圆周运动经典题型分类练习题
圆周运动典型分类习题

圆周运动典型例题一.根本概念1.质点做匀速圆周运动时,以下说法正确的选项是〔〕A.线速度越大,周期一定越小B.角速度越大,周期一定越小C.转速越大,周期一定越小D.圆周半径越小,周期一定越小2.关于匀速圆周运动的角速度与线速度,以下说法中正确的选项是〔〕A.半径一定,角速度与线速度成反比B.半径一定,角速度与线速度成正比C.线速度一定,角速度与半径成反比D.角速度一定,线速度与半径成正比3.以下关于圆周运动的说法正确的选项是〔〕A.做匀速圆周运动的物体,所受的合外力一定指向圆心B.做匀速圆周运动的物体,其加速度可能不指向圆心C.作圆周运动的物体,其加速度不一定指向圆心D.作圆周运动的物体,所受合外力一定与其速度方向垂直4.关于匀速圆周运动,以下说法正确的选项是〔〕A.匀速圆周运动就是匀速运动B.匀速圆周运动是匀加速运动C.匀速圆周运动是一种变加速运动D.匀速圆周运动的物体处于平衡状态E.物体在恒力作用下不可能做匀速圆周运动F.向心加速度越大,物体的角速度变化越快G.匀速圆周运动中向心加速度是一恒量5、关于向心力的说法正确的选项是〔〕A、物体受到向心力的作用才可能做匀速圆周运动B、向心力是指向圆心的力,是根据作用效果命名的C、向心力可以是物体受到的几个力的合力,也可以是某个实际的力或几个力的分力D、向心力的作用是改变物体速度的方向,不可能改变物体的速率6.以下关于向心加速度的说法中,正确的选项是〔〕A.向心加速度的方向始终与速度的方向垂直B.向心加速度的方向保持不变C.在匀速圆周运动中,向心加速度是恒定的D.在匀速圆周运动中,向心加速度的大小不断变化7.A、B两个质点,分别做匀速圆周运动,在一样的时间内它们通过的路程之比s A∶s B=2∶3,转过的角度之比ϕA∶ϕB=3∶2,那么以下说法正确的选项是〔〕A.它们的半径之比R A∶R B=2∶3 B.它们的半径之比R A∶R B=4∶9 C.它们的周期之比T A∶T B=2∶3 D.它们的周期之比T A∶T B=3∶2 8.在匀速圆周运动中,以下物理量不变的是〔〕A.向心加速度B.线速度C.向心力D.角速度9.以下关于匀速圆周运动的说法,正确的选项是〔〕A.它是变速运动 B.其加速度不变C.其角速度不变 D.周期越大,物体运动得越快关于转动方式3.如下图的皮带传动装置,主动轮O1上两轮的半径分别为3r和r,从动轮O2的半径为2r,A、B、C分别为轮缘上的三点,设皮带不打滑,求:⑴A、B、C三点的角速度之比ωA∶ωB∶ωC=⑵A、B、C三点的线速度大小之比v A∶v B∶v C=4.如下图为一皮带传动装置,右轮的半径为r,a是它边缘上的一点,左侧是一轮轴,大轮的半径是4r,小轮的半径是2r,b点在小轮上,到小轮中心的距离为r,c点和d 点分别位于小轮和大轮的边缘上,假设在传动过程中皮带不打滑,那么〔〕A、a点和b点的线速度大小相等B、a点和b点的角速度大小相等C、a点和c点的线速度大小相等D、a点和d点的向心加速度大小相等二水平面内的圆周运动abcrrr2r4d1、 如图2A-2所示,在匀速转动的圆筒内壁上紧靠着一个物体一起运动,那么物体所需向心力由以下哪个力提供 A .重力 B .弹力C .静摩擦力D .滑动摩擦力2、 如图2A-5所示,一圆盘可以绕一个通过圆盘中心且垂直于盘面的竖直轴转动,在圆盘上放置一木块,当圆盘匀速转动时,木块随圆盘一起运动,那么〔 〕A 、木块受到圆盘对它的摩擦力,方向背离圆盘中心B 、木块受到圆盘对它的摩擦力,方向指向圆盘中心C 、因为木块与圆盘一起做匀速转动,所以它们之间没有摩 擦力D 、因为摩擦力总是阻碍物体运动的,所以木块受到圆盘对它的摩擦力的方向与木块运动方向相反4.如下图,一个内壁光滑的圆锥筒的轴线垂直于水平面,圆锥筒固定不动,有两个质量一样的小球A 和小球B 紧贴圆锥筒内壁分别在水平面内做匀速圆周运动,那么以下说法中正确的选项是 A .A 球的线速度必定小于B 球的线速度 B .A 球的角速度必定大于B 球的角速度 C .A 球运动的周期必定大于B 球的周期 D .A 球对筒壁的压力必定大于B 球对筒壁的压力5.如下图,细绳一端系着质量m=0.1 kg 的小物块A ,置于光滑水平台面上;另一端通过光滑小孔O 与质量M=0.5 kg 的物体B 相连,B 静止于水平地面上.当A 以O 为圆心做半径r =0.2m 的匀速圆周运动时,地面对B 的支持力F N =3.0N ,求物块A 的速度和角速度的大小.(g=10m/s 2)图 5 图2A-5 A B 图2A-26 kg的物体A放在水平转盘上,A的重心到转盘中心O m,假设A与转盘间的最大静摩擦力为3 N,g=10 m/s2,求:对A摩擦力的大小与方向。
高考物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)含解析

高考物理生活中的圆周运动常有题型及答题技巧及练习题 ( 含答案 ) 含分析一、高中物理精讲专题测试生活中的圆周运动1. 如下图,水平转盘可绕竖直中心轴转动,盘上放着A 、B 两个物块,转盘中心 O 处固定一力传感器,它们之间用细线连结.已知m A m B 1kg两组线长均为 L 0.25m .细线能蒙受的最大拉力均为 F 8 N . A 与转盘间的动摩擦因数为m10.5 , B 与转盘间的动摩擦因数为20.1 ,且可以为最大静摩擦力等于滑动摩擦力,两物块和力传感器均视为质点,转盘静止时细线恰巧挺直,传感器的读数为零.当转盘以不一样的角速度勾速转动时,传感器上就会显示相应的读数F , g取 10 m/s 2 .求:(1 )当 AB 间细线的拉力为零时,物块 B 能随转盘做匀速转动的最大角速度;(2)跟着转盘角速度增添,OA 间细线恰巧产生张力时转盘的角速度;(3 )试经过计算写出传感器读数 F 随转盘角速度变化的函数关系式,并在图乙的坐标系中作出 F2图象.【答案】( 1)12rad / s ( 2) 2 2 2rad / s ( 3) m252rad / s 2【分析】关于 B ,由 B 与转盘表面间最大静摩擦力供给向心力,由向心力公式有:2 m B g 2m B 12L代入数据计算得出:12rad / s(2)跟着转盘角速度增添,OA 间细线中恰巧产生张力时,设AB 间细线产生的张力为T ,有:1 m A g T m A22 LT2m B g 2m B2 2L代入数据计算得出:22 2rad / s(3) ①当 22/ s 2时, F8rad②当28rad 2 / s 2 ,且 AB 细线未拉断时,有:F 1m A g Tm A2LT2m B g 2m B2LT 8N因此: F326 ; 8rad 2 / s 2218rad 2 / s 24③当 218 时,细线 AB 断了,此时 A 遇到的静摩擦力供给A 所需的向心力,则有:1 m A g m A w2L因此: 18rad 2 / s 2 220rad 2 / s 2 时, F当220 rad 2 / s 2时,有 F1m Agm A2LF8N因此: F 1 25 ; 20rad 2 / s2252rad 2 / s24若 FF m8N 时,角速度为:22/ s 2m 52rad做出 F2的图象如下图 ;点睛:本题是水平转盘的圆周运动问题,解决本题的重点正确地确立研究对象,搞清向心力的根源,联合临界条件,经过牛顿第二定律进行求解.2.水平面上有一竖直搁置长 H= 1.3m 的杆 PO,一长 L= 0.9m 的轻微绳两头系在杆上 P、 Q 两点,PQ 间距离为 d=0.3m,一质量为 m= 1.0kg 的小环套在绳上。
