数学建模答案 (5)

合集下载

数学建模试卷及参考答案

数学建模试卷及参考答案

数学建模 试卷及参考答案一.概念题(共3小题,每小题5分,本大题共15分)1、一般情况下,建立数学模型要经过哪些步骤?(5分)答:数学建模的一般步骤包括:模型准备、模型假设、模型构成、模型求解、模型分析、模型检验、模型应用。

2、学习数学建模应注意培养哪几个能力?(5分)答:观察力、联想力、洞察力、计算机应用能力。

3、人工神经网络方法有什么特点?(5分)答:(1)可处理非线性;(2)并行结构.;(3)具有学习和记忆能力;(4)对数据的可容性大;(5)神经网络可以用大规模集成电路来实现。

二、模型求证题(共2小题,每小题10分,本大题共20分)1、 某人早8:00从山下旅店出发,沿一条路径上山,下午5:00到达山顶并留宿.次日早8:00沿同一路径下山,下午5:00回到旅店.证明:这人必在2天中同一时刻经过路途中某一地点(15分) 证明:记出发时刻为t=a,到达目的时刻为t=b,从旅店到山顶的路程为s.设某人上山路径的运动方程为f(t), 下山运动方程为g(t),t 是一天内时刻变量,则f(t),g(t)在[a,b]是连续函数。

作辅助函数F(t)=f(t)-g(t),它也是连续的,则由f(a)=0,f(b)>0和g(a)>0,g(b)=0,可知F (a )<0, F(b)>0,由介值定理知存在t0属于(a,b)使F(t0)=0, 即f(t0)=g(t0) 。

2、三名商人各带一个随从乘船过河,一只小船只能容纳二人,由他们自己划行,随从们秘约,在河的任一岸,一旦随从的人数比商人多,就杀人越货,但是如何乘船渡河的大权掌握在商人们手中,商人们怎样才能安全渡河呢?(15分)解:模型构成记第k 次渡河前此岸的商人数为k x ,随从数为k y ,k=1,2,........,k x ,k y =0,1,2,3。

将二维向量k s =(k x ,k y )定义为状态。

安全渡河条件下的状态集合称为允许状态集合,记做S 。

数学建模题目及答案

数学建模题目及答案

09级数模试题1. 把四只脚的连线呈长方形的椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然后稍微挪动几次,就可以使四只脚同时着地,放稳了。

试作合理的假设并建立数学模型说明这个现象。

(15分)解:对于此题,如果不用任何假设很难证明,结果很可能是否定的。

因此对这个问题我们假设 :(1)地面为连续曲面(2)长方形桌的四条腿长度相同(3)相对于地面的弯曲程度而言,方桌的腿是足够长的(4)方桌的腿只要有一点接触地面就算着地。

那么,总可以让桌子的三条腿是同时接触到地面。

现在,我们来证明:如果上述假设条件成立,那么答案是肯定的。

以长方桌的中心为坐标原点作直角坐标系如图所示,方桌的四条腿分别在A 、B 、C 、D 处,A 、B,C 、D的初始位置在与x 轴平行,再假设有一条在x 轴上的线ab,则ab 也与A 、B ,C 、D 平行。

当方桌绕中心0旋转时,对角线 ab 与x 轴的夹角记为θ。

容易看出,当四条腿尚未全部着地时,腿到地面的距离是不确定的。

为消除这一不确定性,令 ()f θ为A 、B 离地距离之和,()g θ为C 、D 离地距离之和,它们的值由θ唯一确定。

由假设(1),()f θ,()g θ均为θ的连续函数。

又由假设(3),三条腿总能同时着地, 故()f θ()g θ=0必成立(∀θ)。

不妨设(0)0f =,(0)0g >g (若(0)g 也为0,则初始时刻已四条腿着地,不必再旋转),于是问题归结为:已知()f θ,()g θ均为θ的连续函数,(0)0f =,(0)0g >且对任意θ有00()()0f g θθ=,求证存在某一0θ,使00()()0f g θθ=。

