(完整word版)第九章不等式与不等式组知识点归纳
人教版七年级下册数学 第九章 不等式与不等式组 不等式 不等式的性质(第一课时)

探究新知
知识点 2 不等式的性质2 用不等号填空: (1)5 > 3 ;
5×2 > 3×2 ; 5÷2 > 3÷2 . (2)2 < 4 ;
2×3 < 4×3 ;2÷4 < 4÷4 . 自己再写一个不等式,分别在它的两边都乘(或除以)同一 个正数,看看有怎样的结果?与同桌互相交流,你们发现了 什么规律?
解:(1)为了使不等式x-7>26中不等号的一边变为x,根 据不等式的性质1,不等式两边都加7,不等号的方向不 变,得 x-7+7 > 26+7,
x > 33.
这个不等式的解集在数轴上的表示如图所示:
0
33
探究新知
(2)为了使不等式3x<2x+1中不等号的一边变为x,根据
__不__等__式__性__质__1_,不等式两边都减去_2_x__,不等号的方向
探究新知
(3)已知 a<b,则 -a3
由不等式基本性质3,得
-a 3
>
-b 3
,
因为
-a 3
>
-b 3
,两边都加上2,
由不等式基本性质1,得
-a 3
+2
>
-b3+2
.
巩固练习
若 a>b, 用“>”或“<”填空: a-5 > b-5(根据不等式的性质 1 )
探究新知
如果_a_>_b_且__c_>_0_, 那么_a_c_>_b_c__
(或 a b ) cc
探究新知
不等式基本性质2
不等式的两边都乘(或除以)同一个正数, 不等号的方向不变.
人教版数学七年级下册知识重点与单元测-第九章9-5《不等式与不等式组》章末复习(能力提升)

第九章不等式与不等式(组)9.5 《不等式与不等式组》章末复习(能力提升)【要点梳理】知识点一、不等式1.不等式:用符号“<”(或“≤”),“>”(或“≥”),≠连接的式子叫做不等式.要点诠释:(1)不等式的解:能使不等式成立的未知数的值叫做不等式的解.(2)不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.解集的表示方法一般有两种:一种是用最简的不等式表示,例如x a>,x a≤等;另一种是用数轴表示,如下图所示:(3)解不等式:求不等式的解集的过程叫做解不等式.2. 不等式的性质:不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a>b,那么a±c>b±c不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a>b,c>0,那么ac>bc(或a bc c >).不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.用式子表示:如果a>b,c<0,那么ac<bc(或a bc c <).要点二、一元一次不等式1.定义:不等式的左右两边都是整式,经过化简后只含有一个未知数,并且未知数的最高次数是1,这样的不等式叫做一元一次不等式,要点诠释:ax+b>0或ax+b<0(a≠0)叫做一元一次不等式的标准形式.2.解法:解一元一次不等式步骤:去分母、去括号、移项、合并同类项、系数化为1.要点诠释:不等式解集的表示:在数轴上表示不等式的解集,要注意的是“三定”:一是定边界点,二是定方向,三是定空实.3.应用:列不等式解应用题的基本步骤与列方程解应用题的步骤相类似,即:(1)审:认真审题,分清已知量、未知量;(2)设:设出适当的未知数;(3)找:找出题中的不等关系,要抓住题中的关键字,如“大于”“小于”“不大于”“至少”“不超过”“超过”等关键词的含义;(4)列:根据题中的不等关系,列出不等式;(5)解:解出所列的不等式的解集;(6)答:检验是否符合题意,写出答案.要点诠释:列一元一次不等式解应用题时,经常用到“合算”、“至少”、“不足”、“不超过”、“不大于”、“不小于”等表示不等关系的关键词语,弄清它们的含义是列不等式解决问题的关键.要点三、一元一次不等式组关于同一未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组.要点诠释:(1)不等式组的解集:不等式组中各个不等式的解集的公共部分叫做这个不等式组的解集.(2)解不等式组:求不等式组解集的过程,叫做解不等式组.(3)一元一次不等式组的解法:分别解出各不等式,把解集表示在数轴上,取所有解集的公共部分,利用数轴可以直观地表示不等式组的解集.(4)一元一次不等式组的应用:①根据题意构建不等式组,解这个不等式组;②由不等式组的解集及实际意义确定问题的答案.【典型例题】类型一、不等式例1.判断以下各题的结论是否正确(对的打“√”,错的打“×”).(1)若 b﹣3a<0,则b<3a;(2)如果﹣5x>20,那么x>﹣4;(3)若a>b,则 ac2>bc2;(4)若ac2>bc2,则a>b;(5)若a>b,则 a(c2+1)>b(c2+1).(6)若a >b >0,则<. . 【答案与解析】解:(1)若由b ﹣3a <0,移项即可得到b <3a ,故正确; (2)如果﹣5x >20,两边同除以﹣5不等号方向改变,故错误; (3)若a >b ,当c=0时则 ac 2>bc 2错误,故错误; (4)由ac 2>bc 2得c 2>0,故正确;(5)若a >b ,根据c 2+1,则 a (c 2+1)>b (c 2+1)正确. (6)若a >b >0,如a=2,b=1,则<正确. 故答案为:√、×、×、√、√、√.【总结升华】本题考查了不等式的性质,两边同乘以或除以一个不为零的负数,不等号方向改变.例2. 设x>y ,试比较代数式-(8-10x)与-(8-10y)的大小,如果较大的代数式为正数,则其中最小的正整数x 或y 的值是多少?【思路点拨】比较两个代数式的大小,可以运用不等式的性质得出比较方法。