6.1 圆周运动 习题—2020-2021学年人教版(2019)高中物理必修第二册

一、圆周运动分题型练习同轴转动1.汽车后备箱盖一般都有可伸缩的液压杆,如图甲所示,图乙为简易侧视示意图,液压杆上端固定于后盖上A点,下端固定于箱内O′点,B也为后盖上一点,后盖可绕过O点的固定铰链转动,在合上后备箱的过程中()甲乙A.A点相对于O′点做圆周运动B.B点相对于O′点做圆周运动C.A与B相对于O点线速度大小相同D.A与B相对于O点角速度大小相同2.如图所示是一个玩具陀螺.a、b和c是陀螺外表面上的三个点.当陀螺绕垂直于地面的轴线以角速度ω稳定旋转时,下列表述正确的是()A.a、b和c三点的线速度大小相等B.a、b和c三点的角速度相等C.a、b的角速度比c的大D.c的线速度比a、b的大3.(多选)甲、乙两个做匀速圆周运动的质点,它们的角速度之比为3∶1,线速度之比为2∶3,那么下列说法中正确的是()A.它们的半径之比为2∶9B.B.它们的半径之比为1∶2C.它们的周期之比为2∶3D.D.它们的周期之比为1∶34.如图所示,两个小球固定在一根长为l的杆的两端,绕杆上的O点做圆周运动。
当小球A的速度为v A时,小球B的速度为v B,则轴心O到小球A的距离是()A.v A(v A+v B)l B.vAlvA+v BC.vA+v B lvAD.vA+v B lvB5.如图所示,一偏心轮绕垂直纸面的轴O匀速转动,a和b是轮边缘上的两个点,则偏心轮转动过程中a、b两点()A.角速度大小相同B.线速度大小相同C.周期大小不同D.转速大小不同6.如图所示,圆环以直径AB为轴匀速转动,已知其半径R=0.5 m,转动周期T=4 s,求环上P点和Q点的角速度和线速度总结:同轴转动的各点角速度、转速、周期相等,线速度与半径成正比。
传动装置7.(多选)-如图所示为某一皮带传动装置。
主动轮的半径为r1,从动轮的半径为r2.已知主动轮做顺时针转动,转速为n,转动过程中皮带不打滑.下列说法正确的是( )A.从动轮做顺时针转动B.从动轮做逆时针转动C.从动轮的转速为r 1 r 2 nD.从动轮的转速为r2r1n8.如图所示为锥形齿轮的传动示意图,大齿轮带动小齿轮转动,大、小齿轮的角速度大小分别为ω1、ω2,两齿轮边缘处的线速度大小分别为v1、v2,则() A.ω1<ω2,v1=v2B.ω1>ω2,v1=v2C.ω1=ω2,v1>v2D.ω1=ω2,v1<v29.(多选)变速自行车靠变换齿轮组合来改变行驶速度,如图是某一变速车齿轮转动结构示意图,图中A轮有48齿,B轮有42齿,C轮有18齿,D轮有12齿,则() A.该车可变换两种不同挡位B.该车可变换四种不同挡位C.当A轮与D轮组合时,两轮的角速度之比ωA∶ωD=1∶4D.当A轮与D轮组合时,两轮角速度之比ωA∶ωD=4∶110.在如图所示的传动装置中,B、C两轮固定在—起绕同—转轴转动。
高考物理生活中圆周运动常见题型及答题技巧及练习题(含答案)含解析

高考物理生活中的圆周运动常有题型及答题技巧及练习题( 含答案 ) 含分析一、高中物理精讲专题测试生活中的圆周运动1.有一水平搁置的圆盘,上边放一劲度系数为k 的弹簧,如下图,弹簧的一端固定于轴O 上,另一端系一质量为m 的物体 A,物体与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长度为l.设最大静摩擦力大小等于滑动摩擦力.求:(1)盘的转速ω多大时,物体 A 开始滑动?(2)当转速迟缓增大到 2 ω时, A 仍随圆盘做匀速圆周运动,弹簧的伸长量△x 是多少?【答案】( 1)g3mgl ( 2)4 mgl kl【分析】【剖析】(1)物体 A 随圆盘转动的过程中,若圆盘转速较小,由静摩擦力供给向心力;当圆盘转速较大时,弹力与摩擦力的协力供给向心力.物体 A 刚开始滑动时,弹簧的弹力为零,静摩擦力达到最大值,由静摩擦力供给向心力,依据牛顿第二定律求解角速度ω0 .(2)当角速度达到 2 ω0时,由弹力与摩擦力的协力供给向心力,由牛顿第二定律和胡克定律求解弹簧的伸长量△x.【详解】若圆盘转速较小,则静摩擦力供给向心力,当圆盘转速较大时,弹力与静摩擦力的协力供给向心力.(1)当圆盘转速为 n0时, A 马上开始滑动,此时它所受的最大静摩擦力供给向心力,则有:μmg= mlω02,解得:ω0=g .l即当ω0g时物体 A 开始滑动.=l(2)当圆盘转速达到 2 ω0时,物体遇到的最大静摩擦力已不足以供给向心力,需要弹簧的弹力来增补,即:μmg +k△x= mrω12,r=l+△x解得: Vx=3 mglkl 4 mg【点睛】当物体有关于接触物体刚要滑动时,静摩擦力达到最大,这是常常用到的临界条件.此题重点是剖析物体的受力状况.2.如下图,带有1 圆滑圆弧的小车A 的半径为R,静止在圆滑水平面上.滑块 C 置于4木板 B 的右端, A、 B、 C 的质量均为m, A、 B 底面厚度同样.现 B、 C 以同样的速度向右匀速运动, B 与 A 碰后即粘连在一同, C 恰巧能沿 A 的圆弧轨道滑到与圆心等高处.则: (已知重力加快度为g)(1)B、C 一同匀速运动的速度为多少?(2)滑块 C 返回到 A 的底端时AB 整体和 C 的速度为多少?【答案】(1)v023gR( 2)v12 3gR,v253gR 33【分析】此题考察动量守恒与机械能相联合的问题.(1)设 B、 C 的初速度为v , AB 相碰过程中动量守恒,设碰后AB 整体速度 u,由mv02mu ,解得 u v0 2C 滑到最高点的过程:mv02mu3mu1mv0212mu213mu 2mgR222解得v0 2 3gR(2)C从底端滑到顶端再从顶端滑究竟部的过程中,知足水平方向动量守恒、机械能守恒,有 mv02mu mv12mv21mv0212mu21mv1212mv222222解得:v123gR ,v253gR333.图示为一过山车的简略模型,它由水平轨道和在竖直平面内的圆滑圆形轨道构成,BC 分别是圆形轨道的最低点和最高点,其半径R=1m,一质量 m=1kg 的小物块(视为质点)从左側水平轨道上的 A 点以大小 v0= 12m/ s 的初速度出发,经过竖直平面的圆形轨道后,停在右边水平轨道上的 D 点.已知 A、B 两点间的距离 L1= 5. 75m,物块与水平轨道写的动摩擦因数0. 