证明:当θ=π时,AB 与CD 互换位置,故()0f π>,()0g π=。

作()()()h f g θθθ=-,显然,()h θ也是θ的连续函数,(0)(0)(0)0h f g =-<而()()()0h f g πππ=->,由连续函数的取零值定理,存在0θ,00θπ<<,使得0()0h θ=,即00()()f g θθ=。

数学建模试题(带答案)

数学建模试题(带答案)

数学建模试题(带答案)第一章4.在1.3节“椅子能在不平的地面上放稳吗”的假设条件中,将四脚的连线呈正方形改为长方形,其余不变。

试构造模型并求解。

答:相邻两椅脚与地面距离之和分别定义为)()(a g a f 和。

f 和g 都是连续函数。

椅子在任何位置至少有三只脚着地,所以对于任意的a ,)()(a g a f 和中至少有一个不为零。

不妨设0)0(,0)0(g >=f 。

当椅子旋转90°后,对角线互换,0π/2)(,0)π/2(>=g f 。

这样,改变椅子的位置使四只脚同时着地。

就归结为证明如下的数学命题:已知a a g a f 是和)()(的连续函数,对任意0)π/2()0(,0)()(,===⋅f g a g a f a 且,0)π/2(,0)0(>>g f 。

证明存在0a ,使0)()(00==a g a f证:令0)π/2(0)0(),()()(<>-=h h a g a f a h 和则, 由g f 和的连续性知h 也是连续函数。

根据连续函数的基本性质,必存在0a (0<0a <π/2)使0)(0=a h ,即0)()(00==a g a f 因为0)()(00=•a g a f ,所以0)()(00==a g a f8第二章7.10.用已知尺寸的矩形板材加工半径一定的圆盘,给出几种简便有效的排列方法,使加工出尽可能多的圆盘。

第三章5.根据最优定价模型 考虑成本随着销售量的增加而减少,则设kx q x q -=0)( (1)k 是产量增加一个单位时成本的降低 ,销售量x 与价格p 呈线性关系0,,>-=b a bp a x (2) 收入等于销售量乘以价格p :px x f =)( (3) 利润)()()(x q x f x r -= (4) 将(1)(2)(3)代入(4)求出ka q kbp pa bp x r --++-=02)(当k q b a ,,,0给定后容易求出使利润达到最大的定价*p 为bakb ka q p 2220*+--=6.根据最优定价模型 px x f =)( x 是销售量 p 是价格,成本q 随着时间增长,ββ,0t q q +=为增长率,0q 为边际成本(单位成本)。