(完整word版)初中数学知识点归纳总结(精华版)

第一章 有理数考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数2、无理数:32,7,3π+8,sin60o 。
第二章 整式的加减考点一、整式的有关概念 (3分)1、单项式只含有数字与字母的积的代数式叫做单项式.注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如b a 2314-,这种表示就是错误的,应写成b a 2313-。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
如c b a 235-是6次单项式。
考点二、多项式 (11分)1、多项式几个单项式的和叫做多项式.其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数.2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。
几个常数项也是同类项。
第三章一元一次方程考点一、一元一次方程的概念(6分)1、一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程0≠=+bax叫做一元一次方程的标准形式,a是未知数x的系数,b是常数项。
a)x为未知数,(0第四章图形的初步认识考点一、直线、射线和线段(3分)1、点和直线的位置关系有线面两种:①点在直线上,或者说直线经过这个点.②点在直线外,或者说直线不经过这个点。
2、线段的性质(1)线段公理:所有连接两点的线中,线段最短。
也可简单说成:两点之间线段最短。
(2)连接两点的线段的长度,叫做这两点的距离。
(3)线段的中点到两端点的距离相等。
(4)线段的大小关系和它们的长度的大小关系是一致的。
3、线段垂直平分线的性质定理及逆定理垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。
线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。
逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
OK七年级下册第九章不等式与不等式组

七年级数学下册第九章不等式与不等式组姓名:时间:2014年月日目标1、利用不等式的性质进行变形。
2、利用不等式的性质解一元一次不等式(组),并用数轴表示。
3、不等式的应用。
过程基本概念1、用不等号表示不等关系的式子叫不等式,不等号主要包括:>、<、≥、≤、≠。
2、在含有未知数的不等式中,使不等式成立的未知数的值叫不等式的解,一个含有未知数的不等式的所有的解组成的集合,叫这个不等式的解集。
不等式的解集可以在数轴上表示出来。
求不等式的解集的过程叫解不等式。
含有一个未知数,并且所含未知数的项的次数都是1,这样的不等式叫一元一次不等式。
3、不等式的性质:①性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变。
用字母表示为:如果ba>,那么cbca±>±;如果ba<,那么cbca±<±;如果ba≥,那么cbca±≥±;如果ba≤,那么cbca±≤±。
②性质2:不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变。
用字母表示为:如果0,>>cba,那么bcac>(或cbca>);如果0,><cba,那么bcac<(或cbca<);如果0,>≥cba,那么bcac≥(或cbca≥);如果0,>≤cba,那么bcac≤(或cbca≤);③性质3:不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变。
用字母表示为:如果0,<>cba,那么bcac<(或cbca<);如果0,<<cba,那么bcac>(或cbca>);如果0,<≥cba,那么bcac≤(或cbca≤);如果0,<≤cba,那么bcac≥(或cbca≥);4、解一元一次不等式的一般步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1 。
七年级数学第九章《不等式(组)-复习训练》知识梳理、考点精讲精练、课堂小测、课后作业第23讲(有答案)

第23讲 不等式(组)-复习训练⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧与实际问题组一元一次不等式法一元一次不等式组的解不等式组一元一次不等式组性质性质性质不等式的性质一元一次不等式不等式的解集不等式的解不等式不等式相关概念不等式与不等式组)(3211、用“<”或“>”号表示大小关系的式子叫做不等式。