2,取 g= 10m/ s2,圆形轨道间不互相重叠,求:(1)物块经过 B 点时的速度大小 v B;(2)物块抵达 C 点时的速度大小 v C;(3) BD 两点之间的距离 L2,以及整个过程中因摩擦产生的总热量Q【答案】 (1) 11m / s (2) 9m / s(3) 72J【分析】【剖析】【详解】(1)物块从 A 到 B 运动过程中,依据动能定理得:mgL11mv B21mv0222解得: v B 11m / s(2)物块从 B 到 C 运动过程中,依据机械能守恒得:1mv B21mv C2mg·2R 22解得: v C 9m / s(3)物块从 B 到 D 运动过程中,依据动能定理得:mgL201mv B2 2解得: L2 30.25m对整个过程,由能量守恒定律有:Q1mv0202解得: Q=72J【点睛】选用研究过程,运用动能定理解题.动能定理的长处在于合用任何运动包含曲线运动.知道小滑块能经过圆形轨道的含义以及要使小滑块不可以离开轨道的含义.4.如下图,一个固定在竖直平面上的圆滑半圆形管道,管道里有一个直径略小于管道内径的小球,小球在管道内做圆周运动,从 B 点离开后做平抛运动,经过0.3s 后又恰巧与倾0R 1m ,小球可看作质点且其质量为角为45的斜面垂直相碰.已知半圆形管道的半径为m1kg ,g 10m / s2,求:(1)小球在斜面上的相碰点 C 与 B 点的水平距离;(2)小球经过管道上 B 点时对管道的压力大小和方向.【答案】( 1)0.9m;( 2)1N【分析】【剖析】(1)依据平抛运动时间求得在 C 点竖直分速度,而后由速度方向求得v,即可依据平抛运动水平方向为匀速运动求得水平距离;(2)对小球在 B 点应用牛顿第二定律求得支持力N B的大小和方向.【详解】(1)依据平抛运动的规律,小球在 C 点竖直方向的分速度v y=gt=10m/s水均分速度v x=v y tan450=10m/s则B 点与 C 点的水平距离为: x=v x t=10m(2)依据牛顿运动定律,在 B 点v2N B+mg=mR解得N B=50N依据牛顿第三定律得小球对轨道的作使劲大小N, =N B=50N方向竖直向上【点睛】该题考察竖直平面内的圆周运动与平抛运动,小球恰巧垂直与倾角为45°的斜面相遇到是解题的重点,要正确理解它的含义.要注意小球经过 B 点时,管道对小球的作使劲可能向上,也可能向下,也可能没有,要依据小球的速度来剖析.5.如下图,圆滑水平面 AB 与竖直面内的半圆形导轨在 B 点相接,导轨半径为 R.一个质量为 m 的物体将弹簧压缩至 A 点后由静止开释,在弹力作用下物体获取某一直右速度后离开弹簧,当它经过 B 点进入导轨瞬时对导轨的压力为其重力的7 倍,以后向上运动恰能达成半个圆周运动抵达 C 点.试求:(1)弹簧开始时的弹性势能.(2)物体从 B 点运动至 C 点战胜阻力做的功.(3)物体走开 C 点后落回水平面时的速度大小.【答案】 (1)3mgR (2)0.5mgR (3) 5 mgR2【分析】试题剖析:( 1)物块抵达 B 点瞬时,依据向心力公式有:解得:弹簧对物块的弹力做的功等于物块获取的动能,因此有(2)物块恰能抵达 C 点,重力供给向心力,依据向心力公式有:因此:物块从 B 运动到 C,依据动能定理有:解得:(3)从 C点落回水平面,机械能守恒,则:考点:此题考察向心力,动能定理,机械能守恒定律评论:此题学生会剖析物块在 B 点的向心力,能娴熟运用动能定理,机械能守恒定律解有关问题.6.如图为某种鱼饵自动投放器中的投饵管装置表示图,其下半部AB 是一长为2R 的竖直细管,上半部BC 是半径为R 的四分之一圆弧弯管,管口沿水平方向,AB 管内有一原长为R、下端固定的轻质弹簧.投饵时,每次总将弹簧长度压缩到0.5R后锁定,在弹簧上段放置一粒鱼饵,排除锁定,弹簧可将鱼饵弹射出去.设质量为m 的鱼饵抵达管口 C 时,对管壁的作使劲恰巧为零.不计鱼饵在运动过程中的机械能损失,且锁定和排除锁准时,均不改变弹簧的弹性势能.已知重力加快度为g.求:(1)质量为 m 的鱼饵抵达管口 C 时的速度大小v1;(2)弹簧压缩到0.5R 时的弹性势能E p;(3)已知地面欲睡面相距 1.5R,若使该投饵管绕AB 管的中轴线OO 。
圆周运动经典练习(有答案详解)

《圆周运动》练习题(一)1. A. 线速度不变2. A 和B A. 球A B. 球A C. 球A D. 球A3. 演,如图5A. B. C. D.4.A. B. C. D.5.如图1个质量为应为( )6.(M>m 连在一起。
A.mLgm M )(-μC.MLgm M )(+μ7. 如图3A. A 、B C. 若︒=30θ,则8. A. 木块A B. 木块A C. 木块A D. 木块A9. 如图5所示,质量为m 的小球在竖直平面内的光滑圆轨道上做圆周运动。
圆半径为R ,小球经过A. B.C. D.10. 一辆质量为4t 车对桥面压力的0.0511.和60°,则A 、B12.如图所示,a 、b B r OC =(1)B C ωω:13. 转动时求杆OA 和AB14. 司机开着汽车在一宽阔的马路上匀速行驶突然发现前方有一堵墙,他是刹车好还是转弯好?(设转弯时汽车做匀速圆周运动,最大静摩擦力与滑动摩擦力相等。
)(1(21.解析:2. 解析:图4B A 比较线速度时,选用rv m F 2=分析得r 大,v 一定大,A 答案正确。
比较角速度时,选用r m F 2ω=分析得r 大,ω一定小,B 答案正确。
比较周期时,选用r Tm F 2)2(π=分析得r 大,T 一定大,C 答案不正确。
小球A 和B 受到的支持力N F 都等于αsin mg,D 答案不正确。
点评:①“向心力始终指向圆心”可以帮助我们合理处理物体的受力;② 根据问题讨论需要,解题时要合理选择向心力公式。
3. 解析:甲、乙两人做圆周运动的角速度相同,向心力大小都是弹簧的弹力,则有乙乙甲甲r M r M 22ωω=即乙乙甲甲r M r M =且m r r 9.0=+乙甲,kg M 80=甲,kg M 40=乙解得m r 3.0=甲,m r 6.0=乙由于甲甲r M F 2ω=所以)/(62.03.0802.9s rad r M F =⨯==甲甲ω而r v ω=,r 不同,v 不同。
高考物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)

