数学建模论文作业

合集下载

全国数学建模D题优秀论文

全国数学建模D题优秀论文

摘要“天然肠衣搭配问题”数学建模的目的是设计一种最优方案,使得给定一批原材按照一定的组装要求装出成品捆数最多。

本题中需要考虑到该如何降级使用每段剩余原材料,如何在给定的误差范围内将误差降至最低,以及如何把组装成品的时间限制在30分钟内,并且所用时间尽可能的越短越好,从而得出成品最多捆数。

问题一:把给定的表2原料描述表中的一批原材料,根据表1成品规格表中的规格要求进行分段组装,再结合搭配方案具体要求(3)、(4),考虑到将误差降至最低,将剩余材料降级使用,尽可能的减少原材料的浪费。

因此我们考虑从第三段即长度为14—25.5米的材料开始分段组装,按整数线性规划化得出模型,利用LINGO软件求出第三段中原材料最多能组装出的成品捆数。

然后将第三段中剩余的原材料降级为第二段即长度为7—13.5米的材料与原有的第二段原材料进行组装,按整数线性规划得出模型,利用LINGO软件求出第二段中原材料最多能组装的成品捆数。

接着将第二段中剩余的原材料降级为第一段即长度为3—6.5米的材料与原有的第一段原材料进行组装,按整数线性规划得出模型,利用LINGO软件求出第一段中原材料最多能组装的成品捆数。

最后将所有的剩余原材料在进行组装得出最多捆数。

将以上四个最优解相加,即得出本题中最优解,此方案即为最优方案。

问题二:在成品捆数相同的方案中,要选出最短长度最长的成品最多的方案即是本题中的最优方案。

将最短长度最长的成品作为目标函数,建立整数线性规划模型,利用C++编程软件求出最优解,最终得出最优方案。

关键字:捆数最多搭配方案整数线性规划模型LINGO软件C++编程软件一、问题的重述天然肠衣(以下简称肠衣)制作加工是我国的一个传统产业,出口量占世界首位。

肠衣经过清洗整理后被分割成长度不等的小段(原料),进入组装工序。

传统的生产方式依靠人工,边丈量原料长度边心算,将原材料按指定根数和总长度组装出成品(捆)。

原料按长度分档,通常以0.5米为一档,如:3-3.4米按3米计算,3.5米-3.9米按3.5米计算,其余的依此类推。

数学建模小论文

数学建模小论文

数学建模小论文在我们的日常生活和学习中,数学建模是一个非常有用的工具。

它能够帮助我们解决各种实际问题,从预测经济趋势到优化交通流量,从设计产品包装到规划资源分配。

那么,什么是数学建模呢?简单来说,数学建模就是将实际问题转化为数学问题,并通过建立数学模型来求解,最终将结果还原到实际问题中进行解释和验证。

数学建模的过程就像是搭建一座桥梁,连接着抽象的数学世界和具体的现实世界。

让我们通过一个具体的例子来感受一下数学建模的魅力。

假设我们要为一家快递公司设计最优的送货路线。

这可不是一件简单的任务,因为要考虑的因素很多,比如每个送货点的位置、货物的重量和体积、交通状况以及送货时间限制等等。

首先,我们需要对这些实际因素进行抽象和简化。

我们可以把送货点看作是平面上的一个个点,两点之间的距离用某种数学公式来计算,比如欧几里得距离。

货物的重量和体积可以转化为对车辆载货能力的限制条件。

交通状况可以通过设置不同的速度或者通行时间来模拟。

送货时间限制则可以作为约束条件加入到模型中。

接下来,我们就可以建立数学模型了。

一种常见的方法是使用图论中的算法,比如最短路算法。

我们可以把送货点和它们之间的道路看作是一个图,然后寻找从起点到终点的最短路径,同时满足各种限制条件。

但是,仅仅建立模型还不够,我们还需要用合适的方法来求解这个模型。

对于一些简单的模型,我们可以通过手工计算或者使用一些常见的数学软件来求解。

但对于复杂的模型,可能需要借助更强大的计算工具,比如计算机程序或者专业的数学建模软件。

在求解得到结果后,我们还需要对结果进行分析和解释。

这一步非常关键,因为数学模型只是对现实问题的一种近似,结果可能并不完全符合实际情况。

我们需要检查结果是否合理,是否存在一些不合理的地方,比如车辆行驶路线过于迂回或者违反了某些实际的限制条件。

如果发现问题,我们就需要对模型进行调整和改进,重新求解,直到得到满意的结果。

数学建模不仅在物流领域有着广泛的应用,在其他很多领域也发挥着重要的作用。

大学数学建模论文范文3000字(汇总5篇)

大学数学建模论文范文3000字(汇总5篇)

大学数学建模论文范文3000字第1篇一、小学数学建模_数学建模_已经越来越被广大教师所接受和采用,所谓的_数学建模_思想就是通过创建数学模型的方式来解决问题,我们把该过程简称为_数学建模_,其实质是对数学思维的运用,方法和知识解决在实际过程中遇到的数学问题,这一模式已经成为数学教育的重要模式和基本内容。

