤≤,249x y≤≤,则3x y 的最小值是______.四、解答题17.(2022·全国·高三专题练习)已知1a >,1b >,2222,1111a b b a M N a b a b =+=+----.(1)试比较M 与N 的大小,并证明;(2)分别求M ,N 的最小值.18.(2022·全国·高三专题练习)(1)已知a ,b 均为正实数.试比较33+a b 与22a b ab +的大小;(2)已知a ≠1且a ∈R ,试比较11a-与1a +的大小.19.(2022·全国·高三专题练习)已知下列三个不等式:①0ab >;②c da b>;③bc ad >,以其中两个作为条件,余下一个作为结论,则可组成几个正确命题?并选取一个结论证明.20.(2022·全国·高三专题练习)已知1<a <4,2<b <8,试求a -b 与ab的取值范围.21.(2022·贵州贵阳·二模(理))已知,,,a b c d R∈(1)证明:()()22222()a b c d ac bd --- ;(2)已知,x y R ∈,2241x y -=,求2|y +的最小值,以及取得最小值时的x ,y 的值.22.(2022·全国·高三专题练习)设二次函数2()2()f x ax bx c c b a =++>>,其图像过点(1,0),且与直线y a =-有交点.(1)求证:01ba≤<;(2)若直线y a =-与函数|()|y f x =的图像从左到右依次交于A ,B ,C ,D 四点,若线段,,AB BC CD 能构成钝角三角形,求ba的取值范围.。
等式与不等式

等式与不等式在数学中,等式与不等式是两种不同的数学表达方式。
等式是指两个数或者表达式之间相等的关系,通常用等号(=)表示;而不等式则表示两个数或者表达式之间不相等或者大小关系的一种数学形式。
本文将对等式和不等式进行详细介绍,包括其定义、性质以及在数学中的应用。
一、等式的定义与性质等式是指数学表达式中两个数或者表达式之间相等的关系。
等式使用等号(=)进行表示,左右两边的数或表达式具有相等的值。
例如:2 +3 = 5在这个等式中,左边的表达式2 + 3与右边的数5具有相等的值,因此该等式成立。
等式具有以下性质:1. 反身性:任何数与自身相等,即a = a。
2. 对称性:如果a = b,则b = a。
3. 传递性:如果a = b且b = c,则a = c。
4. 替换性:在等式的两边同时加上(或减去)相同的数或者表达式,等式仍然成立。
表达式,等式仍然成立。
等式在数学中有着广泛的应用,可以用于解方程、证明等各个领域。
二、不等式的定义与性质与等式相比,不等式表示的是两个数或者表达式之间不相等或者大小关系。
常见的不等式有大于(>)、小于(<)、大于等于(≥)、小于等于(≤)等符号。
例如:3 +4 > 7这个不等式表示左边的表达式3 + 4大于右边的数7,因此该不等式成立。
不等式具有以下性质:1. 反身性:任何数与自身不相等,即a ≠ a。
2. 对称性:如果a > b,则b < a;如果a ≥ b,则b ≤ a。
3. 传递性:如果a > b且b > c,则a > c;如果a ≥ b且b ≥ c,则a ≥ c。
4. 替换性:在不等式的两边同时加上(或减去)相同的正数,不等式的大小关系保持不变;在不等式的两边同时加上(或减去)相同的负数,不等式的大小关系发生改变。
等式的大小关系保持不变;在不等式的两边同时乘以(或除以)相同的负数,不等式的大小关系发生改变,并且需要反转不等号的方向。
等式与不等式的解法与应用知识点总结

等式与不等式的解法与应用知识点总结等式与不等式是数学中非常基础且重要的概念,它们在解数学问题、推导理论以及应用实践中都起到了至关重要的作用。
本文将对等式与不等式的解法以及其在实际问题中的应用进行知识点总结。
一、等式的解法1. 一元一次方程:一元一次方程是指只有一个未知数,并且未知数的最高次数为1的方程。
解一元一次方程可以使用基本的代数运算法则,如加减乘除等。
常用的解法有加减消元法、变量相消法、代入法等。
2. 二元一次方程组:二元一次方程组是指有两个未知数的方程组,并且每个方程中未知数的最高次数为1。
解二元一次方程组可以使用消元法、代入法、加减消元法等解法。
3. 二次方程:二次方程是指未知数的最高次数为2的方程。
解二次方程可以使用配方法、求根公式、完全平方式等。
其中,求根公式为:x=(-b±√(b^2-4ac))/2a。
4. 分式方程:分式方程是指方程中带有分式的方程。
解分式方程需要将方程中的分式进行通分,并使用合适的解方程方法进行求解。
二、不等式的解法1. 一元一次不等式:一元一次不等式是指只有一个未知数,并且未知数的最高次数为1的不等式。
解一元一次不等式需要注意不等号的变换规则,可使用类似于解等式的代数运算法则进行解答。
2. 一次不等式组:一次不等式组是指含有多个一次不等式的方程组。
解一次不等式组可以使用区间法、图解法等。
区间法是将不等式右边等式化,然后通过判断不等式的符号来确定解集的范围。
