常用温度传感器
三类常用的温度传感器

温度传感器对于环境温度的测量非常准确,广泛应用于农业、工业、车间、库房等场所。
对于温度传感器的种类非常多,不同的感温元件不同的型号,在国内比较常用的温度传感器型号有哪些呢,下面九纯健为大家简单介绍一下常用的温度传感器。
通过感温元件来分类可以大致分成铂热电阻温度传感器、热电偶温度传感器、热敏电阻温度传感器三大类。
1:铂热电阻温度传感器
铂热电阻是利用铂丝的电阻值随着温度的变化而变化这一基本原理设计和制作的,按0℃时的电阻值R(℃)的大小分为10欧姆(分度号为Pt10)和100欧姆(分度号为Pt100)等,测温范围均为-200~850℃。
利用PT100铂热电阻作为感温元件的型号有铠装式、装配式、插座式、端面热电阻。
可测温度:温度范围在-200摄氏度到150摄氏度,-50摄氏度到850度。
主要应用了需要温度误差小的行业或者是精密仪器仪表。
2:热电偶温度传感器
热电偶温度传感器主要是通过两根不同的金属材料焊接在一起的,主要温度发生改变,那么两端就会有不同的电势产生,通过电势的变化来得出相应的温度变化。
可测温度:最高达到2300度,在高温段比较准用的K 型正级
3:热敏电阻
由金属氧化物陶瓷组成,是低成本、灵敏度最高的温度传感器
测温范围:温度范围小-50到200度左右,体积小,响应时间快。
因为价格低廉所以在很多家用电器上都被应用到了。
以上就是常用的三类温度传感器型号以及它们的测温范围,许多常用的温度传感器大部分都是利用的它们作为感温元件来制作的,比如测量轴承用的JCJ100TLB温度传感器用的是铂热电阻作为核心。
各种温度传感器分类及其原理

各种温度传感器分类及其原理温度传感器是一种集成电路或器件,用于测量环境或物体的温度。
根据其工作原理和分类,常见的温度传感器包括热敏电阻、热电偶、热电阻、红外线传感器以及半导体温度传感器等。
1. 热敏电阻(Thermistor)热敏电阻是一种元件,其电阻值随温度的变化而变化。
根据电阻与温度之间的关系,热敏电阻分为两种类型:负温度系数(NTC)热敏电阻和正温度系数(PTC)热敏电阻。
NTC热敏电阻的电阻值随温度的升高而下降,常用于测量环境温度。
PTC热敏电阻的电阻值随温度的升高而增加,常用于过载保护和温度控制。
2. 热电偶(Thermocouple)热电偶是由两种不同金属线组成的开路回路。
当热电偶的两个接头处于不同温度下时,会产生温差电势。
该电势与两个接头之间的温差成正比。
通过测量温差电势,可以计算出温度值。
热电偶具有广泛的测温范围和较高的准确性,因此被广泛应用于工业领域。
3.热电阻(RTD)热电阻是一种利用材料的电阻与温度之间的关系来测量温度的传感器。
常见的热电阻材料是铂(Pt),因为铂的电阻与温度之间的关系比较稳定和预测性好。
热电阻的工作原理是利用热电阻材料的电阻随温度的变化而变化,通过测量电阻值来计算温度。
4. 红外线传感器(Infrared Sensor)红外线传感器是利用物体释放的热辐射来测量温度的传感器。
红外线传感器可以通过测量物体辐射的红外线能量来计算出物体的温度。
红外线传感器常用于非接触式测温,特别适用于测量高温、移动对象或远距离测温。
5. 半导体温度传感器(Semiconductor Temperature Sensor)半导体温度传感器是利用半导体材料的电特性随温度变化而变化的传感器。
根据不同的半导体材料和工作原理,半导体温度传感器可以分为基于PN结的温度传感器(比如二极管温度传感器)、基于电压输出的温度传感器(比如温度传感器芯片)以及基于电流输出的温度传感器(比如恒流源温度传感器)等。
温度传感器的常见分类 温度传感器应用大全

温度传感器的常见分类温度传感器应用大全温度传感器在我们的日常生活中扮演着十分重要的角色,同时它也是使用范围最广,数量最多的传感器。
关于它你了解多少呢?本文主要介绍的就是各种温度传感器的分类及其原理,温度传感器的应用电路。
