微程序控制器实验报告
计算机组成原理实验报告3 微程序控制器实验

实验三微程序控制器实验一.实验目的与要求:实验目的:1.理解时序产生器的原理,了解时钟和时序信号的波形;2.掌握微程序控制器的功能,组成知识;3.掌握微指令格式和各字段功能;4.掌握微程序的编制,写入,观察微程序的运行,学习基本指令的执行流程。
实验要求:1.实验前,要求做好实验预习,并复习已经学过的控制信号的作用;2.按练习一要求完成测量波形的操作,画出TS1,TS2,TS3,TS4的波形,并测出所用的脉冲Ф周期。
按练习二的要求输入微指令的二进制代码表,并单步运行五条机器指令。
二.实验方案:按实验图在实验仪上接好线后,仔细检查无误后可接通电源。
1.练习一:用联机软件的逻辑示波器观测时序信号,测量Ф,TS1,TS2,TS3,TS4信号的方法如下:(1) TATE UNIT 中STOP开关置为“RUN”状态(向上拨),STEP开关置为“EXEC”状态(向上拨)。
(2) 将SWITCH UNIT 中右下角CLR开关置为“1”(向上拨)。
(3) 按动“START”按钮,即可产生连续脉冲。
(4)调试”菜单下的“显示逻辑示波器窗口,即可出现测量波形的画面。
(5)探头一端接实验仪左上角的CH1,另一端接STATE UNIT中的Ф插座,即可测出时钟Ф的波形。
(6)探头一端接实验仪左上角的CH2,另一端接STATE UNIT中的TS1插座,即可测出TS1的波形;(7)探头一端接实验仪左上角的CH1,另一端接STATE UNIT中的TS2插座,即可测出TS2的波形。
(8)将红色探头一端接实验仪左上角的CH1,另一端接STATE UNIT中的TS3插座,即可测出TS3的波形。
(9)将红色探头一端接实验仪左上角的CH1,另一端接STATE UNIT中的TS4插座,即可测出TS4的波形。
2.观察微程序控制器的工作原理:①关掉实验仪电源,拔掉前面测时序信号的接线;②编程写入E2PROM 2816A.将编程开关(MJ20)置为PROM(编程)状态;B.将实验板上STATE UNIT 中的STEP置为STEP状态,STOP置为RUN状态,SWITCH UNIT中CLR开关置为1状态;C.在右上角的SWITCH UNIT中UA5-UA0开关上置表中某个要写的微地址;D.在MK24-MK1开关上置表中要写的微地址后面的24位微代码,24位开关对应24位显示灯,开关置为1时灯亮,为0时灯灭;E.启动时序电路,即将微代码写入到E2PROM 2816的相应地址对应的单元中;F.重复C-E步骤,将表的每一行写入E2PROM 2816。
计算机组成原理-微程序控制器实验报告

计算机组成原理实验之微程序控制器实验一、实验目的1.掌握时序发生器的组成原理。
2.掌握微程序控制器的组成原理。
二、实验内容1.实验电路(1)时序发生器电路本实验所用的时序电路见图4.1。
电路由一个500KHz晶振、2片GAL22V10、一片74LS390组成,可产生两级等间隔时序信号T1-T4、W1-W3,其中一个W由一轮T1-T4组成,相当于一个微指令周期或硬连线控制器的一拍,而一轮W1-W3可以执行硬连线控制器的一条机器指令。
另外,供数字逻辑实验使用的时钟由MF经一片74LS390分频后产生。
图4.1 时序信号发生器(2)微程序控制器电路图4.2微程序控制器电路微地址转移逻辑表达式:A5=D5=μA5;A4=D4=C•P2+μA4;A3=D3=IR7•P1+μA3;A2=D2=IR6•P1+SWC•P0+μA2;A1=D1=IR5•P1+SWB•P0+μA1;A0=D0=IR4•P1+SWA•P0+μA0。
2.一些关键技术(1)微指令格式图4.3微指令格式(3)上述8条指令的微程序流程图如图4.4所示图4.4微程序流程图(4)微程序代码表表4-2微程序代码表微指令KT RRF WRF RRM WRM PR当前微地址00 0C 1E 06 07 0B 1D 0D 0E 0A 02 03 09 04 05 08 0F 下一微地址08 1E 06 07 1E 1D 0D 0E 1D 02 03 02 04 05 04 0F 10P0 1 . . . . . . . . . . . . . . . .P1 . . . . . . . . . . . . . . . . 1P2 . . . . . . . . . . . . . . . . .备用. . . . . . . . . . . . . . . . .TJ . 1 . . 1 1 . 1 1 . 1 . 1 . 1 . .LDIR . . . 1 . . . 1 . . . . . . . . 1PC+1 . . . . . . . . . . . . . . . . .LDPC# . 1 . . . 1 . . . . . . . . . 1AR+1 . . . . . . . . . . . 1 . . 1 . .LDAR# . 1 . . . 1 . . . 1 . . 1 . . . . LDDR1 . . . . . . . . . . . . . . . . . LDDR2 . . . . . . . . . . . . . . . . . LDRi . . . . . . . . 