数学建模与数学实验课后习题答案

数学建模与数学实验课后习题答案

P594•学校共1002名学生,237人住在A 宿舍,333人住在B 宿舍,432 人住在C 宿舍。

学生要组织一个10人的委员会,使用Q 值法分配各 宿舍的委员数。

解:设P 表示人数,N 表示要分配的总席位数。

i 表示各个宿舍(分别取 A,B,C ), p i 表 示i 宿舍现有住宿人数, n i 表示i 宿舍分配到的委员席位。

首先,我们先按比例分配委员席位。

23710 A 宿舍为:n A ==2.365 1002 333"0 B 宿舍为:n B =3.323 1002 432X0 C 宿舍为:n C =4.3111002现已分完9人,剩1人用Q 值法分配。

经比较可得,最后一席位应分给 A 宿舍。

所以,总的席位分配应为: A 宿舍3个席位,B 宿舍3个席位,C 宿舍4个席位。

QA23722 3= 9361.5 Q B33323 4 = 9240.7 Q C4322 4 5=9331.2商人们怎样安全过河傻麴删舫紬削< I 11山名畝臥蹄峨颂禮训鋤嫌邂 韻靖甘讹岸讎鞍輯毗匍趾曲展 縣確牡GH 錚俩軸飙奸比臥鋪謎 smm 彌鯉械即第紘麵觎岸締熾 x^M 曲颁M 删牘HX …佛讪卜过樹蘇 卜允棘髒合 岡仇卅毘冋如;冋冋1卯;砰=口 於广歎煙船上觸人敦% V O J U;xMmm朗“…他1曲策D 咿川| thPl,2卜允隸策集合 刼為和啊母紳轉 多步贱 就匚叫=1入“山使曲并按 腿翻律由汩3』和騒側),模型求解 -穷举法〜编程上机 ■图解法S={(x ?jOI x=o, j-0,1,2,3;X =3? J =0,1,2,3; X =»*=1,2}J规格化方法,易于推广考虑4名商人各带一随从的情况状态$=(xy¥)~ 16个格点 允许状态〜U )个。

点 , 允许决策〜移动1或2格; k 奇)左下移;&偶,右上移. 右,…,必I 给出安全渡河方案评注和思考[廿rfn片,rfl12 3xmm賤縣臓由上题可求:4个商人,4个随从安全过河的方案。

数学建模教程课后答案

数学建模教程课后答案

表1-6
单 人 理论 位数 值
1 404 40.4 2 204 20.4 3 104 10.4 4 54 5.4 5 14 1.4 合 780 78

qi2

9
10-6
41 0.02
20 0.04
11 0.30
5 0.64
1 16.00
78 17.00
取 qi2 整 10 10-6 41 0.02 21 0.08 10 0.16 5 0.64 1 16.00 78 16.90
=1+x+xn=2fnxn-1+x2n=2fn-1xn-2 =1+x+x(F(x)-1)+x2F(x).
整理得 F(x)(1-x-x2)=1.
由此推出
F(x)
1

1 x
x
2
1 1 ( u v ) (1ux)(1 vx) u v 1ux 1 vx
1( u v ) 5 1ux 1 vx
n1=987/6-n2-n3=84-54=30. 答案:锐,直,钝角三角形个数分别是30,0
和54.
注:锐角构形有4个,其中一个为等边只乘3.
#1-9 证明n为偶数时有n3=3n1
解:前面已证明n=2k时有
n2 =n(n-2)/2;
nn31
=(n/2)(n/2-1)(n/2-2)=n(n-2)(n-4)/8; =Cn3-n2-n3
上面已推出:x1=3;xk+1=xk+4,对任意正整数 k成立.于是
xn=xn-1+4=xn-2+24=…=x1+4(n-1)=4(n-1)+3
#1-5⒜ 五商人五随从安全过河问题

数学建模作业题+答案

数学建模作业题+答案

数学建模MATLAB 语言及应用上机作业11. 在matlab 中建立一个矩阵135792468101234501234A ⎡⎤⎢⎥⎢⎥=⎢⎥-----⎢⎥⎣⎦答案:A = [1,3,5,7,9;2,4,6,8,10;-1,-2,-3,-4,-5;0,1,2,3,4]2. 试着利用matlab 求解出下列方程的解(线性代数22页例14)123412423412342583692254760x x x x x x x x x x x x x x +-+=⎧⎪--=⎪⎨-+=-⎪⎪+-+=⎩ 答案:A=[2 ,1,-5,1;1,-3,0,-6;0,2,-1,2;1,4,-7,6]; B=[8;9;-5;0]; X=A\B 或A=[2,1,-5,1;1,-3,0,-6;0,2,-1,2;1,4,-7,6] b=[8,9,-5,0]' X=inv(A)*b3. 生成一个5阶服从标准正态分布的随机方阵,并计算出其行列式的值,逆矩阵以及转置矩阵。

答案:A=randn(5) det(A) inv(A) A'4. 利用matlab 求解出110430002A -⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦的特征值和特征向量。