温度传感器从17世纪温度传感器首次应用以来,依次诞生了接触式温度传感器,非接触式温度传感器,集成温度传感器,近年来在智能温度传感器在半导体技术,材料技术等新技术的支持下,温度传感器发展迅速,由于智能温度传感器的软件和硬件的合理配合既可以大大增强传感器的功能、提高传感器的精度,又可以使温度传感器的结构更为简单和紧凑,使用也更加方便。
1、热电偶传感器:两种不同导体或半导体的组合称为热电偶。
热电势EAB(T,T0)是由接触电势和温差电势合成的,接触电势是指两种不同的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关,当有两种不同的导体和半导体A和B组成一个回路,其相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端,另一端温度为TO,称为自由端,则回路中就有电流产生,即回路中存在的电动势称为热电动势,这种由于温度不同而产生电动势的现象称为塞贝克效应。
2、热敏电阻传感器:热敏电阻是敏感元件的一类,热敏电阻的电阻值会随着温度的变化而改变,与一般的固定电阻不同,属于可变电阻的一类,广泛应用于各种电子元器件中,不同于电阻温度计使用纯金属,在热敏电阻器中使用的材料通常是陶瓷或聚合物,正温度系数热敏电阻器在温度越高时电阻值越大,负温度系数热敏电阻器在温度越高时电阻值越低,它们同属于半导体器件,热敏电阻通常在有限的温度范围内实现较高的精度,通常是-90℃〜130℃。
3、模拟温度传感器:HTG3515CH是一款电压输出型温度传感器,输出电流1~3.6V,精度为±3%RH,0~100%RH相对湿度范围,工作温度范围-40~110℃,5s响应时间,0±1%RH迟滞,是一个带。
热电阻pt100温度范围

热电阻pt100温度范围
摘要:
一、pt100简介
二、pt100的阻值变化与温度关系
三、pt100的应用领域
四、pt100的优缺点
正文:
【一、pt100简介】
pt100,又称铜铂热电阻,是一种常用的温度传感器。
它的名字中的"100"代表了其在0摄氏度时的阻值为100欧姆,而在100摄氏度时,其阻值约为138.5欧姆。
这种热电阻可以测量0~500摄氏度的温度。
【二、pt100的阻值变化与温度关系】
pt100的阻值会随着温度的变化而改变。
随着温度的升高,电阻的阻值变大,这种特性使得pt100成为一种正温度系数的热敏电阻。
这种线性度非常好的特性,使得pt100在温度测量中具有很高的准确性。
【三、pt100的应用领域】
pt100的应用范围非常广泛,涵盖了医疗、电机、工业、温度计算、卫星、气象、阻值计算等高精温度设备领域。
其稳定的性能和高的准确性,使其在这些领域中发挥着重要的作用。
【四、pt100的优缺点】
优点:pt100的线性度好,精度高,测量范围广泛,稳定性好。
缺点:相比其他温度传感器,pt100的成本较高,且在高温环境下的性能可能会受到影响。
总的来说,pt100作为一种热电阻,以其优秀的性能和广泛的应用领域,成为了温度测量领域的重要工具。
温度传感器分类及特点

温度传感器分类及特点温度传感器是用于测量物体温度的设备,通常由敏感元件和转换元件组成。
根据工作原理的不同,温度传感器可以分为热电偶、热敏电阻、热电阻、热辐射传感器等。
下面将对这几种温度传感器进行详细介绍。
一、热电偶热电偶是一种常见的温度传感器,其工作原理是基于塞贝克效应(Seebeck effect)。
当两种不同材料的导体接触时,在温度差异的作用下,会在接触点产生电动势,这种现象称为塞贝克效应。
热电偶就是利用这种效应来测量温度的。
热电偶具有精度高、稳定性好、测量范围广等优点,因此在工业生产和科研领域得到广泛应用。
常用的热电偶材料有铜-镍、镍铬-镍铝等,可以根据不同的测量温度和环境选择合适的热电偶。
二、热敏电阻热敏电阻是一种半导体材料制成的温度传感器,其电阻值会随着温度的变化而变化。
