圆周运动基础练习题
(完整版)圆周运动基础练习题(含答案)

圆周运动练习题1.下列关于做匀速圆周运动的物体所受的向心力的说法中,正确的是 (选C )A .物体除其他的力外还要受到—个向心力的作用 C .向心力是一个恒力B .物体所受的合外力提供向心力 D .向心力的大小—直在变化2.关于匀速圆周运动的角速度与线速度,下列说法中正确的是(选BC )A .半径一定,角速度与线速度成反比B .半径一定,角速度与线速度成正比C .线速度一定,角速度与半径成反比D .角速度一定,线速度与半径成正比3.正常走动的钟表,其时针和分针都在做匀速转动,下列关系中正确的是 (选B)A .时针和分针的角速度相同B .分针角速度是时针角速度的12倍C .时针和分针的周期相同D .分针的周期是时针周期的12倍4.A 、B 两个质点,分别做匀速圆周运动,在相同的时间内它们通过的路程之比s A ∶s B =2∶3,转过的角度之比ϕA ∶ϕB =3∶2,则下列说法正确的是(选BC )A .它们的半径之比R A ∶RB =2∶3 B .它们的半径之比R A ∶R B =4∶9C .它们的周期之比T A ∶T B =2∶3D .它们的周期之比T A ∶T B =3∶25. 如图所示的圆锥摆中,摆球A 在水平面上作匀速圆周运动,关于A 的受力情况,下列说法中正确的是(选C )A .摆球A 受重力、拉力和向心力的作用;B .摆球A 受拉力和向心力的作用;C .摆球A 受拉力和重力的作用;D .摆球A 受重力和向心力的作用。
6.汽车甲和汽车乙质量相等,以相等速度率沿同一水平弯道做匀速圆周运动,甲车在乙车的外侧.两车沿半径方向受到的摩擦力分别为F f 甲和F f 乙,以下说法正确的是(选A )A . F f 甲小于F f 乙B . F f 甲等于F f 乙C . F f 甲大于F f 乙D . F f 甲和F f 乙大小均与汽车速率无关7.一辆卡车在丘陵地匀速行驶,地形如图所示,由于轮胎太旧,途中爆胎,爆胎可能性最大的地段应是(选D )A .a 处B .b 处C .c 处D .d 处8.游客乘坐过山车,在圆弧轨道最低点处获得的向心加速度达到20 m/s 2,g 取10 m/s 2,那么在此位置座椅对游客的作用力相当于游客重力的 (选C )A .1倍B .2 倍C .3倍D .4倍9.一汽车通过拱形桥顶点时速度为10 m/s ,车对桥顶的压力为车重的43,如果要使汽车在桥顶对桥面没有压力,车速至少为(选B )A .15 m/sB .20 m/sC .25 m/sD .30 m/s 10.如图所示,轻杆的一端有一个小球,另一端有光滑的固定轴O ,现给球一初速度,使球和杆一起绕O 轴在竖直面内转动,不计空气阻力,用F 表示球到达最高点时杆对小球的作用力,则F (选D ) A.一定是拉力 B.一定是推力 C.一定等于零D.可能是拉力,可能是推力,也可能等于零 (第5题)(第15题)11.飞机在飞越太平洋上空的过程中,如果保持飞行速度的大小和距离海平面的高度不变,则以下说法中正确的是(选C)A.飞机做的是匀速直线运动B.飞机上的乘客对座椅的压力略大于地球对乘客的引力C.飞机上的乘客对座椅的压力略小于地球对乘客的引力D.飞机上的乘客对座椅的压力为零12.一滑雪者连同他的滑雪板质量为70kg ,他滑到凹形的坡底时的速度是20m/s ,坡底的圆弧半径是50m ,则在坡底时雪地对滑雪板的支持力是多少?1260N13.质量为m 的小球,用一条绳子系在竖直平面内做圆周运动,小球到达最高点时的速度为v ,到达最低点时的速变为24v gR ,则两位置处绳子所受的张力之差是多少?6mg14.汽车沿半径为R = 100m 的圆跑道行驶,设跑道的路面是水平的,路面作用于车的最大静摩擦力是车重的101,要使汽车不致冲出圆跑道,车速最大不能超过多少?10s m /。