高考物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)一、高中物理精讲专题测试生活中的圆周运动1.如图,在竖直平面内,一半径为R 的光滑圆弧轨道ABC 和水平轨道PA 在A 点相切.BC 为圆弧轨道的直径.O 为圆心,OA 和OB 之间的夹角为α,sinα=35,一质量为m 的小球沿水平轨道向右运动,经A 点沿圆弧轨道通过C 点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用,已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g .求:(1)水平恒力的大小和小球到达C 点时速度的大小; (2)小球到达A 点时动量的大小; (3)小球从C 点落至水平轨道所用的时间. 【答案】(15gR(223m gR (3355R g 【解析】试题分析 本题考查小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动及其相关的知识点,意在考查考生灵活运用相关知识解决问题的的能力.解析(1)设水平恒力的大小为F 0,小球到达C 点时所受合力的大小为F .由力的合成法则有tan F mgα=① 2220()F mg F =+②设小球到达C 点时的速度大小为v ,由牛顿第二定律得2v F m R=③由①②③式和题给数据得034F mg =④5gRv =(2)设小球到达A 点的速度大小为1v ,作CD PA ⊥,交PA 于D 点,由几何关系得 sin DA R α=⑥(1cos CD R α=+)⑦由动能定理有22011122mg CD F DA mv mv -⋅-⋅=-⑧由④⑤⑥⑦⑧式和题给数据得,小球在A 点的动量大小为 1232m gR p mv ==⑨ (3)小球离开C 点后在竖直方向上做初速度不为零的匀加速运动,加速度大小为g .设小球在竖直方向的初速度为v ⊥,从C 点落至水平轨道上所用时间为t .由运动学公式有212v t gt CD ⊥+=⑩ sin v v α⊥=由⑤⑦⑩式和题给数据得355R t g=点睛 小球在竖直面内的圆周运动是常见经典模型,此题将小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动有机结合,经典创新.2.已知某半径与地球相等的星球的第一宇宙速度是地球的12倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加速度?(2)细线刚被拉断时,小球抛出的速度多大? (3)细线所能承受的最大拉力?【答案】(1)01=4g g 星 (2)0024g sv H L=-201[1]42()s T mg H L L =+- 【解析】 【分析】 【详解】(1)由万有引力等于向心力可知22Mm v G m R R =2MmGmg R= 可得2v g R=则014g g 星=(2)由平抛运动的规律:212H L g t -=星 0s v t =解得0024g s v H L=- (3)由牛顿定律,在最低点时:2v T mg m L-星=解得:201142()s T mg H L L ⎡⎤=+⎢⎥-⎣⎦【点睛】本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g 0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键.3.如图所示,在竖直平面内有一绝缘“⊂”型杆放在水平向右的匀强电场中,其中AB 、CD 水平且足够长,光滑半圆半径为R ,质量为m 、电量为+q 的带电小球穿在杆上,从距B 点x=5.75R 处以某初速v 0开始向左运动.已知小球运动中电量不变,小球与AB 、CD 间动摩擦因数分别为μ1=0.25、μ2=0.80,电场力Eq=3mg/4,重力加速度为g ,sin37°=0.6,cos37°=0.8.求:(1)若小球初速度v 0gR B 点时受到的支持力为多大; (2)小球初速度v 0满足什么条件可以运动过C 点;(3)若小球初速度gR x=4R ,则小球在杆上静止时通过的路程为多大.【答案】(1)5.5mg (2)04v gR >(3)()44R π+ 【解析】 【分析】 【详解】(1)加速到B 点:221011-22mgx qEx mv mv μ-=- 在B 点:2v N mg m R-=解得N=5.5mg(2)在物理最高点F :tan qE mgα=解得α=370;过F 点的临界条件:v F =0从开始到F 点:2101-(sin )(cos )02mgx qE x R mg R R mv μαα-+-+=- 解得04v gR =可见要过C 点的条件为:04v gR >(3)由于x=4R<5.75R ,从开始到F 点克服摩擦力、克服电场力做功均小于(2)问,到F 点时速度不为零,假设过C 点后前进x 1速度变为零,在CD 杆上由于电场力小于摩擦力,小球速度减为零后不会返回,则:2121101--(-)202mgx mgx qE x x mg R mv μμ--⋅=-1s x R x π=++解得:(44)s R π=+4.如图所示,水平转盘可绕竖直中心轴转动,盘上放着A 、B 两个物块,转盘中心O 处固定一力传感器,它们之间用细线连接.已知1kg A B m m ==两组线长均为0.25m L =.细线能承受的最大拉力均为8m F N =.A 与转盘间的动摩擦因数为10.5μ=,B 与转盘间的动摩擦因数为20.1μ=,且可认为最大静摩擦力等于滑动摩擦力,两物块和力传感器均视为质点,转盘静止时细线刚好伸直,传感器的读数为零.当转盘以不同的角速度勾速转动时,传感器上就会显示相应的读数F ,g 取210m/s .求:(1)当AB 间细线的拉力为零时,物块B 能随转盘做匀速转动的最大角速度; (2)随着转盘角速度增加,OA 间细线刚好产生张力时转盘的角速度;(3)试通过计算写出传感器读数F 随转盘角速度ω变化的函数关系式,并在图乙的坐标系中作出2F ω-图象.【答案】(1)12/rad s ω= (2)222/rad s ω= (3)2252/m rad s ω=【解析】对于B ,由B 与转盘表面间最大静摩擦力提供向心力,由向心力公式有:2212B B m g m L μω=代入数据计算得出:12/rad s ω=(2)随着转盘角速度增加,OA 间细线中刚好产生张力时,设AB 间细线产生的张力为T ,有:212A A m g T m L μω-=2222B B T m g m L μω+=代入数据计算得出:222/rad s ω= (3)①当2228/rad s ω≤时,0F =②当2228/rad s ω≥,且AB 细线未拉断时,有:21A A F m g T m L μω+-=222B B T m g m L μω+=8T N ≤所以:2364F ω=-;222228/18/rad s rad s ω≤≤ ③当218ω>时,细线AB 断了,此时A 受到的静摩擦力提供A 所需的向心力,则有:21A A m g m w L μ≥所以:2222218/20/rad s rad s ω<≤时,0F =当22220/rad s ω>时,有21A A F m g m L μω+=8F N ≤所以:2154F ω=-;2222220/52/rad s rad s ω<≤ 若8m F F N ==时,角速度为:22252/m rad s ω=做出2F ω-的图象如图所示;点睛:此题是水平转盘的圆周运动问题,解决本题的关键正确地确定研究对象,搞清向心力的来源,结合临界条件,通过牛顿第二定律进行求解.5.水平面上有一竖直放置长H =1.3m 的杆PO ,一长L =0.9m 的轻细绳两端系在杆上P 、Q 两点,PQ 间距离为d =0.3m ,一质量为m =1.0kg 的小环套在绳上。
高中物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)