叶其孝曾发表《数学建模教学活动与大学数学教育改革》,该书指出,数学建模的本质就是将数学中抽象的内容进行简化而成为实际问题,然后通过参数和变量之间的规律来解决数学问题,并将解得的结果进行证明和解释,因此使问题得到深化,循环解决问题的过程。

二、小学数学建模的定位1.定位于儿童的生活经验儿童是小学数学的主要教学对象,因此数学问题中研究的内容复杂程度要适中,要与儿童的生活和发展情况相结合。

_数学建模_要以儿童为出发点,在数学课堂上要多引用发生在日常生活中的案例,使儿童在数学教材上遇到的问题与现实生活中的问题相结合,从而激发学生学习的积极性,使学生通过自身的经验,积极地感受数学模型的作用。

同时,小学数学建模要遵循循序渐进的原则,既要适合学生的年龄特征,赋予适当的.挑战性;又要照顾儿童发展的差异性,尊重儿童的个性,促进每一个学生在原有的基础上得到发展。

2.定位于儿童的思维方式小学生的特点是年龄小,思维简单。

因此小学的数学建模必须与小学生的实际情况相结合,循序渐进的进行,使其与小学生的认知能力相适应。

实际情况表明,教师要想使学生能够积极主动的思考问题,提高他们将数学思维运用到实际生活中的能力,就必须把握好儿童在数学建模过程中的情感、认知和思维起点。

我们以《常见的数量关系》中关于速度、时间和路程的教学为例,有的老师启发学生与二年级所学的乘除法相结合,使乘除法这一知识点与时间、速度和路程建立了关联,从而使_数量关系_与数学原型_一乘两除_结合起来,并且使学生利用抽象与类比的思维方法完成了_数量关系_的_意义建模_,从而创建了完善的认知体系。

优秀的数学建模论文范文(通用8篇)

优秀的数学建模论文范文(通用8篇)

优秀的数学建模论文范文第1篇摘要:将数学建模思想融入高等数学的教学中来,是目前大学数学教育的重要教学方式。

建模思想的有效应用,不仅显著提高了学生应用数学模式解决实际问题的能力,还在培养大学生发散思维能力和综合素质方面起到重要作用。

本文试从当前高等数学教学现状着手,分析在高等数学中融入建模思想的重要性,并从教学实践中给出相应的教学方法,以期能给同行教师们一些帮助。

关键词:数学建模;高等数学;教学研究一、引言建模思想使高等数学教育的基础与本质。

从目前情况来看,将数学建模思想融入高等教学中的趋势越来越明显。

但是在实际的教学过程中,大部分高校的数学教育仍处在传统的理论知识简单传授阶段。

其教学成果与社会实践还是有脱节的现象存在,难以让学生学以致用,感受到应用数学在现实生活中的魅力,这种教学方式需要亟待改善。

二、高等数学教学现状高等数学是现在大学数学教育中的基础课程,也是一门必修的课程。

他能为其他理工科专业的学生提供很多种解题方式与解题思路,是很多专业,如自动化工程、机械工程、计算机、电气化等必不可少的基础课程。

同时,现实生活中也有很多方面都涉及高数的运算,如,银行理财基金的使用问题、彩票的概率计算问题等,从这些方面都可以看出人们不能仅仅把高数看成是一门学科而已,它还与日常生活各个方面有重要的联系。

但现在很多学校仍以应试教育为主,采取填鸭式教学方式,加上高数的教材并没有与时俱进,将其与生活的关系融入教材内,使学生无法意识到高数的重要性以及高数在日常生活中的魅力,因此产生排斥甚至对抗的心理,只是在临考前突击而已。

因此,对高数进行教学改革是十分有必要的,而且怎么改,怎么让学生发现高数的魅力,并积极主动学习高数也是作为教师所面临的一个重大问题。

三、将数学建模思想融入高等数学的重要性第一,能够激发学生学习高数的兴趣。

建模思想实际上是使用数学语言来对生活中的实际现象进行描述的过程。

把建模思想应用到高等数学的学习中,能够让学生们在日常生活中理解数学的实际应用状况与解决日常生活问题的方便性,让学生们了解到高数并不只是一门课程,而是整个日常生活的基础。

数学建模优秀论文(精选范文10篇) 2021

数学建模优秀论文(精选范文10篇) 2021

根据实际问题来建立数学模型,对数学模型来进行求解,然后根据结果去解决实际问题,这就是数学建模,本篇文章主要是向大家介绍几篇数学建模优秀论文得范文,希望对有这方面参考得学者有所帮助。

数学建模优秀论文精选范文10篇之第一篇:培养低年段学生数学建模意识得微课教学---------------------------------------------------------------------------------------------------------------------感谢使用本套资料,希望本套资料能带给您一些思维上的灵感和帮助,个人建议您可根据实际情况对内容做适当修改和调整,以符合您自己的风格,不太建议完全照抄照搬哦。

---------------------------------------------------------------------------------------------------------------------摘要:本文阐述了录制微课对培养学生建模意识得必要性和可行性,认为在小学数学教学中,鼓励低年段学生录制微课有积极意义,主张提高小学生建模语言表达能力,通过任务驱动和学生自主录制微课,逐步深入学习建模内容,培养并增强学生得建模意识。