热敏电阻可以分为正温度系数(PTC)和负温度系数(NTC)两种类型。
PTC热敏电阻的阻值随着温度的升高而增大,而NTC热敏电阻的阻值随着温度的升高而减小。
热敏电阻具有体积小、响应速度快、灵敏度高等优点,因此在自动控制、测温仪表等领域得到广泛应用。
同时,热敏电阻的缺点是精度较低,稳定性较差,容易受到环境因素的影响。
三、热电阻热电阻是一种金属导体材料制成的温度传感器,其电阻值会随着温度的变化而变化。
常用的热电阻材料有铜、镍、铂等。
在常温下,热电阻的阻值会随着温度的升高而增大,但在高温下,其阻值会受到金属的磁化效应影响而发生变化。
热电阻具有精度高、稳定性好、耐腐蚀等优点,因此在低温测量领域得到广泛应用。
同时,热电阻的缺点是响应速度较慢,容易受到金属导体材料本身特性的影响。
四、热辐射传感器热辐射传感器是一种利用物体辐射的热量来测量温度的传感器,其工作原理是基于普朗克辐射定律(Planck's law)。
当物体受到辐射时,其辐射的热量与物体的温度和波长有关。
热辐射传感器通过测量物体辐射的热量来推算物体的温度。
热辐射传感器具有非接触、无损、高精度等优点,因此在高温、高压、腐蚀等恶劣环境下得到广泛应用。
物理实验中常用的温度传感器及其使用方法

物理实验中常用的温度传感器及其使用方法在物理实验中,温度传感器是不可或缺的工具之一。
它能够测量物体的温度,提供重要的数据支持,帮助科学家进行实验研究。
本文将介绍一些常用的温度传感器及其使用方法,以帮助读者更好地了解这一领域。
1. 热电偶(Thermocouple)热电偶是最常见和广泛使用的温度传感器之一。
它是由两种不同金属材料组成的电偶,根据热电效应来测量温度。
当两种金属连接在一起时,在温度变化时会产生电压变化。
通过测量这个电压变化,就可以计算出温度的变化。
热电偶的使用方法相对简单。
首先,将热电偶与待测物体的接触部分连接。
然后,使用一个电压计或温度计测量电压变化,并将其转化为相应的温度值。
需要注意的是,热电偶对环境的干扰比较敏感,因此要保证实验环境的稳定性。
2. 铂电阻温度计(Platinum Resistance Thermometer)铂电阻温度计是一种基于电阻与温度之间的关系进行测量的传感器。
它使用铂金作为感测元件,根据铂电阻随温度的变化而变化来测量温度。
使用铂电阻温度计时,首先需要将它与待测物体接触的部分固定。
然后,将一个稳定的电流通过铂电阻,测量电阻的变化。
通过已知的电阻-温度关系,可以得出相应的温度值。
铂电阻温度计具有较高的精度和稳定性,广泛应用于工业和科学领域。
然而,它的价格较高,所以在一些低成本的实验中可能不太适用。
3. 热敏电阻(Thermistor)热敏电阻是一种电阻随温度变化而变化的传感器。
它通常由陶瓷或半导体材料制成,灵敏度较高。
热敏电阻主要分为正温度系数(PTC)和负温度系数(NTC)两种类型。
使用热敏电阻时,需要将它与待测物体的接触部分连接。
然后,通过测量电阻的变化来计算温度的变化。
由于热敏电阻的电阻-温度关系是非线性的,因此需要使用特定的校准曲线来将电阻值转化为温度值。
热敏电阻在实验室和工业领域都有广泛的应用。
由于其较低的成本和高精度,它成为许多实验室中常用的温度传感器之一。
常用温度传感器

医疗健康:监测人体体温辅 助诊断疾病
农业种植:监测土壤和空气 温度优化种植环境
Prt Three
热电偶温度传感器
热电偶工作原理
热电偶由两种不同的金属或金属合金组成 当两种金属或金属合金的温度不同时会产生电压 电压的大小与温度差成正比 热电偶通过测量电压来测量温度
热电偶种类及材料
热电偶种类:K型、J型、T型、E型等 K型热电偶:镍铬-镍硅适用于高温环境 J型热电偶:铁-康铜适用于中低温环境 T型热电偶:铜-康铜适用于低温环境 E型热电偶:镍铬-康铜适用于中低温环境 热电偶材料:镍铬、镍硅、铁、康铜等
汽车电子:发动机温度监测、 空调温度控制等
Prt Six
红外线温度传感器