答案:A=[-1,1,0;-4,3,0;0,0,2] [V,D]=eig(A)5.画出衰减振荡曲线3sin3t y et -=在[0,4]π上的图像。

要求,画线颜色调整为黑色,画布底面为白色。

(在实际中,很多打印机时黑白的,因此大多数作图要考虑黑白打印机的效果。

) 给出恰当的x ,y 坐标轴标题,图像x 轴的最大值为4π。

6. 生成一个0-1分布的具有10个元素的随机向量,试着编写程序挑选出向量中大于0.5的元素。

数学建模和Matlab 上机作业2(2016-9-20)跟老师做(不用整合进作业中):上机演示讲解:函数,递归的两个例子的写法。

附:1. Fibonacci Sequence (斐波那契数列)在数学上,费波那西数列是以递归的方法来定义: F1= 1;F2= 1;F (n )=F (n-1)+F (n-2) 2. 阶乘举例:数学描述:n!=1×2×……×n ;计算机描述:n!=n*(n-1)!自己做(需要整合进作业中,提交到系统中):1. 写一个m 文件完成分值百分制到5分制的转换(即输入一个百分制,转换后输出一个5级对应的得分,联系条件控制语句)。

高二数学数学建模练习题及答案

高二数学数学建模练习题及答案

高二数学数学建模练习题及答案一、简答题1. 什么是数学建模?数学建模是将现实问题抽象为数学模型,通过数学方法进行分析、求解并得出相应结论的过程。

它将数学知识与实际问题相结合,帮助我们理解问题的本质,预测和优化相关情况。

2. 数学建模的步骤有哪些?数学建模通常包括以下步骤:(1)问题的理解和描述:明确问题的背景、目标和限制条件,并对问题进行适当的简化和抽象。

(2)建立数学模型:将问题转化为数学表达式,建立合适的数学模型。

(3)模型的求解:利用数学方法对模型进行求解,得到定量的结果或结论。

(4)模型的验证和分析:对模型的结果进行检验,分析结果的合理性和可靠性。

(5)结果的解释与应用:解释模型结果,为实际问题提供有效的解决方案,并给出具体的应用建议。

3. 数学建模的意义是什么?数学建模在许多领域都具有重要意义:(1)在科学研究中,数学建模可以帮助解决实际问题,推动科学发展。

(2)在工程技术中,数学建模可以优化设计,提高效率和质量。

(3)在经济管理中,数学建模可以帮助决策者制定合理的策略和政策。

(4)在社会科学中,数学建模可以辅助分析社会问题,提供决策依据。

(5)数学建模还培养了学生的创新思维和解决问题的能力。

4. 数学建模过程中需要的数学知识有哪些?数学建模需要的数学知识包括但不限于:(1)数学分析:微分方程、积分、极限等。

(2)线性代数:矩阵运算、特征值与特征向量等。

(3)概率与统计:概率分布、统计推断等。

(4)最优化理论:线性规划、非线性规划等。

(5)图论与网络优化:最短路径、最小生成树等。

二、应用题1. 盒子问题已知一长方体盒子的长为20cm,宽为15cm,高为10cm。

现在要将一个边长为2cm的小正方体放入该盒子中,问最多可以放多少个小正方体?解答:盒子的体积为20 cm × 15 cm × 10 cm = 3000 cm³。

小正方体的体积为2 cm × 2 cm × 2 cm = 8 cm³。

中南大学数学建模试卷及答案20套

中南大学数学建模试卷及答案20套
衡? 5. 设
U a, b, c, d , e 0.5 0.1 0.3 0.9 1 A a b c d e 0.4 0.2 0.6 0.6 0.7 B a b c d e
求 AB, A B


6.
请找出此无向带权图中顶点 A 到其余各顶点的最短路径。
第 6 页 共 55 页
7. 对于多元线形回归模型,证明:
e 0 ˆx ˆ e (a ˆ b (2) y
(1)
i
i i
1 1i
„ bk xki )ei 0
试题 3
一、填空题 1. 杜宾两步法用于修正( 2. )模型(Answer in English) 。 ) 。 ) 。
该工厂每生产一件产品Ⅰ可获利 2 元, 每生产一件产品Ⅱ可获利 3 元.问应如何安排计划 使该工厂获利最大?试建立数学模型. 4. 企业 1 的需求函数为 q1 ( p1 , p2 ) m p1 p2 ,企业 2 的需求函数为
q2 ( p1 , p2 ) m p2 p1 ,假设两个企业的生产成本为 0,求两个企业同时决策的纳什均
i 1 j 1 2 s.t. xi yi cij
m
n
为线性规划模型。