关键词:低年段数学; 微课; 建模意识;当今社会,信息技术高速发展使教学资源高度丰富。

广大教师纷纷探讨如何利用信息技术更好地为教学服务,有效地改进教与学得方式,提高学生学习兴趣。

一、录制微课对培养学生建模意识得必要性和可行性“三年级现象”备受关注,很多人认为小学三年级是道坎,有得学生一、二年级数学成绩很好,到了三年级就断崖式下降。

如果真得出现这种现象,那么学生一、二年级数学成绩好只是表象。

一、二年级是学生初步感知数学得重要时期。

低年段数学知识是基础,对于低年段数学教学包括建模教学必须引起广大教育工作者得重视,让学生从小接受正确得教学模式,真正掌握学习数学得思想方法,避免出现短暂成绩好得现象。

数学建模经典论文五篇

数学建模经典论文五篇

1、 血样的分组检验在一个很大的人群中通过血样检验普查某种疾病,假定血样为阳性的先验概率为p(通常p 很小).为减少检验次数,将人群分组,一组人的血样混合在一起化验.当某组的混合血样呈阴性时,即可不经检验就判定该组每个人的血样都为阴性;而当某组的混合血样呈阳性时,则可判定该组至少有一人血样为阳性,于是需要对这组的每个人再作检验.(1)、当p 固定时(如0.01%,…,0.1%,…,1%)如何分组,即多少人一组,可使平均总检验次数最少,与不分组的情况比较. (2)、当p 多大时不应分组检验.(3)、当p 固定时如何进行二次分组(即把混合血样呈阳性的组再分成小组检验,重复一次分组时的程序).模型假设与符号约定1 血样检查到为阳性的则患有某种疾病,血样呈阴性时的情况为正常2 血样检验时仅会出现阴性、阳性两种情况,除此之外无其它情况出现,检验血样的药剂灵敏度很高,不会因为血样组数的增大而受影响. 3 阳性血样与阳性血样混合也为阳性 4 阳性血样与阴性血样混合也为阳性 5 阴性血样与阴性血样混合为阴性 n 人群总数 p 先验概率血样阴性的概率q=1-p血样检验为阳性(患有某种疾病)的人数为:z=np 发生概率:x i P i ,,2,1, = 检查次数:x i R i ,,2,1, = 平均总检验次数:∑==xi i i R P N 1解1设分x 组,每组k 人(n 很大,x 能整除n,k=n/x ),混合血样检验x 次.阳性组的概率为k q p -=11,分组时是随机的,而且每个组的血样为阳性的机率是均等的,阳性组数的平均值为1xp ,这些组的成员需逐一检验,平均次数为1kxp ,所以平均检验次数1kxp x N +=,一个人的平均检验次数为N/n,记作:k k p kq k k E )1(1111)(--+=-+=(1) 问题是给定p 求k 使E(k)最小. p 很小时利用kp p k -≈-1)1(可得kp kk E +=1)( (2) 显然2/1-=p k 时E(k)最小.因为K 需为整数,所以应取][2/1-=p k 和1][2/1+=-p k ,2当E (k )>1时,不应分组,即:1)1(11>--+k p k,用数学软件求解得k k p /11-->检查k=2,3,可知当p>0.307不应分组.3将第1次检验的每个阳性组再分y 小组,每小组m 人(y 整除k,m=k/y ).因为第1次阳性组的平均值为1xp ,所以第2次需分小组平均检验1yxp 次,而阳性小组的概率为m q p -=12(为计算2p 简单起见,将第1次所有阳性组合在一起分小组),阳性小组总数的平均值为21yp xp ,这些小组需每人检验,平均检验次数为21yp mxp ,所以平均总检验次数211yp mxp yxp x N ++=,一个人的平均检验次数为N/n,记作(注意:n=kx=myx)p q q q mk p p m p k m k E m k -=-+-+=++=1),1()1(111),(211 (3) 问题是给定p 求k,m 使E (k,m )最小.P 很小时(3)式可简化为21),(kmp mkpk m k E ++≈ (4)对(4)分别对k,m 求导并令其等于零,得方程组:⎪⎪⎩⎪⎪⎨⎧=+-=++-0012222kp m kp mp mp k 舍去负数解可得:2/14/3,21--==p m p k (5)且要求k,m,k/m 均为整数.经在(5)的结果附近计算,比较E(k,m),得到k,m 的最与表1比较可知,二次分组的效果E(k,m)比一次分组的效果E(k)更好.2、铅球掷远问题铅球掷远比赛要求运动员在直径2.135m 的圆内将重7.257kg 的铅球投掷在 45的扇形区域内,建立模型讨论以下问题1.以出手速度、出手角度、出手高度 为参数,建立铅球掷远的数学模型;2.考虑运动员推铅球时用力展臂的动 作,改进以上模型.3.在此基础上,给定出手高度,对于 不同的出手速度,确定最佳出手角度 问题1模型的假设与符号约定1 忽略空气阻力对铅球运动的影响.2 出手速度与出手角度是相互独立的.3 不考虑铅球脱手前的整个阶段的运动状态. v 铅球的出手速度 θ 铅球的出手角度 h 铅球的出手高度 t 铅球的运动时间 L 铅球投掷的距离g 地球的重力加速度(2/8.9s m g=)铅球出手后,由于是在一个竖直平面上运动.