1 . . . . . . . .SW_BUS# . 1 1 . . 1 1 . 1 1 . . 1 1 . 1 . RS_BUS# . . . . 1 . . . . . . . . . . . . ALU_BUS# . . . . . . . . . . . . . . . . . RAM_BUS# . . . . . . . . . . 1 . . . . . . CER# . . . 1 . . . 1 . . . . . . . . 1 CEL# . . 1 . . . 1 . . . 1 . . 1 . . . LR/W# . . 0 . . . 0 . . . 1 . . 0 . . . Cn# . . . . . . . . . . . . . . . . .M . . . . . . . . . . . . . . . . .S0 . . . . . . . . . . . . . . . . .S1 . . . . . . . . . . . . . . . . .S2 . . . . . . . . . . . . . . . . .S3 . . . . . . . . . . . . . . . . .表4-2微程序代码表(续)微指令ADD SUB AND STA LDA JC STP OUT当前微地址10 18 11 19 12 1A 13 1B 14 1C 15 1F 16 17 下一微地址18 0F 19 0F 1A 0F 1B 0F 1C 0F 0F 0F 0F 0FP0 . . . . . . . . . . . . . .P1 . . . . . . . . . . . . . .P2 . . . . . . . . . . 1 . . .备用. . . . . . . . . . . . . .TJ . . . . . . . . . . . . 1 1LDIR . . . . . . . . . . . . . .PC+1 . 1 . 1 . 1 . 1 . 1 1 . 1 1LDPC# . . . . . . . . . . . 1 . .AR+1 . . . . . . . . . . . . . .LDAR# . . . . . 1 . 1 . . . . .LDDR1 1 . 1 . 1 . 1 . . . . . . .LDDR2 1 . 1 . 1 . . . . . . . . .LDRi . 1 . 1 . 1 . . . 1 . . . .SW_BUS# . . . . . . . . . . . . . .RS_BUS# . . . . . . 1 . 1 . . 1 . 1ALU_BUS# . 1 . 1 . 1 . 1 . . . . . .RAM_BUS# . . . . . . . . . 1 . . . .CER# . . . . . . . . . . . . . .CEL# . . . . . . . 1 . 1 . . . .LR/W# . . . . . . 0 . 1 . . . .Cn# . . . 1 . . . . . . . . . .M . 0 . 0 . 1 . 0 . . . . . .S0 . 1 . 0 . 1 . 0 . . . . . .S1 . 0 . 1 . 1 . 0 . . . . . .S2 . 0 . 1 . 0 . 0 . . . . . .S3 . 1 . 0 . 1 . 0 . . . . . .注:后缀为#的信号都是低电平有效信号,为了在控存ROM中用“1”表示有效,这些信号在控制器中经过反相后送往数据通路。
微程序控制器的组成与微程序设计实验报告

微程序控制器的组成与微程序设计实验报告1.实验目的了解微程序控制器的组成和工作原理,掌握微程序设计方法。
2.实验器材和仪器-计算机-开发板-逻辑门集成电路3.实验过程a.程序设计首先,需要设计微程序控制器所使用的指令集。
本实验选取了一个简单的指令集,包括加载寄存器、存储器和输入输出操作等指令。
b.微指令设计根据指令集的要求,设计相应的微指令。
每个微指令包含了控制信号的信息,用于控制计算机的不同部件。
c.微程序设计根据微指令的设计,设计相应的微程序。
微程序是一系列的微指令的有序序列,用于控制计算机的指令执行。
d.实验搭建根据设计好的微程序,搭建微程序控制器的电路,并将电路与开发板连接。
e.实验验证将编写好的程序加载到存储器中,并通过控制信号监测计算机的运行情况。
验证微程序控制器的设计是否正确。
4.实验结果与分析经过实验验证,微程序控制器能够正常工作,并且能够按照设计好的微程序执行指令集中的各项操作。
通过观察控制信号的变化,可以得出微程序控制器是否正常工作的结论。
5.实验结论本实验以设计一个简单的微程序控制器为目标,通过设计微指令和微程序,并搭建相应的电路,成功实现了微程序控制器的功能。
通过本实验,我对微程序控制器的组成和设计原理有了更深入的了解。
6.实验总结微程序控制器是计算机中的重要组成部分,通过控制信号的变化,实现了对指令执行的控制。