圆周运动课堂练习题及答案

圆周运动课堂练习题
一、选择题
1.关于角速度和线速度,下列说法正确的是[]
A.半径一定,角速度与线速度成反比
B.半径一定,角速度与线速度成正比
C.线速度一定,角速度与半径成正比
D.角速度一定,线速度与半径成反比
2.下列关于甲乙两个做圆周运动的物体的有关说法正确的是[]
A.它们线速度相等,角速度一定相等
B.它们角速度相等,线速度一定也相等
C.它们周期相等,角速度一定也相等
D.它们周期相等,线速度一定也相等
4.关于物体做匀速圆周运动的正确说法是[]
A.速度大小和方向都改变
B.速度的大小和方向都不变
C.速度的大小改变,方向不变
D.速度的大小不变,方向改变
5.物体做匀速圆周运动的条件是[]
A.物体有一定的初速度,且受到一个始终和初速度垂直的恒力作用
B.物体有一定的初速度,且受到一个大小不变,方向变化的力的作用
C.物体有一定的初速度,且受到一个方向始终指向圆心的力的作用
D.物体有一定的初速度,且受到一个大小不变方向始终跟速度垂直的力的作用
6.甲、乙两物体都做匀速圆周运动,其质量之比为1:2,转动半径之比为1:2,在相等时间里甲转过60°,乙转过45°,则它们所受外力的合力之比为[]
A.1:4
B.2:3
C.4:9
D.9:16
8.冰面对溜冰运动员的最大摩擦力为运动员重力的k倍,在水平冰面上沿半径为R的圆周滑行的运动员,若依靠摩擦力充当向心力,其安全速度为[]
匀速圆周运动练习题的答案
一、选择题
1.B
2.A 3 4.D 5.D 6.C8.B。
《圆周运动》练习题附答案

圆 周 运 动(复习资料)一、 单项选择题(共10题,50分。
)1. 对于做匀速圆周运动的物体,下列说法不.正确..的是: A. 线速度和周期不变 B. 单位时间里通过的路程一定大于位移C. 角速度和转速不变D. 所受合力的大小不变,加速度方向不断改变2. 关于向心力的说法不正确...是: A. 向心力的方向沿半径指向圆心 B. 做匀速圆周运动的物体,其向心力是不变的C. 向心力不改变质点速度的大小D. 做匀速圆周运动的物体,其向心力即为其所受的合外力3. 关于离心现象,下列说法不正确...的是: A. 脱水桶、离心分离器是利用离心现象工作的B. 限制速度、加防护罩可以防止离心现象造成的危害C. 做圆周运动的物体,当向心力突然增大时做离心运动D. 做圆周运动的物体,当合外力消失时,它将沿切线做匀速直线运动 4. 物体做离心运动时,其运动轨迹:A. 一定是直线B. 一定是曲线C. 可能是一个圆D. 可能是直线也可能是曲线 5.广州和北京处在地球不同的纬度,当两地的建筑物随地球自转时,则有:A. 广州的线速度比北京的线速度大B. 广州的向心加速度比北京的向心加速度小C. 广州的角速度比北京的角速度大D. 两地向心加速度的方向都沿地球半径指向地心 6.甲、乙两球做匀速圆周运动,向心加速度a 随半径r 变化的关系图像如图6所示,由图像可知:A. 甲球运动时,角速度大小为2 rad/sB. 乙球运动时,线速度大小为6m/sC. 甲球运动时,线速度大小不变D. 乙球运动时,角速度大小不变 7.在公路上行驶的汽车转弯时,下列说法中不.正确..的是: A. 在水平路面上转弯时,向心力由静摩擦力提供B. 以恒定的速率转弯,弯道半径越大,需要的向心力越大C. 转弯时要限速行驶,是为了防止汽车产生离心运动造成事故D. 在里低、外高的倾斜路面上转弯时,向心力可能由重力和支持力的合力提供8. 载重汽车以恒定的速率通过丘陵地,轮胎很旧。