高中物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试生活中的圆周运动1.如图,光滑轨道abcd 固定在竖直平面内,ab 水平,bcd 为半圆,在b 处与ab 相切.在直轨道ab 上放着质量分别为m A =2kg 、m B =1kg 的物块A 、B (均可视为质点),用轻质细绳将A 、B 连接在一起,且A 、B 间夹着一根被压缩的轻质弹簧(未被拴接),其弹性势能E p =12J .轨道左侧的光滑水平地面上停着一质量M =2kg 、长L =0.5m 的小车,小车上表面与ab 等高.现将细绳剪断,之后A 向左滑上小车,B 向右滑动且恰好能冲到圆弧轨道的最高点d 处.已知A 与小车之间的动摩擦因数µ满足0.1≤µ≤0.3,g 取10m /s 2,求(1)A 、B 离开弹簧瞬间的速率v A 、v B ;(2)圆弧轨道的半径R ;(3)A 在小车上滑动过程中产生的热量Q (计算结果可含有µ).【答案】(1)4m/s (2)0.32m(3) 当满足0.1≤μ<0.2时,Q 1=10μ ;当满足0.2≤μ≤0.3时,22111()22A A m v m M v -+ 【解析】【分析】 (1)弹簧恢复到自然长度时,根据动量守恒定律和能量守恒定律求解两物体的速度; (2)根据能量守恒定律和牛顿第二定律结合求解圆弧轨道的半径R ;(3)根据动量守恒定律和能量关系求解恰好能共速的临界摩擦力因数的值,然后讨论求解热量Q.【详解】(1)设弹簧恢复到自然长度时A 、B 的速度分别为v A 、v B , 由动量守恒定律:0=A A B B m v m v - 由能量关系:2211=22P A A B B E m v m v - 解得v A =2m/s ;v B =4m/s(2)设B 经过d 点时速度为v d ,在d 点:2d B B v m g m R= 由机械能守恒定律:22d 11=222B B B B m v m v m g R +⋅ 解得R=0.32m (3)设μ=μ1时A 恰好能滑到小车左端,其共同速度为v,由动量守恒定律:=()A A A m v m M v +由能量关系:()2211122A A A A m gL m v m M v μ=-+ 解得μ1=0.2讨论:(ⅰ)当满足0.1≤μ<0.2时,A 和小车不共速,A 将从小车左端滑落,产生的热量为110A Q m gL μμ== (J )(ⅱ)当满足0.2≤μ≤0.3时,A 和小车能共速,产生的热量为()22111122A A Q m v m M v =-+,解得Q 2=2J2.如图所示,ABCD 是一个地面和轨道均光滑的过山车轨道模型,现对静止在A 处的滑块施加一个水平向右的推力F ,使它从A 点开始做匀加速直线运动,当它水平滑行2.5 m 时到达B 点,此时撤去推力F 、滑块滑入半径为0.5 m 且内壁光滑的竖直固定圆轨道,并恰好通过最高点C ,当滑块滑过水平BD 部分后,又滑上静止在D 处,且与ABD 等高的长木板上,已知滑块与长木板的质量分别为0.2 kg 、0.1 kg ,滑块与长木板、长木板与水平地面间的动摩擦因数分别为0.3、,它们之间的最大静摩擦力均等于各自滑动摩擦力,取g =10 m/s 2,求:(1)水平推力F 的大小;(2)滑块到达D 点的速度大小;(3)木板至少为多长时,滑块才能不从木板上掉下来?在该情况下,木板在水平地面上最终滑行的总位移为多少?【答案】(1)1N (2)(3)t =1 s ; 【解析】【分析】【详解】(1)由于滑块恰好过C 点,则有:m 1g =m 1从A 到C 由动能定理得:Fx -m 1g ·2R =m 1v C 2-0代入数据联立解得:F =1 N(2)从A 到D 由动能定理得:Fx =m 1v D 2代入数据解得:v D =5 m/s(3)滑块滑到木板上时,对滑块:μ1m1g=m1a1,解得:a1=μ1g=3 m/s2对木板有:μ1m1g-μ2(m1+m2)g=m2a2,代入数据解得:a2=2 m/s2滑块恰好不从木板上滑下,此时滑块滑到木板的右端时恰好与木板速度相同,有:v共=v D-a1tv共=a2t,代入数据解得:t=1 s此时滑块的位移为:x1=v D t-a1t2,木板的位移为:x2=a2t2,L=x1-x2,代入数据解得:L=2.5 mv共=2 m/sx2=1 m达到共同速度后木板又滑行x′,则有:v共2=2μ2gx′,代入数据解得:x′=1.5 m木板在水平地面上最终滑行的总位移为:x木=x2+x′=2.5 m点睛:本题考查了动能定理和牛顿第二定律、运动学公式的综合运用,解决本题的关键理清滑块和木板在整个过程中的运动规律,选择合适的规律进行求解.3.如图所示,P为弹射器,PA、BC为光滑水平面分别与传送带AB水平相连,CD为光滑半圆轨道,其半径R=2m,传送带AB长为L=6m,并沿逆时针方向匀速转动.现有一质量m=1kg的物体(可视为质点)由弹射器P弹出后滑向传送带经BC紧贴圆弧面到达D点,已知弹射器的弹性势能全部转化为物体的动能,物体与传送带的动摩擦因数为 =0.2.取g=10m/s2,现要使物体刚好能经过D点,求:(1)物体到达D点速度大小;(2)则弹射器初始时具有的弹性势能至少为多少.【答案】(1)25m/s ;(2)62J【解析】【分析】【详解】(1)由题知,物体刚好能经过D 点,则有:2D v mg m R= 解得:25D v gR ==m/s(2)物体从弹射到D 点,由动能定理得:21202D W mgL mgR mv μ--=- p WE =解得:p E =62J4.如图所示,一滑板放置在光滑的水平地面上,右侧紧贴竖直墙壁,滑板由圆心为O 、半径为R 的四分之一光滑圆弧轨道和水平轨道两部分组成,且两轨道在B 点平滑连接,整个系统处于同一竖直平面内.现有一可视为质点的小物块从A 点正上方P 点处由静止释放,落到A 点的瞬间垂直于轨道方向的分速度立即变为零,之后沿圆弧轨道AB 继续下滑,最终小物块恰好滑至轨道末端C 点处.已知滑板的质量是小物块质量的3倍,小物块滑至B 点时对轨道的压力为其重力的3倍,OA 与竖直方向的夹角为θ=60°,小物块与水平轨道间的动摩擦因数为μ=0.3,重力加速度g 取102/m s ,不考虑空气阻力作用,求:(1)水平轨道BC 的长度L ;(2)P 点到A 点的距离h .【答案】(1)2.5R (2)23R 【解析】【分析】(1)物块从A 到B 的过程中滑板静止不动,先根据物块在B 点的受力情况求解B 点的速度;滑块向左滑动时,滑板向左也滑动,根据动量守恒和能量关系列式可求解水平部分的长度;(2)从P 到A 列出能量关系;在A 点沿轨道切向方向和垂直轨道方向分解速度;根据机械能守恒列出从A 到B 的方程;联立求解h .【详解】(1)在B 点时,由牛顿第二定律:2B B v N mg m R -=,其中N B =3mg ; 解得2B v gR =;从B 点向C 点滑动的过程中,系统的动量守恒,则(3)B mv m m v =+;由能量关系可知:2211(3)22B mgL mv m m v μ=-+ 联立解得:L=2.5R ;(2)从P 到A 点,由机械能守恒:mgh=12mv A 2; 在A 点:01sin 60A A v v =, 从A 点到B 点:202111(1cos60)22A B mv mgR mv +-= 联立解得h=23R5.