本实验通过设计微指令和微程序,搭建相应的电路,成功实现了微程序控制器的功能。
通过本实验,我不仅对微程序控制器有了更深入的理解,还提高了我对计算机原理的理解能力和动手实践能力。
微程序控制器原理实验报告

微程序控制器原理实验报告一、引言微程序控制器作为计算机系统的重要组成部分,扮演着指挥和控制计算机操作的关键角色。
本实验报告将对微程序控制器的原理进行探讨,并描述相关实验的设计、步骤、结果和分析。
二、微程序控制器的原理2.1 微程序控制器的概念微程序控制器是一种控制计算机操作的技术,通过将指令集中的每个指令分解为一系列微操作,并以微指令的形式存储在控制存储器中,从而实现指令的执行控制。
2.2 微指令的组成和格式微指令由多个字段组成,每个字段代表一个微操作控制信号。
常见的微指令格式包括微地址字段、条件码字段、操作码字段等。
2.3 微指令的执行过程微指令的执行过程包括指令的取指、译码、执行和写回等阶段。
每个阶段对应微指令的不同部分,通过控制信号的转换和传递,完成相应的操作。
三、微程序控制器的设计与实验3.1 设计思路在进行微程序控制器实验前,需要明确实验的目标和设计思路。
实验通常包括以下几个步骤:确定指令集、确定微指令格式、设计控制存储器、设计控制逻辑电路等。
3.2 实验步骤1.确定指令集:根据实验需求,确定需要支持的指令集。
2.确定微指令格式:根据指令集的要求,设计适合的微指令格式。
3.设计控制存储器:根据微指令格式,设计控制存储器的结构和内容。
4.设计控制逻辑电路:根据微指令的执行过程,设计控制逻辑电路,实现指令的控制和转换。
5.构建实验平台:将设计的控制存储器和控制逻辑电路构建成实验平台,并与计算机系统相连。
6.进行实验:在实验平台上执行指令,观察和记录实验结果。
3.3 实验结果与分析根据实验步骤中的设计和操作,得到了相应的实验结果。
通过比对实验结果和预期效果,可以对微程序控制器的设计和实验进行分析和评估。
四、总结与展望微程序控制器作为计算机系统的关键组成部分,通过微操作的方式实现指令的执行控制。
本实验报告对微程序控制器的原理进行了探讨,并描述了相关实验的设计、步骤、结果和分析。
通过实验,我们深入理解了微程序控制器的工作原理和设计方法。
实验四 微程序控制器实验

广东技术师范学院实验报告学院:计算机科学学院专业:班级:成绩:姓名:学号:组别:组员:实验地点:实验日期:指导教师签名:实验(四)项目名称:微过程控制器实验一、实验项目名称微过程控制器实验二、实验目的和要求(1)掌握时序发生器的组成原理。
(2)掌握微过程控制器的组成原理。
(3)掌握微程序的编制、写入,观察微程序的运行。
三、实验原理微过程控制器的基本任务是完成当前指令的翻译和执行,即将当前指令的功能转换成可以控制硬件逻辑部件工作的微指令序列,以完成数据传输和各种处理操作。
它的执行方法就是将控制各部件动作的微指令的集合进行编码,用数字代码的形式表示。
这样就可以用一个微指令序列表示一条机器指令,这种微指令序列称为微程序,微程序存储在控制存储器中。
实验所用的时序控制电路框图如图所示,可产生四个等间隔的时序信号TS1~TS4,其中Φ为时钟信号,由实验系统左上方的方波信号源提供,可产生频率及脉宽可调的方波信号;STEP(单步)是来自实验系统上方中部的一个二进制开关STEP的模拟信号;START键是来自实验系统上方左部的一个微动开关START的按键信号。
当STEP开关为0时(EXEC),一旦按下START启动键,时序信号TS1~TS4将周而复始地发送出去。
当STEP为1(STEP)时,一旦按下SATRT启动键,机器便处于单步运行状态,即此时只发送一个CPU周期的时序信号就停机了。
利用单步方式,每次只读一条微指令,可以观察微指令的代码与当前微指令的执行结果。
另外,当机器连续运行时,如果STEP开关置“1”,会使机器停机,CLR开关执行1→0→1操作可以使时序清零。
时序状态图如图4.5-7所示。
由于时序电路的内部电路已经连好,所以只需将时序电路与方波信号源预习情况操作情况考勤情况数据处理情况连接,即将时序电路的时钟脉冲输入端ф接至方波信号发生器输出端H23上,按动启动键START后,就可产生时序信号TS1~TS4。
计算机组成原理实验报告三微程序控制器实验

微程序控制器实验报告一、实验目的(1)掌握微程序控制器的功能、组成知识。
(2)掌握为程序的编制、写入、观察微程序的运行二、实验设备:PC机一台,TD-CM3+实验系统一套三、实验原理:微程序控制器的基本任务是完成当前指令的翻译和执行,即将当前指令的功能转换成可以控制的硬件逻辑部件的为命令序列,完成数据传送和个汇总处理操作,他的执行方法是将控制各部件的微命令的集合进行编码,即将微命令的集合仿照及其指令一眼,用数字代码的形式表示,这种表示陈伟微指令。
这样就可以用一个微指令序列表示一条机器指令,这种为指令序列称作为程序。