2、不等式的符号统称不等号,有“>” “<” “≠”. 其中“≤” “≥”,也是不等号.其中,“≤”表示,不大于、不超过,“≥”表示不小于、不低于。
3、使不等式成立的未知数的值叫做不等式的解。
4、一个含有未知数的不等式的所有的解,组成这个不等式的解集。
5、解与解集的关系:不等式的解集包括不等式全体的解;解集中的任何一个数都是不等式的解。
6、用数轴表示解集:在数轴上标出某一区间,其中的点对应的数值都是不等式的解。
①方向线向左表示小于,方向线向右表示大于;②空心圆圈表示不包括; ③实心圆圈表示包括。
7、用数轴表示解集的步骤:①画数轴;②找点;③定向;④画线。
8、求不等式的解集的过程叫做解不等式。
9、含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。
1、不等式的性质1 不等式两边同时加(或减)同一个数(或式子),不等号的方向不变。
如果a >b ,那么a±c >b±c 。
不等式的性质2 不等式两边同乘(或除以)同一个正数,不等号的方向不变。
如果a >b,c >0,那么ac >bc (或c a >cb )。
不等式的性质3 不等式两边同乘(或除以)同一个负数,不等号的方向改。
如果a>b,c <0,那么ac <bc (或c a <cb )。
2、解未知数为x 的不等式,就是要使不等式逐步化为x >a 或x <a 的形式。
3、解不等式时也可以“移项”,即把不等式一边的某项变号后移到另一边,而不改变不等号的方向。
4、解不等式时要注意未知数系数的正负,以决定是否改变不等号的方向。
人教版七年级下册数学 第九章 不等式与不等式组 不等式 不等式及其解集

交流:下面给出的数中,能使不等式x>50成立吗?你还 能找出其他的数吗?
20, 40, 50, 100.
解:当x=20,20<50, 当x=40,40<50, 当x=50,50=50, 当x=100,100>50,
不成立; 不成立; 不成立; 成立.
探究新知
我们曾经学过“使方程两边相等的未知数的值就是方 程的解”,与方程类似 , 能使不等式成立的未知数的值叫 不等式的解.
探究新知
知识点 1 不等式的概念
现实生活中,数量之间存在着相等与不相等的关系. 例如,小明的身高为155cm,小聪的身高为156cm, 则我们可以用不等号“>”或“<”来表示他们的身高 之间的关系.
如:156 > 155或155 < 156.
155cm
156cm
探究新知
【思考】如图所示,处于平衡状态的托盘天平的右盘放上一质 量为50g的砝码,左盘放上一个圆球后向左倾斜,问圆球的质量x g与质量为50g的砝码之间具有怎样关系?
我们很容易知道圆球的质 量大于砝码的质量,即x > 50.
探究新知
一辆匀速行驶的汽车在11 :20距离A地50千米,要在 12 :00之前驶过A地,车速应满足什么条件?
11 :20
50千米 40分钟=2/3小时
A 12 :00
探究新知
分析:设车速是x千米/时
从时间上看,汽 车要在12:00之 前驶过A地,则以 这个速度行驶50 千米所用的时间 不到2/3小时,即
何用含x,y的不等式来表示小华所需支付的金额与50元之间的
关系?
解: 3x+10(x+y)<50.
↓
课堂小结
人教版第九章《不等式与不等式组》

考点一:不等式的性质
3.若 a>b,则下列不等式成立的是( D ) A. a-3<b-3 B. -2a>-2b
a b C. 4 4
( C ) A. abc<0 C. abc>0
D. c-2a < c-2b
4.若a<c<0<b,则abc与0的大小关系是 B. abc=0 D. 无法确定
考点二:不等式的解与解集
练习
1 k 1 7 k ∵x+y<0 0 4 4 1 解之得 k 3
m为何值时,关于x、y的方程组 2 x 3 y 3m 1 的解满足x 0, y 0? 4 x 5 y m 9 9m-16
x= 11 解:解此法方程组得 y 5m 7 11 9m 16 0 解此不等式组得 11 由题意得 5m 7 0 - 7 <m< 16 11 5 9
x 2 1 2<x<3 8、不等式组 的解集是_______. 2 x 1 5
9、不等式(a-1)x<a-1的解集为x>1 则a的 范围是 ( a<1 )
考点三:不等式(组)的特殊解
1、不等式组
x>-2
X>-3
-1,0 的非正整数解是____
X<2 2、不等式组 X<5
A)
2 x 4 0 -3,-2 2 不等式组 1 的整数解为______ x20 2
x-y=2k ① 已知方程组 的解x与y x+3y=1-5k ② 的和是负数,求k的取值范围。
解:解方程组得
1 k x 4 y 1 7k 4
考点二:不等式的解与解集 3、不等式4-3x>0的解集是( D )
人教版七年级数学下册 第九章 不等式与不等式组 一元一次不等式 第2课时 实际问题与一元一次不等式

5.(2021·焦作期末)一种苹果的进价是每千克1.9元,销售中估计有5%的苹果 正常损耗,商家把售价至少定为__2__元,才能避免亏本.