如图所示,A 、B 两球质量均为m ,用一长为l 的轻绳相连,A 球中间有孔套在光滑的足够长的水平横杆上,两球处于静止状态.现给B 球水平向右的初速度v 0,经一段时间后B 球第一次到达最高点,此时小球位于水平横杆下方l /2处.(忽略轻绳形变)求:(1)B 球刚开始运动时,绳子对小球B 的拉力大小T ;(2)B 球第一次到达最高点时,A 球的速度大小v 1;(3)从开始到B 球第一次到达最高点的过程中,轻绳对B 球做的功W .【答案】(1)mg+m 20v l (2)2012v gl v -=3)204mgl mv - 【解析】【详解】(1)B 球刚开始运动时,A 球静止,所以B 球做圆周运动对B 球:T-mg =m 20v l得:T =mg +m 20v l (2)B 球第一次到达最高点时,A 、B 速度大小、方向均相同,均为v 1以A 、B 系统为研究对象,以水平横杆为零势能参考平面,从开始到B 球第一次到达最高点,根据机械能守恒定律,2220111112222l mv mgl mv mv mg -=+- 得:2012v gl v -= (3)从开始到B 球第一次到达最高点的过程,对B 球应用动能定理W -mg 221011222l mv mv =- 得:W =204mgl mv -6.如图所示,竖直平面内固定有一半径R =1m 的14光滑圆轨道AB 和一倾角为45°且高为H =5m 的斜面CD ,二者间通过一水平光滑平台BC 相连,B 点为圆轨道最低点与平台的切点.现将质量为m 的一小球从圆轨道A 点正上方h 处(h 大小可调)由静止释放,巳知重力加速度g =10m/s 2,且小球在点A 时对圆轨道的压力总比在最低点B 时对圆轨道的压力小3mg .(1)若h =0,求小球在B 点的速度大小;(2)若h =0.8m ,求小球落点到C 点的距离;(结果可用根式表示)(3)若在斜面中点竖直立一挡板,使得无论h 为多大,小球不是越不过挡板,就是落在水平地面上,则挡板的最小长度l 为多少?【答案】(1)25/m s (261m (3)1.25m【解析】【分析】【详解】(1)从释放小球至A 点根据速度与位移关系有22A v gh =在A 点,根据牛顿第二定律21A N v F m R= 在B 点,根据牛顿第二定律22B N v F mg m R-= 根据题意有213N N F F mg -=故B v =若0h =,则小球在B 点的速度1v ==;(2)小球从B 至C 做匀速直线运动,从C 点滑出后做平抛运动,若恰能落在D 点则 水平方向0x t v =竖直方向212y H gt ==又因为斜面倾角为45°,则 x y =解得05m/s v =对应的高度00.25m h =若0.80.25h m m =>,小球将落在水平地面上,而小球在B 点的速度26m/s v =小球做平抛运动竖直方向212H gt =得 1t s =则水平方向126m x v t ==故小球落地点距C 点的距离22161m s x H =+=;(3)若要求无论h 为多大,小球不是打到挡板上,就是落在水平地面上,临界情况是小球擦着挡板落在D 点,经前面分析可知,此时在B 点的临界速度:35m/s v =则从C 点至挡板最高点过程中水平方向3''x v t =竖直方向'2122H y l gt =-=' 又 2H x '=解得 1.25m l =. 点睛:本题研究平抛运动与圆周运动想结合的问题,注意分析题意,找出相应的运动过程,注意方程式与数学知识向结合即可求解.7.如图所示的水平地面上有a 、b 、O 三点.将一条轨道固定在竖直平面内,粗糙的ab 段水平,bcde 段光滑,cde 是以O 为圆心,R 为半径的一段圆弧,可视为质点的物块A 和B 紧靠在一起,中间夹有少量炸药,静止于b 处,A 的质量是B 的2倍.某时刻炸药爆炸,两物块突然分离,分别向左、右沿轨道运动.B 到最高点d 时速度沿水平方向,此时轨道对B 的支持力大小等于B 所受重力的3/4,A 与ab 段的动摩擦因数为μ,重力加速度g ,求:(1)物块B 在d 点的速度大小;(2)物块A 滑行的距离s ;(3)试确定物块B 脱离轨道时离地面的高度;(4)从脱离轨道后到落到水平地面所用的时间.【答案】(12Rg 2)516R μ(3)56R (415(8311)66R g 【解析】(1)设物块A 和B 的质量分别为m A 和m B 234d B B B v m g m g m R-= 解得2d Rg v = (2)设A 、B 分开时的速度分别为v 1、v 2,系统动量守恒 120A B m v m v -=B 由位置b 运动到d 的过程中, 机械能守恒2221122B B B d m v m gR m v =+ 2252v gR = A 在滑行过程中,由动能定理21102A A m v m gs μ-=- 联立得516R s μ= (3)设物块脱离轨道时速度为v ,F N =0向心力公式 2cos v mg m Rθ= 而 ()22111cos 22d mv mgR mv θ+-= 解得 5cos 6θ= , 56v gR = 脱离轨道时离地面的高度5cos 6h R R θ==(4)离轨道时后做向下斜抛运动竖直方向:21cos sin 2h R v t gt θθ==⋅+解得:15831166Rt g = 点睛:本题考查牛顿第二定律、动能定理以及动量守恒定律的应用,解题时关键是认真分析物理过程,挖掘问题的隐含条件,例如物体脱离轨道时F N =0;能选择合适的物理规律列出方程即可解答.8.如图所示,半径为r 的圆筒绕竖直中心轴转动,小橡皮块紧贴在圆筒内壁上,它与圆筒的摩擦因数为μ,现要使小橡皮不落下,则圆筒的角速度至少多大?(设最大静摩擦力等于滑动摩擦力)【答案】g r μ 【解析】 要使A 不下落,则小物块在竖直方向上受力平衡,有f =mg当摩擦力正好等于最大静摩擦力时,圆筒转动的角速度ω取最小值,筒壁对物体的支持力提供向心力,根据向心力公式,得2N m r ω=而f =μN解得圆筒转动的角速度最小值为g rωμ= 综上所述本题答案是:g rμ 点睛:解本题要明确物块刚好不下滑的条件是什么,然后结合受力求解角速度的大小.9.如图所示,A 、B 是水平传送带的两个端点,起初以的速度顺时针运转.今将一质量为1kg 的小物块(可视为质点)无初速度地轻放在A 处,同时传送带以的加速度加速运转,物体和传送带间的动摩擦因素为0.2,水平桌面右侧有一竖直放置的光滑轨道CPN ,其形状为半径R=0.8m 的圆环剪去了左上角1350的圆弧,PN 为其竖直直径,C 点与B 点的竖直距离为R ,物体在B 点水平离开传送带后由C 点恰好无碰撞落入轨道.取g=10m/s 2,求:(1)物块由A 端运动到B 端所经历的时间.(2)AC 间的水平距离(3)小物块在P 点对轨道的压力.