3. 二次不等式:二次不等式是指未知数的最高次数为2的不等式。
解二次不等式需要根据二次不等式的形式和条件来判断解集的范围,可以通过求根、图像、区间等方法进行求解。
4. 绝对值不等式:绝对值不等式是指方程中含有绝对值的不等式。
解绝对值不等式需要考虑绝对值的定义和性质,可通过分情况讨论、画图等方法进行求解。
三、应用知识点总结1. 线性规划:线性规划是一种优化问题,它将问题转化为目标函数和约束条件下的最大值或最小值求解。
第二章 等式与不等式

章末整合知识结构·理脉络等式与不等式⎩⎪⎪⎨⎪⎪⎧等式⎩⎪⎪⎨⎪⎪⎧等式的性质与方程的解集一元二次方程:ax 2+bx +c =0(a ≠0)⎩⎨⎧求根公式:x =-b ±b 2-4ac2a 根与系数的关系:x 1+x 2=-b a ,x 1x 2=ca 方程组的解集⎩⎪⎨⎪⎧二元一次方程组三元一次方程组二元二次方程组等式与不等式⎩⎪⎪⎨⎪⎪⎧不等式⎩⎪⎪⎨⎪⎪⎧不等关系与不等式⎩⎪⎨⎪⎧不等式的概念实数(代数式)大小的比较⎩⎪⎨⎪⎧ 依据⎩⎪⎨⎪⎧a -b <0⇔a <b a -b =0⇔a =ba -b >0⇔a >b基本方法:作差法、作商法不等式的性质:对称性、传递性、可加性、可乘性等式与不等式⎩⎪⎨⎪⎧一元二次不等式及其解法⎩⎪⎨⎪⎧概念解法⎩⎪⎨⎪⎧ 因式分解法、配方法含参不等式的解法应用⎩⎪⎨⎪⎧ 解分式不等式——化归为整式不等式从实际问题中建立一元二次不等式模型等式与不等式⎩⎪⎪⎪⎨⎪⎪⎪⎧均值不等式⎩⎪⎪⎨⎪⎪⎧内容:a+b2≥ab(a>0,b>0),当且仅当a=b时,等号成立证明⎩⎪⎨⎪⎧几何证明代数证明应用⎩⎪⎨⎪⎧比较大小证明不等式求最值⎩⎪⎨⎪⎧⎦⎥⎤积定和最小和定积最大具备条件一正、二定、三相等解决实际问题要点梳理·晰精华1.不等式基本性质中注意问题(1)不等式的基本性质中性质4、6要注意符号,另外还有一些常用的结论,同学们也要掌握.如:“a>b且ab>0,则1a<1b”,“a>b,c<d,则a-c>b-d”,“a>b>0,c>d>0,则ad>bc”.在使用这些性质时,要注意上述各不等式成立的条件.(2)不等式的基本性质中,对表达不等式性质的各不等式要注意“箭头”是单向的还是双向的,也就是说,每条性质是否具有可逆性.运用不等式的基本性质解答不等式问题时,要注意不等式成立的条件,否则将会出现一些错误.2.一元二次不等式的解法判别式Δ=b2-4ac Δ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图像一元二次方程ax2+bx+c=0(a>0)的根有两相异实数根x1=-b-Δ2a,x2=-b+Δ2a(x1<x2)有两相等实数根x1=x2=-b2a没有实数根ax2+bx+c>0(a>0)的解集{x|x<x1,或x>x2}{x|x∈R,x≠-b2a}Rax2+bx+c<0(a>0)的解集{x|x1<x<x2}∅∅3.一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则x1+x2=-ba,x1+x2=ca,若bc =0时,关系式仍然成立.4.不等式组、简单分式不等式、绝对值不等式的解法(1)不等式组的解集等于组成该不等式组的每个不等式解集的交集. (2)解简单分式不等式应等价转化为整式不等式(整式不等式组)求解.(3)解绝对值不等式可根据绝对值的几何意义求解,也可按零点分段法逐段脱去绝对值号求解.5.均值不等式及有关结论(1)均值不等式:如果a >0,b >0,那么a +b2≥ab ,当且仅当a =b 时,等号成立,即正数a 与b 的算术平均数不小于它们的几何平均数.(2)几个常用的重要结论:①b a +ab≥2(a 与b 同号,当且仅当a =b 时取等号). ②a +1a ≥2(a >0,当且仅当a =1时取等号),a +1a ≤-2(a <0,当且仅当a =-1时取等号).③ab ≤(a +b 2)2(a ,b ∈R ,当且仅当a =b 时取等号).(3)利用均值不等式求最值 已知x >0,y >0,则①如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值2p (简记:积定和最小). ②如果x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值s 24(简记:和定积最大).素养突破·提技能类型 特殊不等式的解法 ┃┃典例剖析__■ 1.一元高次不等式的解法典例1 解不等式:(x +2)(x 2-x -12)>0.思路探究:可转化为不等式组或用数轴标根法两种方法求解.归纳提升:解简单的一元高次不等式,主要通过数轴标根法来求解,其步骤是(1)将f(x)最高次项系数化为正数.(2)将f(x)分解为若干个一次因式或二次不可分解的因式的积,然后求出f(x)=0的解,并在数轴上标出.(3)自数轴正方向起,用曲线从右至左、自上而下依次从各解穿过数轴.(4)记数轴上方为正,下方为负,根据不等式写出解集.在用数轴标根法求解高次不等式的过程中要注意:①区间端点能否取到;②各因式中最高次项的系数要全为正数;③奇数个等根,穿过,偶数个等根,穿而不过.2.