微程序存储在一种专用的存储器中,成为控制储存器四、实验步骤1.对为控制器进行读写操作:(1)手动读写:①按图连线:②将MC单元编程开关置为“编程”档,时序单元状态开关置为“单步”档,ADDR 单元状态开关置为“置数”档③使用ADDR单元的低六位SA5…SA0给出微地址MA5…MA0,微地址可以通过MC 单元的MA5…MA0微地址灯显示④CON单元SD27…SD20,SD17…SD10,SD07…SD00开关上置24位微代码,待写入值由MC单元的M23…M024位LED灯显示⑤启动时序电路(按动一次TS按钮),即将微代码写入到E2PROM2816的相应地址对应单元中⑥重复③④⑤三步,将下图微代码写入2816芯片中二进制代码表(2)联机读写:①将微程序写入文件,联机软件提供了微程序下载功能,以代替手动读写微控制器,但微程序得以指定的格式写入本次试验的微程序如下:://************************************************************// :// // :// 微控器实验指令文件 // :// // ://************************************************************// ://***************Start Of MicroController Data****************//$M 00 000001;NOP$M 01 007070;CON(INS)->IR,P<1>$M 04 002405;R0->A$M 05 04B201;R0->B$M 30 001404;A加B->RO$M 32 183001;IN->R0$M 33 280401;R0->OUT$M 35 000035;NOP;//***************End Of MicroController Data*******************// ②写入微程序用联机软件的“【转存】-【装载数据】”功能将改格式文件装载入试验系统。
微程序控制器实验报告

一、实验目的1、通过实验,进一步理解微程序控制器的组成结构。
理解微程序控制器的控制原理2、加深理解微程序控制器的工作原理。
掌握指令流程与功能3、理解掌握微程序控制器的设计思路与方法二、实验内容与步骤1、微程序控制器的组成原理控制存储器:实现整个指令系统的所有微程序,一般指令系统是规定的由高速半导体存储器构成,容量视机器指令系统而定,取决于微程序的个数,其长度就是微指令字的长度。
微指令寄存器:存放从控存读出的当前微指令。
微操作控制字段将操作控制信号送到控制信号线上,微地址字段指出下一条微地址的形成。
微地址寄存器:存放将要访问的下一条微指令地址地址转移逻辑:形成将要执行的微指令地址,形成方式:取指令公操作所对应的微程序一般从控存的0地址开始,所以微程序的人口地址0是由硬件控制的。
当出现分支时,通过判别测试字段、微地址字段、和执行部件的反馈信息形成后即微地址。
Cpu设计步骤:1.拟定指令系统2.确定总体结构(数据通路)3.安排时序4.拟定指令流程。
根据指令系统,写出对应所有机器指令的全部微操作机器节拍安排,然后列出操作时间表5.确定微指令的控制方式、下地址形成方式、微指令格式及微指令字长,编写全部的微指令的代码,最后将编写的微指令放入控制存储器中。
微程序控制器的设计步骤(1)设计微程序确定微程序流程图,也就是控制算法流程图。
(2)确定微指令格式微指令格式中的操作控制字段取决于执行部件的子系统需要多少微指令。
假定采用直接控制方式,执行部件需要10个微命令,则操作控制字段需要10位。
测试判别字段取决于微程序流程图中有多少处分支转移。
假定有3处分支,则测试判别字段需要3位。
下址字段取决于微程序流程图的规模。
假定微程序共用50条微指令,则下址字段至少需要6位。
这是因为ROM地址译码时,26=64,6位地址可容纳64条微指令。
(3)将微程序编译成二进制代码(4)微程序写入控制存储器(5)设计硬件电路三、实验现象--CPU 头文件cpu_defsLIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;PACKAGE cpu_defs IS --定义程序包,包头,包体TYPE opcode IS (load, store, add, sub, bne); --这个语句适合于定义一些用std_logic 等不方便定义的类型,综合器自动实现枚举类型元素的编码,一般将第一个枚举量(最左边)编码为0 CONSTANT word_w: NATURAL :=8;CONSTANT op_w: NATURAL :=3;CONSTANT rfill: STD_LOGIC_VECTOR(op_w-1 downto 0):=(others =>'0');--FUNCTIOn slv2op(slv:IN STD_LOGIC_VECTOR) RETURN opcode;FUNCTION op2slv(op:in opcode) RETURN STD_LOGIC_VECTOR;END PACKAGE cpu_defs;PACKAGE BODY cpu_defs ISTYPE optable IS ARRAY(opcode) OF STD_LOGIC_VECTOR(op_w-1 