红外线温度传感器工作原理
红外线辐射: 物体温度越高 辐射的红外线
越多
传感器接收: 红外线温度传 感器接收物体 辐射的红外线
信号处理:传 感器将接收到 的红外线信号 转换为电信号
显示温度:将 电信号处理后 显示为物体温
度
红外线温度传感器种类及特点
热敏电阻工作原理
热敏电阻是一种半导体器件其电阻随温度变化而变化 热敏电阻的电阻随温度升高而减小随温度降低而增大 热敏电阻的电阻变化率与温度变化率成正比 热敏电阻的电阻变化率可以通过测量电阻值来计算从而得到温度值
热敏电阻种类及材料
正温度系数热敏电阻(PTC):由半导体材料制成电阻随温度升高而增大 负温度系数热敏电阻(NTC):由金属氧化物制成电阻随温度升高而降低 临界温度系数热敏电阻(CTR):由半导体材料制成电阻随温度升高而减小 热敏电阻材料:包括陶瓷、金属氧化物、半导体等
红外线温度传感器应用场景及注意事项
应用场景:工业生产、医 疗健康、环境监测等领域
常见温度传感器的性能优缺点

一、模块温度传感器:模块温度传感器用于测量变频模块(IGBT或IPM)的温度,目前用的感温头的型号是602F-3500F,基准电阻为25℃对应电阻6KΩ±1%。
1、常数B值为4100K±3%,基准电阻为25℃对应电阻10KΩ±3%。
温度越高,阻值越小;温度越低,阻值越大。
离25℃越远,对应电阻公差范围越大;在0℃和55℃对应电阻公差约为±7%;而0℃以下及55℃以上,对于不同的供应商,电阻公差会有一定的差别。
除个别老产品外,美的空调电控使用的室温管温传感器均使用这种类型的传感器。
2、常数B值为3470K±1%,基准电阻为25℃对应电阻5KΩ±1%。
同样,温度越高,阻值越小;温度越低,阻值越大。
离25℃越远,对应电阻公差范围越大。
二、排气温度传感器:排气温度传感器用于测量压缩机顶部的排气温度,常数B值为3950K±3%,基准电阻为90℃对应电阻5KΩ±3%。
三、室温管温传感器:室温传感器用于测量室内和室外的环境温度,管温传感器用于测量蒸发器和冷凝器的管壁温度。
室温传感器和管温传感器的形状不同,但温度特性基本一致。
按温度特性划分,目前常用的室温管温传感器有二种类型:当然,除了以上三种常见的温度传感器外,还有其他类型也是经常性使用的,如热电阻:PT100、PT1000、Cu50、Cu100;热电偶:B、E、J、K、S等。
艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。
如需进一步了解相关传感器产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如果热电阻安装的位置与仪表相距较远, 当环境温度变化时,其连接导线电阻也要 变化。为消除连接导线电阻变化带来的测 量误差,测量时采用三线制连接法。除了 三线制接法,另外还有四线制接法,主要 用于精密测量。
(Rt 2r)R2R1R3 R2 R1
Rt 2rR3
(R tr)R 2R 1(R 3r)
R2 R1
铂电阻的特点是耐高温、性能稳定、抗氧化能力 强、电阻率高、材料易于提纯等优点,在国际实 用温标中以铂电阻作为标准。
铂电阻的测量范围为 -200~960℃。 铂电阻价格较贵。
我国工业用铂热电阻有:
R 0 1 0 、 R 0 5 0 、 R 0 1 0 0
它们的分度号分别为 Pt10、Pt50、Pt100, 其中Pt100最常用。
2、特点
用半导体材料制成的热敏电阻,与金属热电阻相比,有如 下特点: 电阻温度系数大,热敏电阻的温度系数比金属电阻大10倍 左右,因此它的灵敏度很高; 结构简单,体积小; 电阻率高,热惯性小,适宜动态测量; 阻值与温度变化呈非线性关系; 稳定性和互换性相对较差
3、结构
热敏电阻结构
MF12型 NTC热敏电阻
Rt R3
二、热电阻材料、结构及参数
1、热电阻材料 对电阻体材料的基本要求:
➢电阻温度系数大----提高灵敏度 ➢电阻率尽可能大----减小电阻尺寸 ➢材料的化学、物理性质稳定----减小误差 ➢材料易于加工----提高工艺性
较为广泛应用的电阻体材料有: 铂、铜、镍、铁等,而常用的是铂、铜 。
铂热电阻
注意事项:
1、 Vo的值为Io乘上10K,以室温25℃而言,输出值为 10K×298.2μA=2.982V
2、 测量Vo时,不可分出任何电流,否则测量值会不准
图 AD590温度传感器测温原理图
差动放大器输出Vo为 (100K/10K)×(V2-V1)=T/10V。
P82 6、7
作业
休息一下
模块2 常用温度传感器
➢导体A因失去电子而带正电,导体 B则因获得电子而带负电,在接触面
处形成电场,该电场的存在阻碍了 电子的继续扩散;
➢当电子扩散达到动态平衡时,就在 接触区形成一个稳定的电位差,即
铜热电阻
➢ 由于铂是贵金属,在测量精度要求不高、温度范围 在-50150℃时普遍采用铜电阻。
➢ 铜电阻的R0常取100Ω、50Ω两种,分度号为 Cu100、Cu50。
➢优点:
铜易于提纯,价格低廉,电阻_____温度特性线性较好; 价格低廉,互换性好,固有电阻小。
➢缺点:
电阻率较小(仅为铂的几分之一),因此铜电阻所用阻丝细而且长; 机械强度较差,热惯性较大,在温度高于100℃时,易氧化,稳定性较差。 因此,只能用于低温及无腐蚀性的介质中。
塑料封装 热敏电阻
玻璃封装NTC 热敏电阻
MF58型热敏电阻
4、热敏电阻的应用
热敏电阻用于温度补偿
仪表中线圈一般用铜线绕制,当温度上升时,线圈电阻增大,产生温度 误差,如果在线圈回路中串入一负温度系数的热敏电阻,则可抵消由于 温度变化产生的误差。
过热保护 NTC薄膜热敏电阻MF52A
抑制浪涌工作电流
温标是衡量温度的标准尺度,目前国际 上使用较多的是摄氏温标和热力学温标。
二、温度传感器的工作原理
定义:利用各种物质材料的不同物理性质随温 度变化的规律把温度转换为电量的装置。
水银温度计-----热胀冷缩
双金属温度计------两种不同金属在温度改 变时膨胀程度不同
三、温度传感器的分类
用来测量温度的传感器种类种类很多,常 用的有热敏电阻、热电阻、PN结、热电偶以 及为简化测量电路而开发的集成温度传感器。
学习要点
热电偶温度传感器测温原理 热电偶三大定律
模块2 温度传感器的应用
学习要点
热电偶温度传感器测温原理 热电偶三大定律
一、 热电偶传感器的工作原理
➢ 热电偶是工程上应用最广泛的温度传感器。 ➢ 其结构简单、使用方便、准确度高、响应速度
快、便于维修、复现性好; ➢ 测温范围广,一般为-270℃~+2800℃; ➢ 直接输出电信号,无测量转换电路。 ➢ 适于远距离测量、自动记录、集中控制。 ➢ 缺点是存在冷端温度补偿问题。
➢当介质流动时,由于介质流动要带走热 量, Rt1所耗散的热量与被测介质的平均 流速成正比。因而Rt1温度下降,引起电阻 下降,电桥失去平衡,检流计有相应指示, 可用流量或流速标定。
突断型温度传感器
➢ 电热水壶接通电源加热 后,水温逐步上升到100度, 水开始沸腾,蒸汽冲击蒸 汽开关上面的双金属片, 由于热胀冷缩的作用,双 金属片膨胀变形,顶开开 关触点断开电源。 ➢ 如果蒸汽开关失效,壶 内的水会一直烧下去,直 到水被烧干,发热元件温 度急剧上升,位于发热盘 底部的有两个双金属片, 会因为热传导作用温度急 剧上升,膨胀变形,断开 电源。
温度传感器按不同的分类依据分类如下:
(1) 按传感器于被测介质的接触方式:接触式 和非接触式
(2)按物理现象分类 P44 表2-1
(3)按测温范围分类 P44 表2-2
(4)按测温特性分类 P44 表2-3
四.温度传感器的主要发展方向
超高温与超低温传感器 提高温度传感器的精度和可靠性 研制家用电器、汽车及农畜业所需要的价廉的
温度传感器 发展新型产品 发展适应特殊测温要求的温度传感器 发展数字化、集成化和自动化的温度传感器
2.2 热电阻温度传感器