我们,以铅球出手点的铅垂方向为y 轴,以y 轴与地面的交点到铅球落地点方向为x 轴构造平面直角坐标系.这样,铅球脱手后的运动路径可用平面直角坐标系表示,如图.因为,铅球出手后,只受重力作用(假设中忽略空气阻力的影响),所以,在x 轴上的加速度0=,在y 轴上的加速度g a y -=.如此,从解析几何角度上,以时间 t 为参数,易求得铅球的运动方程:⎪⎩⎪⎨⎧+-==h gt t v y t v x 221sin cos θθ 对方程组消去参数t ,得h x x v gy ++-=)(tan cos 2222θθ……………………………………………(1) 当铅球落地时,即是0=y ,代入方程(1)解出x 的值v ggh gh v g v x θθθθθ2222sin 22cos sin cos sin 2-++=对以上式子化简后得到铅球的掷远模型θθθ22222cos 22sin 222sin g v h g v g v L +⎪⎪⎭⎫ ⎝⎛+=………………………………(2) 问题2我们观察以上两个阶段,铅球从A 点运动到B 点,其运动状态是匀加速直线运动的,加速距离是2L 段.且出手高度与手臂长及出手角度是有一定的联系,进而合理地细化各个因素对掷远成绩的约束,改进模型Ⅰ.在投掷角度为上进行受力分析,如图(3)由牛顿第二定 律可得,ma mg F =-θsin 再由上式可得,θsin g mFa -=………………………………………(3) 又,22022aL v v =-,即22022aL v v += (4)将(3)代入(4)可得,θsin 2222202g L m FL v v -⎪⎭⎫⎝⎛+= ………………………(5) (5)式进一步说明了,出手速度v 与出手角度θ有关,随着θ的增加而减小.模型Ⅰ假设出手速度与出手角度相互独立是不合理的. 又根据图(2),有θsin 1'L h h += (6)由模型Ⅰ,同理可以得到铅球脱手后运动的距离θθθ22222cos 22sin 222sin g v h g v g v L +⎪⎪⎭⎫ ⎝⎛+= 将 (4)、(5)、(6)式代入上式整理,得到铅球运动的距离()⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡-⎪⎭⎫⎝⎛++++-⎪⎭⎫ ⎝⎛+=θθθθθ22220'2220sin sin 22sin 2112sin 2sin 22g L m FL v h g g g L m FL v L 对上式进行化简:将m=7.257kg,2/8.9s m g = 代入上式,再令m h 60.1'= (我国铅球运动员的平均肩高),代入上式进一步化简得,()⎪⎪⎭⎫ ⎝⎛-++-++⨯θθθθθ2222232222sin sin 6.192756.06.19sin 6.19sin 2756.0sin 1L FL v L FL v ………………(7) 所以,运动员投掷的总成绩θcos 1L L S +=问题3给定出手高度,对于不同的出手速度,要确定最佳的出手角度.显然,是求极值的问题,根据微积分的知识,我们要先求出驻点,首先,模型一中L 对θ求导得,g hv g v g hv v g v d dL θθθθθθθθ22224242cos 82sin sin cos 42cos 2sin 2cos +-+=令0=θd dL,化简后为, 0sin cos 42cos 2sin cos 82sin 2cos 2422242=-++θθθθθθθhgv v hgv v v根据倍角与半角的三角关系,将以上方程转化成关于θ2cos 的方程,然后得,hv g g vgh gh222cos +=+=θ (3)()θθ2sin sin 6.192756.051.0222L FL v L -+=从(3)式可以看出,给定铅球的出手高度h ,出手速度v 变大,相应的最佳出手角度θ也随之变大.对(3)式进行分析,由于0,0>>θh ,所以02cos >θ,则40πθ≤<.所以,最佳出手角度为)arccos(212vgh gh +=θ θ是以π2为周期变化的,当且仅当N k k ∈⎪⎭⎫⎝⎛∈±,4,02ππθ时,πθk 2±为最佳出手角度.特别地,当h=0时(即出手点与落地点在同一高度),最佳出手角度︒=45α3、零件的参数设计粒子分离器某参数(记作y )由7个零件的参数(记作x x 12,,…x 7)决定,经验公式为:y x x x x x x x x x x x =⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪⨯--⎛⎝ ⎫⎭⎪⎡⎣⎢⎢⎤⎦⎥⎥⎛⎝ ⎫⎭⎪-17442126210361532108542056324211667......y 的目标值(记作y 0)为1.50。