DOWNTO 0);--数组有5个元素,其他均0CONSTANT trans_table:optable :=("000", "001", "010", "011", "100");FUNCTION op2slv(op:IN opcode) RETURN STD_LOGIC_VECTOR ISBEGINRETURN trans_table(op);END FUNCTION op2slv;END PACKAGE BODY cpu_defs;--实验7-8 微程序控制器实验LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL,IEEE.NUMERIC_STD.ALL;USE WORK.CPU_DEFS.ALL;--使用自己定义的程序包ENTITY CPU ISPORT( clock : IN STD_LOGIC;--时钟reset : IN STD_LOGIC;--复位mode : IN STD_LOGIC_VECTOR(2 DOWNTO 0); --查看用mem_addr : INUNSIGNED(word_w-op_w-1 DOWNTO 0);--地址output : OUT STD_LOGIC_VECTOR(word_w-1 DOWNTO 0);data_r_out : OUT STD_LOGIC_VECTOR(19 DOWNTO 0);--微指令Rop_out : OUT STD_LOGIC_VECTOR(op_w-1 DOWNTO 0);--操作码add_r_out : OUT UNSIGNED(4 DOWNTO 0) --微地址R);END ENTITY;ARCHITECTURE rtl OF CPU ISTYPE mem_array IS ARRAY (0 TO 2**(word_w-op_w)-1) OF STD_LOGIC_VECTOR(word_w-1DOWNTO 0);--定义RAMSIGNAL mem : mem_array;CONSTANT prog : mem_array:=(0=> op2slv(load) & STD_LOGIC_VECTOR(TO_UNSIGNED(4,word_w-op_w)),1=> op2slv(add) & STD_LOGIC_VECTOR(TO_UNSIGNED(5,word_w-op_w)),2=> op2slv(store) & STD_LOGIC_VECTOR(TO_UNSIGNED(6,word_w-op_w)),3=> op2slv(bne) & STD_LOGIC_VECTOR(TO_UNSIGNED(7,word_w-op_w)), --TO_UNSIGNED转换函数将4转换为5位“00100”4=> STD_LOGIC_VECTOR(TO_UNSIGNED(2,word_w)),5=> STD_LOGIC_VECTOR(TO_UNSIGNED(3,word_w)),OTHERS => (OTHERS =>'0'));TYPE microcode_array IS ARRAY (0 TO 14) OF STD_LOGIC_VECTOR(19 DOWNTO 0); CONSTANT code : microcode_array:=(--控制存储器0=> "00010100010000000001",1=> "00000000000110000010",2=> "00001010000000000011",3=> "00000100001000001111",4=> "00100010000000000000",5=> "00000000000100000000",6=> "00000010100001000000",7=> "00000010100000100000",8=> "00000000000110000100",9=> "01000001000000000101",10=> "00000000000110000110",11=> "00000000000110000111",12=> "00000000000110010000",13=> "10000010000000000000",14=> "00000000000000000000");SIGNAL count : UNSIGNED(word_w-op_w-1 DOWNTO 0);SIGNAL op : STD_LOGIC_VECTOR(op_w-1 DOWNTO 0);SIGNAL z_flag : STD_LOGIC;SIGNAL mdr_out : STD_LOGIC_VECTOR(word_w-1 DOWNTO 0);SIGNAL mar_out : UNSIGNED(word_w-op_w-1 DOWNTO 0);SIGNAL IR_out : STD_LOGIC_VECTOR(word_w-1 DOWNTO 0);SIGNAL acc_out : UNSIGNED(word_w-1 DOWNTO 0);SIGNAL sysbus_out : STD_LOGIC_VECTOR(word_w-1 