(i 1, 2, , m; j 1, 2,, m)
第 7 页 共 55 页
ˆx 是正确的。 ˆi a ˆ b 5. 表达形式 y i i ˆx 是正确的。 ˆ b 6. 表达形式 yi a i i ˆx e 是正确的。 ˆ b 7. 表达形式 yi a i i ˆx e 是正确的。 ˆi a ˆ b 8. 表达形式 y i i
min f ai 2 xi b j 2 y j ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、解释下列词语,并举例说明(每小题满分5分,共15分)1.模型模型是系统知识的抽象表示。

我们不能仅仅通过语言来描述一个系统,也不能仅仅通过记忆来记录关于系统的知识。

知识是通过某种媒介来表达的,这种媒介所表达的内容就是模型。

而知识形成媒介的过程就是建模,或者称为模型化。

通常模型可以使用多种不同的媒介来表达,比如纸质或电子文档、缩微模型/原型、音像制品等等。

而表达模型的体现方式也是多种多样的,常见的有图表、公式、原型、文字描述等等。

2.数学模型由数字、字母、或其他数学符号组成的,描述现实对象(原型)数量规律的数学结构。

具体地说,数学模型也可以描述为:对于现实世界的一个特定对象,为了一个特定的目的,根据特有的内在规律,做出一些简化假设后,运用适当的数学工具,得到的一个数学结构称之为数学模型.如概率的功利化定义。

3.抽象模型通过人们对原型的反复认识,将获取的知识以经验的形式直接存储在大脑中的模型称之谓思维模型。

从实际的人、物、事和概念中抽取所关心的共同特性,忽略非本质的细节把这些特性用各种概念精确地加以描述。

二、简答题(每小题满分8分,共24分)1.模型的分类按照模型替代原型的方式,模型可以简单分为形象模型和抽象模型两类.形象模型:直观模型、物理模型、分子结构模型等;抽象模型:思维模型、符号模型、数学模型等。

2.数学建模的基本步骤1)建模准备:确立建模课题的过程;2)建模假设:根据建模的目的对原型进行抽象、简化。

有目的性原则、简明性原则、真实性原则和全面性原则;3)构造模型:在建模假设的基础上,进一步分析建模假设的各条款,选择恰当的数学工具和构造模型的方法对其进行表征,构造出根据已知条件和数据,分析模型的特征和模型的结构特点,设计或选择求解模型的数学刻划实际问题的数学模型.;4)模型求解:构造数学模型之后,方法和算法,并借助计算机完成对模型的求解;5)模型分析:根据建模的目的要求,对模型求解的数字结果,或进行稳定性分析,或进行系统参数的灵敏度分析,或进行误差分析等。

;6)模型检验:模型分析符合要求之后,还必须回到客观实际中去对模型进行检验,看它是否符合客观实际;7)模型应用:模型应用是数学建模的宗旨,将其用于分析、研究和解决实际问题,充分发挥数学模型在生产和科研中的特殊作用.3.数学模型的作用数学模型的根本作用在于它将客观原型化繁为简、化难为易,便于人们采用定量的方法去分析和解决实际问题。

正因为如此,数学模型在科学发展、科学预见、科学预测、科学管理、科学决策、驾控市场经济乃至个人高效工作和生活等众多方面发挥着特殊的重要作用。

数学不仅是人们认识世界的有力工具,而且对于人的素质培养,无论是在自然科学,还是社会科学中都随时发生着作用,使其终生受益。

特别是,当代计算机科学的发展和广泛应用,使得数学模型的方法如虎添翼,加速了数学向各个学科的渗透,产生了众多的边缘学科。

数学模型还物化于各种高新科技之中,从家用电器到天气预报,从通信到广播电视,从核电站到卫星,从新材料到生物工程,高科技的高精度、高速度、高安全、高质量、高效率等特点无一不是通过数学模型和数学方法并借助计算机的计算、控制来实现的。