全国大学生数学建模竞赛论文范例

全国大学生数学建模竞赛论文范例

全国大学生数学建模竞赛论文范例摘要:本文通过对具体问题的研究,建立了相应的数学模型,并运用具体方法进行求解和分析。

通过对结果的讨论,得出了具有一定实际意义的结论和建议。

一、问题重述详细阐述所给定的问题,明确问题的背景、条件和要求。

二、问题分析(一)对问题的初步理解对问题进行初步的思考和分析,明确问题的关键所在和需要解决的核心问题。

(二)可能用到的方法和模型根据问题的特点,探讨可能适用的数学方法和模型,如线性规划、微分方程、概率统计等。

三、模型假设(一)假设的合理性说明所做假设的依据和合理性,确保假设不会对问题的解决产生过大的偏差。

(二)具体假设内容列举出主要的假设条件,如忽略某些次要因素、变量之间的关系等。

四、符号说明对文中使用的主要符号进行清晰的定义和说明,以便读者理解。

五、模型建立与求解(一)模型的建立详细阐述模型的构建过程,包括数学公式的推导和逻辑关系的建立。

(二)模型的求解运用适当的数学软件或方法对模型进行求解,给出求解的步骤和结果。

六、结果分析(一)结果的合理性对求解得到的结果进行合理性分析,判断其是否符合实际情况。

(二)结果的敏感性分析探讨模型中某些参数或条件的变化对结果的影响。

七、模型的评价与改进(一)模型的优点总结模型的优点,如准确性、简洁性、实用性等。

(二)模型的不足分析模型存在的不足之处,如局限性、假设的不合理性等。

(三)改进的方向针对模型的不足,提出可能的改进方向和方法。

八、结论与建议(一)结论总结问题的解决结果,明确回答问题的核心要点。

(二)建议根据结论,提出具有实际意义的建议和措施,为相关决策提供参考。

以下是一个具体的示例,假设我们要解决一个关于交通流量优化的问题。

问题重述在某城市的一个交通路口,每天早晚高峰时段都会出现严重的交通拥堵。

现需要建立数学模型,优化信号灯的设置时间,以提高交通流量,减少拥堵。

问题分析首先,我们需要收集该路口的交通流量数据,包括不同时间段各个方向的车辆数量。

数学建模论文(精选4篇)

数学建模论文(精选4篇)