解:因为1.5×10=15<25,所以小明家这个月的用水量超过10立方米.设小明 家这个月的用水量至少为x立方米,根据题意有15+2(x-10)≥25,解得x≥15,答: 他家这个月的用水量至少是15立方米
11.(2021·河北)已知训练场球筐中有A,B两种品牌的乒乓球共101个,设A品 牌乒乓球有x个.
(1)淇淇说:“筐里B品牌球是A品牌球的两倍.”嘉嘉根据她的说法列出了方 程:101-x=2x.请用嘉嘉所列方程分析淇淇的说法是否正确;
(2)据工作人员透露:B品牌球比A品牌球至少多28个,试通过列不等式的方法 说明A品牌球最多有几个.
解:(1)嘉嘉所列方程为 101-x=2x,解得 x=3323 ,又∵x 为整数,∴x=3323 不合题意,∴淇淇的说法不正确 (2)设A品牌乒乓球有x个,则B品牌乒乓球有(101-x)个,依题意,得101-x- x≥28,解得x≤36.5,又∵x为整数,∴x可取的最大值为36.答:A品牌球最多有36 个
8.红旗中学组织本校师生参加红色研学实践活动,现租用11辆甲、乙两种型 号的大客车(每种型号至少一辆)送549名学生和11名教师参加此次实践活动.
甲、乙两种型号的大客车的载客量如表所示:
则最多可以租用多少辆甲种型号大客车?有几种租车方案?
解:设租用x辆甲种型号大客车,则租用(11-x)辆乙种型号大客车,依题意得: 40x+55(11-x)≥549+11,解得x≤3,∴x可以取的最大值为3.∵x为正整数,∴x= 1或2或3,∴有3种租车方案.答:最多可以租用3辆甲种型号大客车.有3种租车 方案,方案1:租用1辆甲种型号大客车,10辆乙种型号大客车;方案2:租用2辆 甲种型号大客车,9辆乙种型号大客车;方案3:租用3辆甲种型号大客车,8辆乙 种型号大客车
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章 不等式与不等式组
一、知识结构图
二、知识要点
(一、)不等式的概念
1、不等式:一般地,用不等符号(“<”“>”“≤”“≥”)表示大小关系的式子,叫做不等式,用“≠”表示不等关系的式子也是不等式。
不等号主要包括: > 、 < 、 ≥ 、 ≤ 、 ≠ 。
2、不等式的解:使不等式左右两边成立的未知数的值,叫做不等式的解。
3、不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集(即未知数的取值范围)。
4、解不等式:求不等式的解集的过程,叫做解不等式。
5、不等式的解集可以在数轴上表示,分三步进行:①画数轴②定界点③定方向。
规律:用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,等于用实心圆点,不等于用空心圆圈。
⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧与实际问题
组一元一次不等式法
一元一次不等式组的解不等式组一元一次不等式组性质性质性质不等式的性质一元一次不等式不等式的解集不等式的解不等式不等式相关概念不等式与不等式组)(321
(二、)不等式的基本性质
不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向 不变 。
用字母表示为:如果b a >,那么c b c a ±>±;如果b a <,那么c b c a ±<± ; 不等式的性质2:不等式的两边同时乘以(或除以)同一个 正数 ,不等号的方向 不变 。
用字母表示为: 如果0,>>c b a ,那么bc ac >(或c
b c a >);如果0,><c b a ,不等号那么bc ac <(或c
b c a <); 不等式的性质3:不等式的两边同时乘以(或除以)同一个 负数 ,的方向 改变 。
用字母表示为: 如果0,<>c b a ,那么bc ac <(或c
b c a <);如果0,<<c b a ,那么bc ac >(或c
b c a >); 解不等式思想——就是要将不等式逐步转化为x >a 或x <a 的形式。
(注:①传递性:若a >b ,b >c ,则a >c . ②利用不等式的基本性质可以解简单的不等式)
(三、)一元一次不等式
1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。
2、任何一个一元一次不等式都可以化为最简形式:ax b
<(a
>或ax b ≠0)的形式。