三、解答题(满分20分)B 题 (9n+1, 9n+6)国庆庆典活动的中心广场有数万名学生手持花环组成大型图案方阵,方阵前排距观礼台120米,方阵纵列95人,每列长度192米,试问第一、二两排间距多大能够达到满意的观礼效果?解:可以认为从观礼位置看到的纵列上每个花的部分是一样的。

设观礼者居高a 米,从观礼位置看到的纵列上每个花的部分高度为b 米。

依题意,每列从第一个人到最后一个人(第95人)有94个间空,列长192米,则每列相邻二人平均间距约2米。

为简单起见,不妨设位于192米长的队列中点前后的两人间隔是2米,则设第一、二排间距为 x 米,则于是, (米)四、综合题(21分)M. 飞机降落曲线(7n+3, 7n+5, 7n+6)在研究飞机的自动着陆系统时,技术人员需要分析飞机的降落曲线(图1). 根据经验,一架水平飞行的飞机,其降落曲线是一条五次多项式. 飞行的高度为h ,飞机着陆点O 为原点,且在这个降落过程中,飞机的水平速度始终保持为常数u . 出于安全考虑,飞机垂直加速度的最大绝对值不得超过10g,此处g 是重力加速度. 1.若飞机从距降落点水平距离s 处开始降落,试确定出飞机的降落曲线. 2. 求开始下降点s 所能允许的最小值.解: 设飞机开始降落时,距离落点的水平距离为l (km ),机高为h(m)(机场的地面高度取作0)。

飞机开始降落和着陆时,都保持水平飞行姿态。

1.可以用不同的函数来模拟飞机的降落曲线。

由于有4个隐藏的假定条件,因此我采用三次抛物线(方程假设如下)来模拟飞机的降落曲线,则由上面的初始假定,可以得到4个蕴涵的初始条件,如下:图1①:在整个降落过程中,飞机的水平速度保持不变;②:f(0)=0,f'(0)=0;③:f(l)=h,f'(l)=0;④:在竖直方向的加速度的绝对值不能超过一个常数K=g/10(K远小于重力加速度)。

2、假设飞机降落曲线的三次抛物线方程为:根据②③上述所得到的已知条件求出方程中的四个待定系数a,b,c,d,即在Mathmatica运行环境下输入如下公式:输入:f = a*x^3 + b*x^2 + c*x + dD[f, x]输出:即为f(x)即为f’(x)输入:运行后得到如下解:把上述解代入f(x),则运算后即可得到f(x)的表达式如下:f(x)=-xlh323+223xlh3、代入具体数据进行验证并画出飞机的降落曲线假定h=1100m,l= 15km,在Mathmatica运行环境下输入:运行后即可得到f(x)的图形如下:4.讨论飞机降落时的铅直加速度 先讨论飞机铅直加速度应满足的条件:由题意可知水平方向的速度u 为一个常数,则令u=dx/dt (常数),这时由复合函数求导法,可求出飞机在点(x ,y )处的铅直速度为:)('*x uf dt dxdx dy dx dy ==我们以][x v y 表示点(x ,y )处的铅直速度,即在Mathmatica 运行环境下输入:],[][x f D u x v y *=输出: )66(][322l hx l hx u x v y +=再次利用复合函数求导法,可求得飞机在点(x ,y )处的铅直加速度如下:()()*'22x uf dx ddt dy dt d dt y d =⎪⎭⎫ ⎝⎛=()()''x uf u dt dx =在上述运行环境下,输入如下公式用来表示点(x ,y )处的铅直加速度:]),66([*][322x l hx l hx u D u x a y += 输出:)126(][322l hxl h u x a y +=经过运行后则可得到铅直加速度为:u ()x l l hul hx l h 2612632322+=⎪⎭⎫ ⎝⎛+ 其中x ∈[-l ,0],容易看出铅直加速度的绝对值在开始降落(x=-l )和飞机着陆时(x=0)达到最大,我们在上述运行环境下输入:即可得到飞机降落竖直方向上铅直加速度的最大值为:必须不超过0.98m/s 2现在来判断上述所给的已知条件能否满足条件而安全着陆,则由高度h=1100m ,水平距离l=15m ,水平速度u=540km/h ,在Mathmatica 运行环境下输入如下:Solve[6*1100*540^2/15^2,x]运行后显示结果为:0.1296m/s 2由此可见该最大铅直加速度小于允许值,所以飞机可以安全着陆。