数学建模论文(精选4篇)数学建模论文模板篇一1数学建模竞赛培训过程中存在的问题1.1学生数学、计算机基础薄弱,参赛学生人数少以我校理学院为例,数学专业是本校开设最早的专业,面向全国28个省、市、自治区招生,包括内地较发达地区的学生、贫困地区(包括民族地区)的学生,招收的学生数学基础水平参差不齐.内地较发达地区的学生由于所处地区的经济文化条件较好,教育水平较高,高考数学成绩普遍高于民族地区的学生.民族地区由于所处地区经济文化较落后,中小学师资力量严重不足,使得少数民族学生数学基础薄弱,对数学学习普遍抱有畏难情绪,从每年理学院新生入学申请转系的同学较多可以窥见一斑.虽然学校每年都组织学生参加全国大学生数学建模竞赛,但人数都不算多.从专业来看,参赛学生主要以数学系和计算机系的学生为主,间有化学、生科、医学等理工科学生,文科学生则相对更少.理工科类的学生基本功比较扎实,他们在参赛过程中起到了重要作用.文科学生数学和计算机功底大多薄弱,更多的只是一种参与.从年级来看,参赛学生以大二的学生居多;大一的学生已学的数学和计算机课程有限,基本功还有些欠缺;大三、大四的学生忙着考研和找工作,对数学建模竞赛兴趣不大.从参赛的目的来看,有20%左右的学生是非常希望通过数学建模提高自己的综合能力,他们一般能坚持到最后;还有50%的学生抱着试试看的态度参加培训,想锻炼但又怕学不懂,觉得可以坚持就坚持,不能则中途放弃;剩下的30%的学生则抱着好奇好玩的态度,他们大多早早就出局了.学生的参赛积极性不高,是制约数学建模教学及竞赛有效开展的不利因素.1.2无专职数学建模培训教师,培训教师水平有限,培训方法落后数学建模的培训教师主要由理学院选派数学老师临时组成,没有专职从事数学建模的教师.由于学校扩招,学生人数多,教师人数少,数学教师所承担的专业课和公共课课程多,授课任务重;备课、授课、批改作业占用了教师的大部分工作时间,并且还要完成相应的科研任务.而参加数学建模教学及竞赛培训等工作需要花费很多时间和精力,很多老师都没有时间和精力去认真从事数学建模的教学工作.培训教师队伍整体素质不够强、能力欠缺,指导起学生来也不是那么得心应手,且从事数学建模教学的老师每年都在调整,不利于经验的积累.另外,学校对参与数学建模教学及竞赛培训的教师的鼓励措施还不是十分到位和吸引人,培训教师对数学建模相关的工作热情不够,缺乏奉献精神.在2011年以前,数学建模培训主要采用教师授课的方式进行,但各位老师授课的内容互不联系.比如说上概率论的老师就讲概率论的内容,上常微分方程的老师就讲常微分的内容.学生学习了这些知识,不知道有什么用,怎么用,不能将这些知识联系起来转化为数学建模的能力.这中间缺少了很重要的一个环节,就是没有进行真题实训.结果就是学生既没有运用这些知识构建数学模型的能力,也谈不上数学建模论文写作的技巧.虽然学校年年都组织学生参加全国大学生数学建模竞赛,但结果却不尽如人意,获奖等次不高,获奖数量不多.1.3学校重视程度不够,相关配套措施还有待完善任何一项工作离开了学校的支持,都是不可能开展得好的,数学建模也不例外.在前些年,数学建模并没有引起足够的重视,学校盼望出成绩但是结果并不理想,对老师和学生的信心不足.由于经费紧张,并未专门对数学建模安排实验室,图书资料很少,学生用电脑和查资料不方便,没有学习氛围.每年数学建模竞赛主要由分管教学的副院长兼任组长,没有相应专职的负责人,培训教师去参加数学建模相关交流会议和学习的机会很少.学校和二级学院对参加数学建模教学、培训的老师奖励很少,学生则几乎没有.在课程的开设上也未引起重视,虽然理学院早在1997年就将数学实验和数学建模课列为专业必修课,但非数学专业只是近几年才开始列为公选课开设,且选修率低.2针对存在问题所采取的相应措施2.1扩大宣传,重视数学和计算机公选课开设,举办数学建模学习讨论班最近两年,学院组建了数学建模协会,负责数学建模的宣传和参赛队员的海选,通过各种方式扩大了对数学建模的宣传和影响,安排数学任课教师鼓励数学基础不错的学生参赛.同时邀请重点大学具有丰富培训经验的老师来做数学建模专题讲座,交流经验.学院重视数学专业的基础课程、核心课程的教学,选派经验丰富的老教师、青年骨干教师担任主讲,随时抽查教学质量,教学效果.严抓考风学风,对考试作弊学生绝不姑息;学生上课迟到、早退、旷课一律严肃处理.通过这些举措,学生学习态度明显好转,数学能力慢慢得到提高.学校有意识在大一新生中开设数学实验、数学建模和相关计算机公选课,让对数学有兴趣的学生能多接触这方面的知识,减少距离感.选用的教材内容浅显而有趣味,主要目的是让同学们感受到数学建模并非高不可攀,数学是有用的,增加学生学习数学的热情和参加数学建模竞赛的可能性.为了解决学生学习数学建模过程中的遇到的困难,学院组织老师、学生参加数学建模周末讨论班,老师就学生学习过程中遇到的普遍问题进行讲解,学生分小组相互讨论,尽量不让问题堆积,影响后续学习积极性.通过这些措施,参赛学生的人数比以往有了大的改观,参赛过程中退赛的学生越来越少,参赛过程中的主动性也越来越明显.2.2成立数学建模指导教师组,分批培养培训教师,改进培训方法近年来,学院开始重视对数学建模培训教师的梯队建设,成立了数学建模指导教师组.把培训教师分批送出去进修,参加交流会议,学习其它高校的经验,并安排老教师带新教师,培训教师队伍越来越稳定、壮大.从去年开始,理学院组织学生进行了为期一个月的暑期数学建模真题实训,从8月初到8月底,培训共分为7轮.学生首先进行三天封闭式真题训练———其次答辩———最后交流讨论.效果明显,学生的数学建模能力普遍得到了提高,学习积极性普遍高涨.9月份顺利参加了全国大学生数学建模竞赛.从竞赛结果来看,比以前有了比较大的进步,不管是获奖的等次还是获奖的人数上都取得了历史性突破.有了这些可喜的变化,教师和学生的积极性都得到了提高,对以后的数学建模教学和培训工作将起着极大的促进作用.除了这种集训,今后,数学建模还需要加强平时的教学和培训工作.2.3学校逐渐重视,加大了相关投入,完善了激励措施最近几年,学校加大了对数学建模教学和培训工作的相关投入和鼓励措施.安排了专门的数学建模实验室,配备了学院最先进的电脑、打印机等设备,购买了数学建模相关的书籍.划拨了数学建模教学和培训专项经费.虽然数学建模教学还没有计入教学工作量,但已经考虑计入职称评定的相关工作量中,对参加数学建模教学和培训的老师减少了基本的教学工作量,使他们有更多的时间和精力投入到数学建模的相关工作中去.对参加全国大学生数学建模竞赛获奖的老师和学生的奖励额度也比以前有了很大的提高,老师和学生的积极性得到了极大的提高.3结束语对我们这类院校而言,最重要的数学建模赛事就是一年一度的全国大学生数学建模竞赛了.竞赛结果大体可以衡量老师和学生的付出与收获,但不是绝对的,教育部组织这项赛事的初衷主要是为了促进各个院校数学建模教学的有效开展.如果过分的看重获奖等次和数量,对学校的数学建模教学和组织工作都是一种伤害.参赛的过程对学生而言,肯定是有益的,绝大多数参加过数学建模竞赛的学生都认为这个过程很重要.这个过程可能是四年的大学学习过程中体会最深的,它用枯燥的理论知识解决了活生生的现实中存在的问题,虽然这种解决还有部分的理想化.由于我校地处偏远山区,教育经费相对紧张,投入不可能跟重点院校的水平比,只能按照自身实际来.只要学校、老师、学生三方都重视并积极参与这一赛事,数学建模活动就能开展的更好.数学建模论文模板篇二培养应用型人才是我国高等教育从精英教育向大众教育发展的必然产物,也是知识经济飞速发展和市场对人才多元化需求的必然要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014/5/24中国地质大学(北京)考虑粘度差的互溶液体的传质扩散模型
专业:
学号:
姓名:陈文滨
中国地质大学(北京) |能源学院
考虑粘度差的互溶液体的传质扩散模型
【陈文滨】
摘要:
随着二氧化碳在油田开发中的应用,其驱油机理日益成为研究热点。