DOWNTO 0);EGINPROCESS(reset,clock)VARIABLE instr_reg : STD_LOGIC_VECTOR(word_w-1 DOWNTO 0);VARIABLE acc : UNSIGNED(word_w-1 DOWNTO 0);CONSTANT zero : UNSIGNED(word_w-1 DOWNTO 0):=(OTHERS =>'0')VARIABLE mdr : STD_LOGIC_VECTOR(word_w-1 DOWNTO 0);VARIABLE mar : UNSIGNED(word_w-op_w-1 DOWNTO 0);VARIABLE sysbus : STD_LOGIC_VECTOR(word_w-1 DOWNTO 0);VARIABLE microcode : microcode_array;VARIABLE add_r : UNSIGNED(4 DOWNTO 0);VARIABLE data_r : STD_LOGIC_VECTOR(19 DOWNTO 0);VARIABLE temp : STD_LOGIC_VECTOR(4 DOWNTO 0);BEGINIF reset='0' THENadd_r:=(OTHERS =>'0');count <= (OTHERS =>'0');instr_reg := (OTHERS =>'0');acc := (OTHERS =>'0');mdr := (OTHERS =>'0');mar := (OTHERS =>'0');z_flag <='0';mem <= prog;sysbus :=(OTHERS =>'0');ELSIF RISING_EDGE(clock) THEN--microprogram controllerdata_r := code(TO_INTEGER(add_r));IF data_r(4 DOWNTO 0)="01111" THEN --判断下地址temp:="01" & op(2 DOWNTO 0);add_r := UNSIGNED(temp);ELSIF data_r(4 DOWNTO 0)="10000" THENIF z_flag='1' THENadd_r:="01110";ELSEadd_r :="01101";END IF;ELSEadd_r := UNSIGNED(data_r(4 DOWNTO 0));END IF;data_r_out <=data_r;add_r_out <= add_r;--PCIF data_r(16)='1' THEN --PC_bus='1'sysbus := rfill & STD_LOGIC_VECTOR(count);END IF;IF data_r(19)='1' THEN --load_PC='1'count <= UNSIGNED(mdr(word_w-op_w-1 DOWNTO 0));ELSIF data_r(10)='1' THEN --INC_PC='1'count <= count+1;ELSEcount <= count;END IF;--IRIF data_r(15)='1' THEN --load_IRinstr_reg := mdr;END IF;IF data_r(9)='1' THEN --Addr_bus='1'sysbus := rfill & instr_reg(word_w-op_w-1 DOWNTO 0);END IF;op <= instr_reg(word_w-1 DOWNTO word_w-op_w);IR_out <= instr_reg;op_out <=op;--ALUIF data_r(17)='1' THEN --load_ACC='1'acc:=UNSIGNED(mdr);END IF;IF data_r(11)='1' THEN --ALU_ACC='1'IF data_r(6)='1' THEN --ALU_add='1'acc := acc + UNSIGNED(mdr);ELSIF data_r(5)='1' THEN --ALU_sub='1'acc := acc - UNSIGNED(mdr);END IF;END IF;IF data_r(18)='1' THEN --ACC_bus='1'sysbus := STD_LOGIC_VECTOR(acc);END IF;IF acc=zero THENz_flag <='1';ELSEz_flag <='0';END IF;acc_out<= acc;--RAMIF data_r(14)='1' THEN --load_MAR='1'mar := UNSIGNED(sysbus(word_w-op_w-1 DOWNTO 0));ELSIF data_r(12)='1' THEN --load_MDR='1'mdr := sysbus;ELSIF data_r(8)='1' THEN --CS='1'IF data_r(7)='1' THEN --R_NW='1'mdr := mem(TO_INTEGER(mar));ELSEmem(TO_INTEGER(mar))<=mdr;END IF;END IF;IF data_r(13)='1' THEN --MDR_bus='1'sysbus:=mdr;END IF;mdr_out <= mdr;mar_out <= mar;END IF;sysbus_out <=sysbus;END PROCESS;PROCESS(mode,mem_addr)BEGIN--mode=0 -> sysbus--mode=1 -> PC--mode=2 -> result of ALU--mode=3 -> IR--mode=4 -> MAR--mode=5 -> MDR--mode=6 -> memoutput <= (OTHERS =>'0');CASE mode isWHEN "000" =>output<=sysbus_out;WHEN "001" =>output(word_w-op_w-1 DOWNTO 0)<= STD_LOGIC_VECTOR(count);WHEN "010" =>output <= STD_LOGIC_VECTOR(acc_out);WHEN "011" =>output <= IR_out;WHEN "100" =>output(word_w-op_w-1 DOWNTO 0) <= STD_LOGIC_VECTOR(mar_out);WHEN "101" =>output <= mdr_out;WHEN "110" =>output <= mem(TO_INTEGER(mem_addr));WHEN others =>output <= (OTHERS =>'Z');END CASE;END PROCESS;END ARCHITECTURE;现象结果:四、实验体会原本对于控制器的设计还是一片空白,通过实验初步理解微程序控制器的组成结构。
微程序控制器实验报告

微程序控制器实验报告微程序控制器实验报告引言微程序控制器是一种常见的计算机控制器,它采用微程序的方式来实现指令的执行。
在本次实验中,我们将学习和探索微程序控制器的工作原理,并通过实验验证其功能和性能。
实验目的本次实验的主要目的是通过设计和实现一个简单的微程序控制器,来深入理解微程序控制器的工作原理和原理图设计。
实验过程1. 设计微指令集在设计微程序控制器之前,首先需要确定微指令集。
微指令集是由一系列微指令组成的,每个微指令对应一个控制信号,用于控制计算机的各个组件的操作。
在本次实验中,我们选择了常见的微指令集,包括存储器读写、算术逻辑运算、数据传输等指令。
2. 设计微指令控制存储器微指令控制存储器是微程序控制器的核心组件,用于存储微指令集。
在本次实验中,我们使用了静态随机存储器(SRAM)来实现微指令控制存储器。
通过将微指令集编码为二进制数,并将其存储在SRAM中的不同地址位置,实现对微指令的存储和读取。
3. 设计微指令解码器微指令解码器用于解析微指令,并产生相应的控制信号。
在本次实验中,我们使用了组合逻辑电路来实现微指令解码器。
通过将微指令的不同位与控制信号相连,实现对微指令的解码和控制信号的生成。
4. 设计微程序计数器微程序计数器用于控制微程序的执行顺序。
在本次实验中,我们使用了计数器和触发器来实现微程序计数器。
通过将微程序计数器的输出与微指令控制存储器的地址输入相连,实现对微指令的顺序读取。
实验结果通过实验,我们成功设计并实现了一个简单的微程序控制器。
在实验中,我们编写了微指令集,并将其存储在微指令控制存储器中。
通过微指令解码器和微程序计数器的协作,我们成功实现了对微指令的解码和执行。
实验结果表明,微程序控制器能够准确地控制计算机的各个组件的操作,并实现指令的执行。
实验总结通过本次实验,我们深入了解了微程序控制器的工作原理和原理图设计。
微程序控制器作为一种常见的计算机控制器,具有灵活性和可扩展性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算机科学与技术系
实验报告
专业名称计算机科学与技术
课程名称计算机组成与结构
项目名称微程序控制器实验
班级
学号
姓名
同组人员无
实验日期2015-11-11
一、实验目的
1.掌握微程序控制器的组成原理;
2.掌握微程序的编制、写入、观察微程序的运行情况。
二、实验逻辑原理图与分析
2.1 实验逻辑原理图及分析
微程序控制器的基本任务是完成当前指令的翻译和执行,即将当前指令的功能转换成可以控制硬件逻辑部件工作的微命令序列,以完成数据传输和各种处理操作。
它的执行方法就是将控制各部件动作的微命令的集合进行编码,即将微命令的集合仿照机器指令一样,用数字代码的形式表示,这种表示称为微指令。
这样就可以用一个微指令序列表示一条机器指令,这种微指令序列称为微程序。
微程序存储在一种专用的存储器中,该存储器称为控制存储器,如图所示:
微程序控制器组成原理框图
控制器是严格按照系统时序来工作的,因而时序控制对于控制器的设计是非常重要的,从前面的实验可以很清楚地了解时序电路的工作原理。