我们可得到飞机降落是的水平位移函数为: x=ut由此可知,只要求出飞机降落是所用的最小时间即可求出最小水平位移,则要求时间最少,即在竖直方向上飞机一直保持着最大铅直加速度,则可以得到解。

由上述解释可知,飞机在降落的过程中一直保持最大铅直加速度,此时时间最短, 已知h=1100 u=540m ,且铅直加速度不超过g/10,则输入:则经过运行后结果为:则由此可知,飞机能够安全着陆是水平距离所能允许的最小值为:44315.2m五、复述题(21分)Q .三级火箭发射卫星模型.(3n+1)摘 要发射人造卫星是一个复杂的系统工程,我们从中抽出几个问题,忽略一些次要因素将问题简化得到几个简单的数学模型。

首先通过天体物理学知识求解得到发人造卫星的在轨速度。

又通过动力守恒定律求解出火箭的飞行速度与其喷气推动力、火箭初始质量和飞行过程中的质量有关,进而分析得出提高火箭的飞行速度的简单措施。

226l hu问题一:由万有引力定律及牛顿第三定律推理得到r gRv =,当skm r 600=时,带入(5-1-3)式得:skm v 58.7=末问题二:由)(ln)(0t m m u t v =式得火箭的末速度有喷气速度及火箭在飞行中的质量决定,为了提高火箭的末速度可以通过提高喷气速度和减少火箭在飞行过程中的质量。

具体地说就是加大火箭推力,抛掉已经没用的结构,以此来加大火箭末速度。

问题三:由计算得到λln u v m -=,当s km u 3=,%10=λ时:skm v m 6.6=,由此得到结论:使用一级火箭不能发射人造卫星。

问题四:燃料用完时末速度为()P m m u v 0ln1λ-=问题五:理想过程的实际逼近——多级火箭卫星系统二级火箭:要使s km v /5.102=,则应使: 2.11≈k ,而:14921≈++P Pm m m m 即发射一吨重的卫星需要148吨重的火箭。

三级火箭:要使skm v /5.103=,则25.3≈k ,而()77321≈+++P P m m m m m 即发射一吨重的卫星需要76吨重的火箭,由此可见三级火箭比二级火箭几乎节省了一半。

四级火箭:⎪⎭⎫⎝⎛++=⎪⎭⎫ ⎝⎛++=11.01ln 1211.01ln 344k k k k v 要使s km v /5.104=,则()()92.1,45.211.01≈≈++k k k ,而()654321≈++++PP m m m m m m 。

即使用四级火箭发射1吨重的卫星需要64吨重的火箭,比三级火箭要省。

但是由于工艺的复杂性及每节火箭都需配备一个推进器,所以使用四级或四级以上火箭是不合算的,三级火箭提供了一个最好的方案。

当然若燃料的价钱很便宜而推进器的价钱很贵切且制作工艺非常复杂的话,也可选择二级火箭。

关键词:动量守恒定律 万有引力定律 牛顿第三定律一、 问题重述建立一个模型说明要用三级火箭发射人造卫星的道理。

1设卫星绕地球做匀速圆周运动,证明其速度为r gRv =,R 为地球半径,r为卫星与地心距离,g 为地球地面重力加速度。

相关文档
最新文档