分式不等式的解法典例2解不等式:x2+2x-3-x2+x+6<0.思路探究:一般地,解分式不等式的基本思想是化分式不等式为整式不等式或整式不等式组.归纳提升:分式不等式的求解在高考中比较常见,解分式不等式的过程就是转化的过程,通过不等式的性质和符号运算规律将其转化为整式不等式问题,注意不等式的等价变形.类型含参不等式恒成立问题的求解策略┃┃典例剖析__■不等式恒成立问题是高考中的热点内容,它以多种形式出现在高中数学的各个分支中,扮演着重要的角色.求解含参不等式的恒成立问题的关键是转化与化归思想.一般而言,针对不等式的表现形式,有如下两种策略.1.判别式法典例3对于x∈R,不等式x2-2x+3-m≥0恒成立,求实数m的取值范围.思路探究:不等式x2-2x+3-m≥0恒成立,可转化为函数y=x2-2x+3-m图像恒在x 轴及其上方,即Δ≤0.归纳提升:有关含有参数的一元二次不等式问题,若能把不等式转化为二次函数或一元二次方程,通过根的判别式或数形结合思想,可使问题得到顺利解决.2.分离变量法典例4 若关于x 的不等式ax 2-2x +2>0对于满足1<x <4的一切实数x 恒成立.求实数a 的取值范围.思路探究:可先将参数的a 分离出来即a >2x -2x 2,然后再求2x -2x 2的最值.归纳提升:如果能够将参数分离出来,建立明确的参数和变量x 的关系,那么可以利用函数的最值求解.a >y 恒成立⇔a >y max ,a <y 恒成立⇔a <y min .类型 均值不等式的变形技巧 ┃┃典例剖析__■ 1.技巧一:添项典例5 求函数y =3x 2+162+x 2的最小值.思路探究:当求和的最小值时,尽可能凑定积,本题需添6,减6.2.技巧二:放入根号内或两边平方典例6 求函数y =x 1-x 2(0<x <1)的最大值.思路探究:求积的最值(因式中含根号),把变量都放在同一条件下的根号里或者将两边平方去根号,整合结构形式,凑成定和,是解决本题的关键所在.3.技巧三:分子常数化典例7设x∈(0,+∞),求函数y=2xx2+4的最大值.思路探究:当分子的变量因子次数比分母的小且变量因子不为零时,都可同时除以分子所含变量因子使分子变量常数化,以实现变量形式的统一,从而使问题得以解决.归纳提升:运用均值不等式求解函数最值的关键是在求解过程中充分重视运用“一正、二定、三相等”这三个条件的基础上,观察结果,合理变形.其中,成功实现变形是关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不含未知数的不等式: 如3>2
量关系)
含未知数的不等式:例如一元一次不等式。
例子:5X+7≥8 两个一元一次不等式可以组成一元一次不等式组,其性质有以
下几点:
① ② ③ ④ 等式:含有等号的式子叫做等式。
定义 一般形式 解 解法
一元一次方程:含有一个未知数 ax+by=c
并且未知数最高次数为1的方程 (a 、b 、c 为常数 x=-a/b 消元 且a 、b ≠0) 代入
二元一次方程:含有两个未知数 a 1x+b 1y=c 1 x 1= 并且未知数最高次数为1的方程 a 2x+b 2y=c 2 x 2= (a i 、b i 、c i 为常数
且a i 、b i ≠0)
三元一次方程:含有三个未知数
并且未知数最高次数为1的方程
语言是人类使用的一种相互交流的主要手段。
语言虽然能被转变成诸如书写文字等其他媒介,但主要还是口头上的。
如果不能利用口头交流手段(如聋哑人的情况),则可使用视觉手段(如手势语)。
语言的一个显著特点是语言符号与语言意义之间的关系是任意的。
语言可以用来讨论各种广泛的话题,这个特点使语言能够区别于动物之间的交流。
The language is the primary means for human beings to communicate with each other. The language can be transformed into other media such as the written word, but mainly verbal. If you can not use oral in communication (such as the deaf), you can use visual means (for instance, sign language). A notable feature of language is the arbitrary relationship between language symbols and language meanings . The language can be used to discuss a wide variety of topics, this feature makes the language can be differentiated from the animal’s communication.。