本实验所用的时序单元来提供,分为四拍TS1、TS2、TS3、TS4。
在微程序控制器的组成中,控制器采用3片2816的E^2PROM,具有掉电保护功能,微命令寄存器18位,用两片8D触发器(273)和一片4D(175)触发器组成。
为地址寄存器6位,用三篇正沿触发的双D触发器(74)组成,他们带有清“0”端和预置端。
在不判别测试的情况下,T2时刻打入微地址寄存器的内容即为吓一条微指令地址。
当T4时刻惊醒测试判别式,转移逻辑满足条件后输出的负脉冲通过强置端将某一触发器置为“1”状态,完成地址修改。
三、数据通路图及分析(画出数据通路图并作出分析)
本实验安排了四条机器指令,分别为ADD(00000000)、IN(00100000)、OUT(00110000)和HLT(01010000),括号中为各指令的二进制代码,指令格式如下:
助记符机器指令码说明
IN 00100000IN->RO
ADD 00000000RO+RO->RO
OUT 00110000RO->OUT
HLT0101 0000 停机
试验中机器指令由CON单元的二进制开关手动给出,其余单元的控制信号均由微程序控制器自动产生,为此可以设计出相应的数据通路图,如下图所示:
数据通路图
几条机器指令对应的参考微程序流程图如下图所示。
图中一个矩形方框表示一条微指令,方框中的内容为噶指令执行的微操作,右上角的数字是该条指令的为地址,右下角的数字是该条指令的后续微地址,所有为地址均用16进制表示。
向下的箭头之处了下一条要执行的指令。
P<1>为测试字,根据条件使微程序产生分支。
微程序流程图
将全部微程序按微指令格式变为二进制代码,可得到表中的二进制代码表:
地址十六进制高五位S3—S0 A字段B字段C字段MA5-MA0
00 00 00 01 00000 0000 000 000 000 000001
01 00 70 70 00000 0000 111 000 001 110000 04 00 24 05 00000 0000 010 010 000 000101
05 04 B2 01 00000 1001 011 001 000 000001 30 00 14 04 00000 0000 001 010 000 000100
32 18 30 01 00000 0000 011 000 000 000001
33 28 04 01 00000 0000 000 010 000 000001
35 00 00 35 00000 0000 000 000 000 110101
四、实验数据和结果分析
4.1 实验结果数据和结果数据分析如图所示
当前为指令的地址是00,下一条微指令地址是01
当前指令地址是01H,数据是007070H,通过数据的后6位知道下条指令地址为30,此条指令表示为CON->IR中,写入机器指令码
写入机器指令码到IR中,机器指令码为00100000,实现IN->R0。
当前指令地址是32H,下一地址是01H,实现了IN->R0
微指令实现R0->A,因为这条微指令已经实现,所以图中的当前指令地址为上一条指令的下一条地址,上一条微指令地址30H,当前微指令地址为04H
微指令实现R0->B,因为这条微指令已经实现,所以图中的当前指令地址为上一条指令的下一条地址,上一条微指令地址04H,当前微指令地址为05H
微指令实现A+B->R0,因为这条微指令已经实现,所以图中的当前指令地址为上一条指令的下一条地址,上一条微指令地址05H,当前微指令地址为01H
机器指令码为30H,R0->OUT,所以要跳到地址为30H
微指令实现R0->OUT,因为这条微指令已经实现,所以图中的当前指令地址为上一条指令的下一条地址,上一条微指令地址33H,当前微指令地址为01H
注:如果需要停机就输入01010000机器指令码
五、实验问题分析、思考题与小结
5.1实验问题分析
实验要完整无错误的进行,首先要确保实验接线图连线的正确性才能确保
在进行实验时数据通路流向以及数据的的正确性,这样才能到达实验的目的;在
进行实验过程中需要理解每一步骤的原因,也加强自己的理解性和掌握程度;实
验前要理解实验原理,以便于提高实验效果速率。
5.2思考题
⑴当前微指令的微地址是多少?
答:
⑵当前微指令的下地址是多少?
答:
⑶当前微指令有几个微命令有效?
答:
⑷当前微指令实现了什么数据通路?
答:
⑸当前微指令实现了什么功能?
答
⑹当前微指令是哪条机器指令的微程序?
答:
⑺当前微指令是哪条机器指令的微程序,该机器指令有几条微指令?
答:
5.3 小结
本次实验是微程序控制器,刚开始可能是真的不懂该实验要干什么,对一些知
识点很陌生,完全不知道怎么下手,后来通过老师和同学的帮助,慢慢知道了实
验的目的。
难怪别人都说计算机组成原理不懂的通过做实验也就明白了。
当然,
在学习实验之前,预习是一定要的,这样更能掌握实验的主要部分,以及操作流
程,也能让自己很快的上手,达到老师布置给我们的任务。
还有一次实验就要结
束了,希望自己能够做到更好。
得分(百分制)
实验报告分析评价
课程名称计算机组成与结构班级
实验名称微程序控制器实验时间2015-11-11。