本文在调研国内外二氧化碳驱油发展史、驱油机理以及相关数学模型基础上,利用数值方法建立了考虑CO2原油粘度作用下的模型并求解。

本文对于完善CO2驱油数学模型,研究CO2驱油特性具有一定指导意义。

关键词:
二氧化碳驱油;传质扩散;考虑粘度差的互溶液体的传质扩散模型
问题叙述:
在驱油过程中,二氧化碳与水和油的相界面处会发生传质扩散,使得二氧化碳溶于水或油,溶于水后可使的水的粘度增加,运移性能提高,溶于油后会使得原油体积膨胀,粘度降低,从而降低油水界面张力,提高原油采收率。

而且,传质速度越快,越有利于降低油水界面张力。

但是由于吸附作用的影响,降低了二氧化碳直接驱油的机会和效率,造成二氧化碳的浪费。

通过建立数学模型研究不同的注气速度、粘度等因素对开发指标的影响,可以得到提高传质速度的方法,从而增加原油采收率,提高洗油效率和收集残余油效率,对以后的油气田开发均有较大的意义。

在往油层中注溶剂或混相剂时将发生驱替液和被驱替液之间在接触带的互溶从而形成一个混合带,混合带液体的浓度、粘度等将发生变化,但由于只考虑压力大于最小混相压力之后的情况,所以只考虑单相流动,不涉及饱和度的变化。

模型分析:
在基本的扩散渗流方程的基础上,考虑二氧化碳注入后引起原油粘度的变化情况。

将粘度差考虑在一维传质扩散方程中,建立了传质扩散驱油模型,通过实验和相关程序得到了传质扩散模型下考虑粘度差的二氧化碳浓度分布图,以及对原油粘度的影响,得出考虑二氧化碳降粘作用对二氧化碳驱油效果的影响。

符号说明:
c ——二氧化碳的浓度; v ——液流的真实速度; D ——扩散系数,21
u u =时为s /cm 1010232---;
0D ——等温度液体的扩散系数; c μ——混合液体的粘度;
1k ——比例常数。

0D ——等温度液体的扩散系数; g μ——二氧化碳的初始粘度;
1k ——比例常数;
v ——液流的真实速度。

设初始时刻粘度为g μ的二氧化碳气体在直线地层中驱替粘度为o μ的原油,混合带产生的混合可利用下式描述:
x c
x
c D t c 22∂∂ν-∂∂=∂∂ (4-12) 对于不同粘度混合而成的液体,其扩散系数D 与粘度的梯度有关:
)x
k 1(D D c
1
0∂μ∂+= c μ与o g μμ和的关系,由浓度加权得到:
o g c ln )c 1(ln c ln μ-+μ=μ (4-13)
x
c )c ('f x c c x )()c (f ),c (f )(
g c c c 1g
o g c 1g o g c ∂∂μ=∂∂∂μ∂=∂μ∂μμ=μ=μμμ=μ--
所以,模型可以写为:x c
x c )x k 1(D t
c 22c 10∂∂ν
-∂∂∂μ∂+=∂∂ 模型求解:
假定是定产量生产,横截面积不变,则可以得出液流的真实速度为一个定值,再假设压力和时间都不变化。

模型可以写成:
x
c
x c )x c )c ('f k 1(D t c 22g 10∂∂ν-∂∂∂∂μ+=∂∂ (4-15) )ln()(
)c ('f g
o
c 1g o μμμμ-=- (4-16)
给模型赋初值如下表:
表4-1 程序初始值
保证注入速度不变,改变原油粘度,得到不同粘度情况下,同一时间某点处二氧化碳浓度的变化情况的对比,和同一位移某一时间处二氧化碳浓度的变化情况的对比。

图4-2 粘度为4mPa·s同一时间某点处二氧化碳浓度分布情况
图4-3 粘度为8mPa·s同一时间某点处二氧化碳浓度分布情况
图4-4 粘度为4mPa ·s 同一位移某个时间二氧化碳浓度变化情况
图4-5 粘度为8mPa ·s 同一位移某个时间二氧化碳浓度变化情况
由图4-2和图4-4可以看出,二氧化碳的浓度随着距离的增大变得越来越小,随着时间越来越长,变得越来越大,这是由于二氧化碳向原油中的扩散是一个过程,距离越大,二氧化碳到达的时间越晚,浓度就越小;时间越长,二氧化碳能够达到的量越多,浓度就越大。