【答案】(1)3s (2)8.6m (3)70-10N 【解析】试题分析:(1)物体离开传送带后由C 点无碰撞落入轨道,则得在C 点物体的速度方向与C 点相切,与竖直方向成45º,有,物体从B点到C作平抛运动,竖直方向:水平方向:得出物体刚放上传送带时,由牛顿第二定律得a=2m/s2物体历时t1后与传送带共速,则a t1=v0+ a0t1,t1=1s得v1="2" m/s<4 m/s故物体此时速度还没有达到v B,且此后的过程中由于<,物体将和传送带以共同的加速度运动,设又历时t2到达B点 v B= v1+ a0t2得t2=2s所以从A运动倒B的时间t= t1+t2=3sAB间的距离s==7m(2)从B到C的水平距离s BC=v B t3=2R=1.6m所以A到C的水平距离s AC=s+s BC=8.6m(3) 对CP段由动能定理对P点应牛顿第二定律:解得:N=70-10N考点:牛顿第二定律的综合应用;平抛运动【名师点睛】此题主要是牛顿第二定律的综合应用问题;解决此题的关键是抓住过程分析及各过程之间的联系,分过程依次解决,对于在传送到上的运动又要讨论各种情况,比较复杂;对于圆周运动问题逐一分析向心力来源.有一定难度.10.如图所示,内壁粗糙、半径R=0.4 m的四分之一圆弧轨道AB在最低点B与光滑水平轨道BC相切。
专题08圆周运动(解析版)-三年(2022-2024)高考物理真题分类汇编(全国通用)

圆周运动专题08考点01水平面内圆周运动1.(2024高考辽宁卷)“指尖转球”是花式篮球表演中常见的技巧。
如图,当篮球在指尖上绕轴转动时,球面上P、Q两点做圆周运动的()A.半径相等B.线速度大小相等C.向心加速度大小相等D.角速度大小相等【答案】D 【解析】由题意可知,球面上P 、Q 两点转动时属于同轴转动,故角速度大小相等,故D 正确;由图可知,球面上P 、Q 两点做圆周运动的半径的关系为P Q r r <,故A 错误;根据v r ω=可知,球面上P 、Q 两点做圆周运动的线速度的关系为P Q v v <,故B 错误;根据2n a r ω=可知,球面上P 、Q 两点做圆周运动的向心加速度的关系为P Q a a <,故C 错误。
2.(2024年高考江苏卷第8题)生产陶瓷的工作台匀速转动,台面面上掉有陶屑,陶屑与桌面间的动摩擦因数处处相同(台面足够大),则A.离轴OO’越远的陶屑质量越大B.离轴OO’越近的陶屑质量越大C.只有平台边缘有陶屑D..离轴最远的陶屑距离不超过某一值R 【参考答案】D【名师解析】由μmg=mRω2,解得离轴最远的陶屑距离不超过某一值R=μg/ω2,D 正确。
3.(2024年高考江苏卷)如图所示,细绳穿过竖直的管子拴住一个小球,让小球在A 高度处做水平面内的匀速圆周运动,现用力将细绳缓慢下拉,使小球在B 高度处做水平面内的匀速圆周运动,不计一切摩擦,则()A .线速度v A >v BB.角速度ωA <ωBC.向心加速度a A <a BD.向心力F A >F B 【答案】AD 【解析】设绳子与竖直方向的夹角为θ,对小球受力分析有F n =mg tan θ=ma由题图可看出小球从A 高度到B 高度θ增大,则由F n =mg tan θ=ma 可知a B >a A ,F B >F A 故C 错误,D 正确;再根据题图可看出,A 、B 位置在同一竖线上,则A 、B 位置的半径相同,则根据22n v F m m rrω==可得v A >v B ,ωA >ωB 故A 正确,B 错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆周运动经典题型分类练习题1.关于匀速圆周运动,正确的说法是:B.由于速度大小不变,故它属于匀速运动。
在匀速圆周运动中,速度大小不变,但方向不断改变,因此是一种加速运动。
2.质点做匀速圆周运动时,正确的说法是:B.角速度越大,周期一定越小。
角速度是描述角度变化率的物理量,周期是指运动一周所需的时间,二者成正比关系。
3.关于匀速圆周运动的角速度与线速度,正确的说法是:C.线速度一定,角速度与半径成反比。
线速度是指质点在圆周上运动的速度,与半径成正比,而角速度是指质点在圆周上运动的角度变化率,与半径成反比。
4.关于圆周运动,正确的说法是:B.做匀速圆周运动的物体,其加速度可能不指向圆心。
加速度是速度变化率,而匀速圆周运动中速度大小不变,加速度只改变速度方向,不一定指向圆心。
5.关于匀速圆周运动,正确的说法是:A.匀速圆周运动就是匀速运动。
匀速圆周运动中,速度大小不变,因此也属于匀速运动。
6.关于向心力,正确的说法是:A.物体受到向心力的作用才可能做圆周运动。
向心力是指指向圆心的合力,是使物体做圆周运动的关键。
7.关于向心力,正确的说法是:A、物体受到向心力的作用才可能做匀速圆周运动。
向心力是指向圆心的力,是根据作用效果命名的。
8.正确的说法是:B.因为物体有向心力存在,所以才迫使物体不断改变运动速度方向而做圆周运动。
向心力是使物体做圆周运动的原因,而不是结果。
9.物体在水平面内做匀速圆周运动,半径为R,线速度为V,向心力为F。
如果增大垂直于线速度的力F的量值,那么物体的轨道会发生以下哪种变化?A。
向圆周内偏移 B。
向圆周外偏移 C。
线速度增大,保持原来的运动轨道 D。
线速度减小,保持原来的运动轨道。
10.下列关于向心加速度的说法中,正确的是()A。
向心加速度的方向始终与速度的方向垂直 B。
向心加速度的方向保持不变 C。
在匀速圆周运动中,向心加速度是恒定的 D。
在匀速圆周运动中,向心加速度的大小不断变化。
11.A、B两个质点分别做匀速圆周运动,在相同的时间内它们通过的路程之比为sAsB2∶3,转过的角度之比为AB3∶2.下列说法正确的是()A。
它们的半径之比RARB2∶3 B。
它们的半径之比RARB4∶9 C。
它们的周期之比TATB2∶3 D。
它们的周期之比TATB3∶2.12.在匀速圆周运动中,下列物理量不变的是()A。
向心加速度 B。
线速度 C。
向心力 D。
角速度。
13.汽车甲和汽车乙质量相等,以相等速度沿同一水平弯道做匀速圆周运动,甲车在乙车的外侧。
两车沿半径方向受到的摩擦力分别为Ff甲和Ff乙以下说法正确的是()A。
Ff甲小于Ff乙B。
Ff甲等于Ff乙C。
Ff甲大于Ff乙D。
Ff甲和Ff乙大小均与汽车速率无关。
14.下列关于匀速圆周运动的说法,正确的是()A。
它是变速运动 B。
其加速度不变 C。
其角速度不变 D。
周期越大,物体运动得越快。
15.一物体沿半径为20cm的轨道做匀速圆周运动,已知线速度为2m/s,则它的角速度为___rad/s,周期为___s,向心加速度大小为___m/s2.16.一物体做匀速圆周运动,圆周半径不变。
若旋转的角速度增至原来的3倍,向心力将比原来增加32N,则该物体原来做圆周运动所需的向心力是___N。
关于转动方式:1.如图2A-1所示,A、B是两个摩擦传动的靠背轮,A是主动轮,B是从动轮,它们的半径分别为RA和RB且RA2RBa和b两点在轮的边缘,c和d在各轮半径的中点。
下列判断正确的有()A。
Va = 2VbB。
ωb2ωa C。
VcVa D。