3、解一元一次不等式的一般步骤:①去分母;②去括号;③移项;
④合并同类项;⑤系数化为1(特别要注意不等号方向改变的问题)。
这与解一元一次方程类似,在解时要根据一元一次不等式的具体情况灵活选择步骤。
(四、)一元一次不等式组
1、一元一次不等式组的概念:
几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
不等式组中含有一个未知数,并且所含未知数的项的次数都是1。
2、使不等式组中的每个不等式都成立的未知数的值叫不等式组的解,一个不等式组的所有的解组成的集合,叫这个不等式组的解集解(简称不等式组的解)。
3、不等式组的解集可以在数轴上表示出来。
求不等式组的解集的过程叫解不等式组。
4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无
解或其解为空集。
5、一元一次不等式组的解法:
解一元一次不等式组的一般步骤:①分别求出这个不等式组中各个不等式的解集;②利用数轴表示出各个不等式的解集;③找出公共部分;④用不等式表示出这个不等式组的解集。
如果这些不等式的解集的没有公共部分,则这个不等式组无解 ( 此时也称这个不等式组的解集为空集 )。
6、求出各个不等式的解集后,确定不等式组的解的口诀:大大取大,小小取小,大小小大取中间,大大小小无处找。
(五、)一元一次不等式(组)的应用
一般方法步骤:
(1)审:分析题意,找出不等关系;
(2)设:设未知数;
(3)列:列出不等式组;
(4)解:解不等式组;
(5)检验:从不等式组的解集中找出符合题意的答案;
(6)答:写出问题答案。
第十章数据的收集、整理与描述
一、知识结构图
二、知识要点
1、统计调查的一般过程:收集数据(问卷调查)、整理数据(列统计表)、描述数据(画统计图)、分析得出结论。
2、数据收集过程中,调查的方法通常有两种:全面调查和抽样调查。
3、全面调查:为特定的目的对全部考察对象进行的调查,叫做全面调查。
全面调查有时也叫普查(如:人口普查)。
全面调查收集到的数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查。
4、抽样调查:抽取一部分对象进行调查,根据调查数据推断全体对象的情况叫抽样调查。
所要考察的全体对象叫总体,组成总体的每一个考察对象叫个体,被抽取的那部分个体组成总体的一个样本,样本
中个体的数目叫这个样本的容量(样本容量没有单位)。
抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度。
注:①抽样调查要具有广泛性和代表性,即样本容量要恰当;②抽取的样本要有随机性。
5、除了文字叙述、列表、划记法外,还可以用条形图、折线图、扇形图、直方图来描述数据。
条形统计图特点:①能清楚地表示出每个项目中的具体数目;②易于比较数目之间的差别。
扇形统计图特点:①用扇形的面积表示部分在总体中所占的百分比;②易于显示每组数据相对于总数的大小。
折线统计图的特点:①能清楚的反映事物的变化情况;②显示数据的变化趋势。
6、制作条形统计图的一般步骤:(1)根据图纸的大小,画出两条互相垂直的射线;(2)在水平射线上,适当分配条形的位置,确定直条的宽度和间隔;(3)在与水平射线垂直的射线上,根据数据大小的具体情况,确定单位长度表示多少;(4)按照数据大小,画出长短不同的直条,并注明数量。
7、扇形统计图的制作的一般步骤:(1)根据有关数据先算出各部分在总体中所占得百分比,百分数=部分数据
⨯100%,在计算各部分的圆
总体数据
心角的度数,公式:各部分扇形圆心角的度数=部分占总体百分比⨯360°;(2)按比例取适当的半径画圆;(3)按求得的扇形圆心角
的度数用量角器在圆内量出各个扇形的圆心角的度数;(4)在各扇形内写上相应的名称及百分数,并用不同的标记把各扇形区分出来。
8、画频数直方图的一般步骤:
①计算数极差(最大值与最小值的差);
②确定组距和组数;组距:把所有数据分成若干组,每个小组的两个端点之间的距离(组内数据的取值范围)称为组距。
③决定分点;
④列频数分布表;频数:落在个小组内的数据的个数。
⑤画频数直方图。
频数分布直方图的特点:①易于显示各组的频数分布情况;②易于显示各组的频数差别。
(注意区分条形统计图与频数分布直方图)。
频数分布直方图是以小长方形的面积来反映数据落在各个小组内的频数的大小。
小长方
形的高是频数与组距的比值。