作用:测量温度及与温度有关的参量。
把由金属导体铂、铜、镍等制成的测温元件称为
热
金属热电阻,可构成热电阻传感器。
电
阻
分 类
把由半导体材料制成的测温元件称为热敏电阻,可构
成热敏电阻传感器,它的灵敏度比前者高十倍以上 。
一、 热电阻的测温原理
热电阻效应:
物质的电阻率随温度变化而变化的物理现象。
热电阻温度传感器是利用物质的电阻率随温度变化而变化的特 性来进行温度测量的。
金属的电阻温度系数为正值,如图。
因为:在金属中,载流子为自由电子, 当温度升高时,每个自由电子的动能 将增加,因而在一定的电场作用下, 要使这些杂乱无章的电子作定向运动 就会遇到更大的阻力,导致金属电阻 值随温度的升高而增加 。
五、实验结果记录
室温 40 45
……
80
t(℃)
Vo(V)
……
Rt(Ω)
……
附表:Pt100 铂电阻分度表(t—Rt对应值) Cu50铜电阻分度表(t—Rt对应值)
休息一下
模块2 常用温度传感器
学习要点
热敏电阻温度传感器 集成温度传感器
一、热敏电阻传感器
1、定义
半导体热敏电阻简称热敏电阻,是一种新型的半导体测温元件,
热电阻的温度特性主要是指热电阻的阻值Rt与温度t 之间的关系,热电阻的电阻值与温度之间呈非线性关 系。
金属的电阻——温度特性曲线
热电阻测量电路作用:将由温度引起的阻值的变化转换成电压信号。
热电阻温度传感器的测温电路通常采用电桥把热电阻的阻 值的微小变化转化为电压的微小变化,再由差动放大器放 大成较大的电压信号输出,去带动指针式表头指示温度, 或经A/D转换后由数显表头显示温度,或由微处理器采集 温度。
2、热电阻的结构 电阻体的结构
➢电阻体由电阻丝和支架组 成。通常铂丝直径在0.03~ 0.07mm之间,可单层绕制, 电阻体可做得很小。
➢铜丝的直径较大,一般为
0.1mm的漆包铜线分层绕 在骨架上,并涂上绝缘漆而 成。
➢铜的机械强度较差,一般用双绕法: 先将铜丝对折,两根丝平行绕制,两 个端头处于支架的同一端。
冰箱压缩机启动
过电流保护
热敏电阻测温
高低温度范围自动控制电路
家用空调温度检测 智能电饭煲温度检测 其他家用电气产品的温度检测
二、 集成温度传感器
➢ 集成温度传感器则是将晶体管的b-e结作为温度敏感元件, 加上信号放大、调理电路、甚至A/D转换或U/f转换等电 路集成在一个芯片上制成的,按其输出信号的不同可分为:
热电阻测温系统一般由热电阻、连接导线和显示仪表等
组成,电路装在指示仪表、置于控制室中,热电阻装在金属
护套内置于现场被测介质中,由导线将两者连接起来。
热电阻两线测量桥路:热电阻的两 端各引出一根导线与指示仪表连接, 称为二线制接法,二线制接法仅适 用于热电阻与指示仪表距离较近、 连接导线较短或精度不高的场合。
AD590是AD公司利用PN结正向电流与温度的关系制成的电 流型集成温度传感器。
这种器件在被测温度一定时,相当于一个恒流源。 该器件具有良好的线性和互换性,测量精度高,并具有消除电 源波动的特性。即使电源在5~15V之间变化,其电流只是在 1μA以下作微小变化,一般用于高精度温度测量电路, 其封装形式有三种:
它是用电阻值随温度而显著变化的半导体电阻制成的。通常
采用重金属氧化物锰、钛、钴等材料,在高温下烧结混合而
成。
107
1
4
热 正温度系数热敏电阻(PTC)
敏
电 阻
负温度系数热敏电阻(NTC)
分
类 突变型(又称临界温度型,
3
2
0
100 200
英文缩写CTR) 表2-4
各种热敏电阻的特性曲线 1—突变型NTC 2—负温度NTC 3—线形型PTC 4—突变型PTC
热端温度高于冷端温度时,回路中产生的热电势大于零
冷热端温度相等时,回路中不产生热电势
热端温度低于冷端温度时,回路中产生的热电势小于零
2、接触电动势
由于两种不同导体的自由电子密度不同,在接触处会发生 自由电子的扩散形成的电动势 。
接触电动势的形成过程:
➢由于两导体自由电子密度不同而发 生电子扩散现象;