ωbωc2.正常走动的钟表中,时针和分针都在做匀速转动。
正确的关系是:D。
分针的周期是时针周期的12倍。
3.在图示的皮带传动装置中,主动轮O1上两轮的半径分别为3r和r,从动轮O2的半径为2r,A、B、C分别为轮缘上的三点。
如果皮带不打滑,求出:⑴A、B、C三点的角速度之比ωA:ωB:ωC=3:2:1;⑵A、B、C三点的线速度大小之比.A-14.在图示的皮带传动装置中,右轮的半径为r,a是它边缘上的一点,左侧是一轮轴,大轮的半径是4r,小轮的半径是2r,b点在小轮上,到小轮中心的距离为r,c点和d点分别位于小轮和大轮的边缘上。
如果在传动过程中皮带不打滑,那么:A。
a点和b点的线速度大小相等。
在水平面内的圆周运动中,有以下几个问题:1.在匀速转动的圆筒内壁上紧靠着一个物体一起运动,那么物体所需的向心力由下列哪个力提供?正确答案是C。
静摩擦力。
2.在图示的圆盘上放置一木块,圆盘可以绕一个通过圆盘中心且垂直于盘面的竖直轴转动。
当圆盘匀速转动时,木块随圆盘一起运动。
那么:B。
木块受到圆盘对它的摩擦力,方向指向圆盘中心。
3.在图示的圆盘上放置一小木块A,它随圆盘一起做匀速圆周运动。
关于木块A的受力,正确的说法是:A。
木块A 受重力、支持力和向心力。
4.在图示的光滑圆锥筒中,有两个质量相同的小球A和小球B紧贴圆锥筒内壁分别在水平面内运动。
小球A受到的向心力比小球B受到的向心力小。
1.在匀速圆周运动中,正确的说法是:A。
A球的线速度不一定小于B球的线速度;B。
A球的角速度不一定大于B球的角速度;C。
A球运动的周期不一定大于B球的周期;D。
A球对筒壁的压力不一定大于B球对筒壁的压力。
2.在匀速转动的水平转盘上,相对转盘静止的物体相对于转盘的运动趋势是:A。
沿圆周切线方向;B。
沿半径指向圆心;C。
沿半径背离圆心;D。
没有相对运动趋势。
3.在细绳一端系着质量为0.1 XXX的小物块A,置于光滑水平台面上;另一端通过光滑小孔O与质量为0.5 kg的物体B 相连,B静止于水平地面上。
当A以O为圆心做半径为0.2m的匀速圆周运动时,地面对B的支持力为3.0N。
求物块A的速度和角速度的大小。
解:由牛顿第二定律,物块A所受合力为向心力Fc和重力Fg,即Fc=Fg=mg,其中m为物块A的质量,g为重力加速度。
所以Fc=mg=0.1*10=1N。
因为向心力Fc=m*v^2/r,所以v=sqrt(Fc*r/m)=sqrt(1*0.2/0.1)=2m/s。
角速度w=v/r=2/0.2=10rad/s。
4.在质量为0.6kg的物体A放在水平转盘上,A的重心到转盘中心O点的距离为0.2 m,若A与转盘间的最大静摩擦力为3 N,g=10 m/s^2.求:(1)转盘绕中心O以ω=2rad/s的角速度旋转,A相对转盘静止时,转盘对A摩擦力的大小与方向;(2)为使物体A相对转盘静止,转盘绕中心O旋转的角速度ω的取值范围。
解:(1) 当转盘绕中心O以ω=2rad/s的角速度旋转时,物体A相对转盘静止,所以A受到的合力为重力和向心力,即mg和mω^2r,其中r为A与O的距离,即0.2m。
所以A受到的合力大小为m(g-ω^2r)=0.6(10-2^2*0.2)=0.48N。
由于物体A相对转盘静止,所以转盘对A的摩擦力大小等于最大静摩擦力3N,方向沿OA所在半径指向圆心O。
2) 物体A相对转盘静止时,转盘对A的摩擦力等于最大静摩擦力3N,所以转盘对A的合力大小为3N,方向沿OA所在半径指向圆心O。
由牛顿第二定律,转盘对A的合力等于A受到的合力,即m(g-ω^2r)=3.解得ω≤sqrt((10-3/0.6)/0.2)=5rad/s。
5.在竖直面内的圆周运动中,摆球A在水平面上作匀速圆周运动。
摆球A受到重力、拉力和向心力的作用。
6.一辆卡车在丘陵地匀速行驶,地形如图所示,由于轮胎太旧,途中爆胎,爆胎可能性最大的地段是b处。
7.游客乘坐过山车,在圆弧轨道最低点处获得的向心加速度达到20m/s^2,g取10m/s^2.在此位置座椅对游客的作用力相当于游客重力的4倍。
8.在轻杆一端有一个小球,另一端有光滑的固定轴O,现给球一初速度,使球和杆一起绕O轴在竖直面内转动,不计空气阻力。
球到达最高点时,杆对小球的作用力可能是拉力、推力或者等于零。
度为v,半径为r,则此时飞行员所受的向心力大小为多少?5、一个质量为m的小球用长为L的悬线固定在点O处,正下方L/2处有一光滑圆钉C。
当将小球拉到悬线呈水平状态并无初速度地释放后,当悬线呈竖直状态且与钉相碰时,小球的速度会突然增大。
我们需要判断此时小球的向心加速度是否会突然增大,还是保持不变,或者是悬线的拉力突然增大。
6、一个半径为R的光滑半圆球固定在水平面上,顶部有一个小物体甲,给它一个水平初速度v>gR后,物体甲会沿着球面下滑至某点N,然后便离开球面做斜下抛运动。
7、如果我们手握绳子的一端,使重物在水平面内做匀速圆周运动,那么当每秒转数相同时,绳子短的容易断,而旋转周期相同时,绳子长的容易断。
当线速度大小相等时,绳子短的容易断。
8、在一个长度为L的圆锥摆中,绳子长度为L,绳子转动过程中与竖直方向的夹角为θ,小球做圆周运动的周期、角速度、线速度分别为多少?9、用长为l的细线拴一个小球使其绕细线的加一端在竖直平面内做圆周运动,当球通过圆周的最高点时,细线受到的拉力等于球重的2倍,已知重力加速度为g,则球此时的速度大小为√(3gl),角速度大小为√(3g/l),加速度大小为3g。
10、一个长度为1m、质量可忽略的杆,其下端固定于O 点,上端连有质量为2kg的小球,它绕O点做圆周运动。
当通过最高点时,杆受到的力的大小和方向分别为:(1)当v=3m/s时,大小为4mg,方向向上;(2)当v=5m/s时,大小为6mg,方向向下。
11、一个质量为0.5kg的杯子里盛有1kg的水,用绳子系住水杯在竖直平面内做“水流星”表演,转动半径为1m,水杯通过最高点的速度为4m/s。
在最高点时,绳的拉力为3N,水对杯底的压力为7N。
12、一个滑雪者连同他的滑雪板质量为70kg,他滑到凹形的坡底时的速度是20m/s,坡底的圆弧半径是50m。
在坡底时,雪地对滑雪板的支持力为2450N。
13、一个质量为m的飞行员驾驶飞机在竖直平面内做圆周运动,飞机飞到最高点的速度为v,半径为r。
此时飞行员所受的向心力大小为mv²/r。
1.当飞机速度为v时,飞行员在座位上的压力为零。
求当飞机速度为最低点时,飞行员在座位上的压力。
2.在半径为R、内径很小的光滑半圆细管中,两个质量均为m的小球A、B以不同速率进入管内。
当A球通过圆周最高点C时,对管壁上部的压力为3mg;当B球通过最高点C 时,对管壁内侧下部的压力为0.75mg。
求A、B球落地点间的距离。
3.在铁路弯道处,内外轨道高度不同,内外轨道平面与水平面的倾角为θ,弯道处的圆弧半径为R。
若质量为m的火车转弯时速度小于gRtanθ,则内轨对内侧车轮轮缘有挤压,外轨对外侧车轮轮缘有挤压。
若速度小于gRcosθ,则铁轨对火车的支持力等于mg。
求正确选项。
4.一质量为m的汽车匀速率驶过曲率半径为R的圆弧型桥面,已知桥面能承受的最大压力为N。