由图4-2和图4-3可以看出同一时间某点处二氧化碳浓度的变化情况的对比,粘度不同时,二氧化碳浓度的变化趋势是一样的,但是粘度为8s mPa ⋅的时候比粘度为4s mPa ⋅的时候二氧化碳浓度向前推进的距离更大,这是由于原油粘度越大,油气粘度差越大,粘度差
引起的扩散系数越大,二氧化碳向原油中的扩散量越多,所以二氧化碳的浓度向前推进的也更多。

由图4-4和图4-5可以看出,不同初始原油粘度下,同一位移某一时间处的二氧化碳浓度变化情况,两者的变化趋势一样,但数值相差比较大,同一时间的粘度为8s mPa ⋅的原油中的二氧化碳浓度比粘度为4s mPa ⋅的原油要大,这是由于初始原油粘度较大,油气粘度差就大,粘度差引起的扩散系数越大,二氧化碳向原油中的扩散量越多,二氧化碳的浓度也就越大。

下面改变初始粘度进行计算,分别作出初始粘度为4s mPa ⋅和8s mPa ⋅的混合物粘度变化图进行对比。

图4-6 粘度为4mPa ·s 时同一时间某点处原油粘度的变化情况
图4-7 粘度为8mPa ·s 时同一时间某点处原油粘度的变化情况
由图4-6可以看出,原油溶解二氧化碳后,粘度急剧降低,然后随距离增大而逐渐增大,直到达到原油初始粘度。

通过初始粘度为4s mPa ⋅和8s mPa ⋅的粘度变化图的对比,可以看出粘度的变化趋势是一样的,但是初始粘度为8s mPa ⋅时,变化趋势更大一些,而且达到原油初始粘度的距离更靠后一些,这是因为二氧化碳可以抽提原油中的轻质组分,所以原油粘度较小的时候的降粘效果不如粘度较大的时候明显。

模型评估:
1、通过比较可以得出,粘度为8s mPa ⋅的原油比粘度为4s mPa ⋅的原油的降粘趋势更明显,但是最低点的值比4s mPa ⋅的原油的最低值要大,由此得出,二氧化碳对于粘度较大的原油降粘效果更明显,这也是由于二氧化碳能够抽提原油中的轻质组分或使其汽化,所以对粘度较大的原油效果更明显。

2、二氧化碳驱的注入大大降低了原油的粘度,使原油流动能力增大,减少驱替过程中渗流阻力,提高原油采出程度。

对于不同粘度的原油,粘度越大,二氧化碳注入后其降粘效果越明显。

【参考文献】
[1] 郝永卯,陈月明,于会利.CO2驱最小混相压力的测定与预定.油气地质与采收率,2005,12(6):64-66.
[2] 张小波.蒸汽-二氧化碳-助剂吞吐开采技术研究.石油学报,2006,27(2 [3] 葛家理.现代油藏渗流力学原理.北京:石油工业出版社,2003:302-315. [4] 姚军.高等油气藏渗流力学.东营:石油大学出版社,2001:114-120.
数学建模感:
在大二上学期时想学习数学建模,却被学长学姐们极力劝阻了,究其原因不过是因为得分率低,对于自己的绩点不利而已。

在大二学期看了张泉林在北大的演讲之后我忽然觉得:大学,绩点并不是一切!如若仅仅因为绩点而没有勇气去尝试一切,这样的大学生活又有多大的意义呢?大学生不是为了绩点而生存的,我们应该有自己的兴趣,我们应该对万事万物充满好奇,自然,我们应该拿出那份青春不服输的执拗去接触一切令我们向往以至欣喜若狂的事物,满足我们的好奇找寻到我们内心的兴趣,否则大学四年果真就迷茫的找不到真正的自己了。

大二下学期,当群里的学长再度说起不要报计算机和数学类的选修课时,我只是轻轻地笑了笑,觉得他们的悲哀也庆幸于自己为时不晚地顿悟吧。

在巨大的舆论之下,原来觉得数学建模很难,难到让我自己没有自信逾出自己的第一步,可是当我迈步向前,渐渐发现数学建模没有传说中的那么神奇和揪心,课一节一节上,当学会用心去推敲数学建模时,却又发现数学建模真的很不简单!数学模型的假设合不合理?怎么假设才能够让人信服的套用公式?选择什么专业什么样的公式?模型建立后怎样求解才有实际意义?通过什么样的角度对数据进行处理还能得出更多的信息?求解结果的检验可以采取什么样简洁高效的方法?正是诸如此类,数学建模让我难在其中也享受在其中,那种走在路上时、在吃饭时也时不时思考的感觉让我充满付出之后收获的优越感。

最后不得不承认完成一篇完整的数学建模的论文真的不简单,或许建模中用到的单个的数据处理方法在课上有所讲解,但当你在完成一篇完整的论文时,你的任务却像是从绵延的海滩上挑选捡起你喜欢的贝壳,然后还得用线把它们规律美观地编结在一起。

而一篇论文之所以评价为优秀或者低劣,就是看你选择的贝壳本身是否艳丽多彩,你编结的手法是否与众不同,最后成品的贝壳项链是否光彩夺目!。

相关文档
最新文档