高中物理圆周运动练习题

1.关于物体做匀速圆周运动的速度,下列说法中正确的是()A.速度大小和方向都变更 B.速度的大小和方向都不变C.速度的大小不变,方向变更 D.速度的大小变更,方向不变2.一只小狗拉着雪橇在水平冰面上沿着圆弧形的道路匀速行驶,如图所示为雪橇所受的牵引力F与摩擦力的示意图,其中正确的是( )A.B.C.D.3.一个做匀速圆周运动的物体,假如半径不变,而速率增加到原来速率的3倍,其向心力增加了64 N,则物体原来受到的向心力的大小是( )A. 16 N B. 12 N C. 8 N D. 6 N4.下列对圆锥摆的受力分析正确的是( )A. B. C. D.5.如图所示,用细绳系一小球,使小球在水平面内做匀速圆周运动,不计空气阻力,关于小球的受力正确的是( )A.只受重力 B.只受绳子拉力 C.受重力、绳子拉力 D.受重力、绳子拉力和向心力6.如图所示,圆盘上叠放着两个物块A和B,当圆盘和物块绕竖直轴匀速转动时,物块与圆盘始终保持相对静止,则( )A.物块A不受摩擦力作用B.物块B受5个力作用C.当转速增大时,A所受摩擦力增大,B所受摩擦力减小D.A对B的摩擦力方向沿半径指向转轴7.如图所示,质量为m的物块从半径为R的半球形碗边向碗底滑动,滑到最低点时的速度为v,若物块滑到最低点时受到的摩擦力是,则物块与碗的动摩擦因数为( )A. B. C. D.8.如图所示,物块P置于水平转盘上随转盘一起运动,图中c方向沿半径指向圆心,a方向与c方向垂直.当转盘逆时针转动时,下列说法正确的是( )A.当转盘匀速转动时,P受摩擦力方向为cB.当转盘匀速转动时,P不受转盘的摩擦力C.当转盘加速转动时,P受摩擦力方向可能为aD.当转盘减速转动时,P受摩擦力方向可能为b9.如图所示,某物体沿光滑圆弧轨道由最高点滑到最低点过程中,物体的速率渐渐增大,则( )A.物体的合外力为零B.物体的合力大小不变,方向始终指向圆心OC.物体的合外力就是向心力D.物体的合力方向始终与其运动方向不垂直(最低点除外)10.如图,一圆盘可绕一通过圆心且垂直于盘面的竖直轴转动,在圆盘上放一块橡皮,橡皮块随圆盘一起转动(俯视为逆时针).某段时间圆盘转速不断增大,但橡皮块仍相对圆盘静止,在这段时间内,关于橡皮块所受合力F的方向的四种表示(俯视图)中,正确的是()A. B. C. D.11.一质量为m的物体,沿半径为R的向下凹的半圆形轨道滑行,如图所示,经过最低点时的速度为v,物体与轨道之间的动摩擦因数为μ,则它在最低点时受到的摩擦力为( )A.μ B. C.μm(g+) D.μm(g-)12.如图所示,地球可以看成一个巨大的拱形桥,桥面半径R=6400 ,地面上行驶的汽车重力G=3×104N,在汽车的速度可以达到须要的随意值,且汽车不离开地面的前提下,下列分析中正确的是( )A.汽车的速度越大,则汽车对地面的压力也越大B.不论汽车的行驶速度如何,驾驶员对座椅压力大小都等于3×104NC.不论汽车的行驶速度如何,驾驶员对座椅压力大小都小于他自身的重力D.假如某时刻速度增大到使汽车对地面压力为零,则此时驾驶员会有超重的感觉13.火车在水平轨道上转弯时,若转弯处内外轨道一样高,则火车转弯时( )A.对外轨产生向外的挤压作用B.对内轨产生向外的挤压作用C.对外轨产生向内的挤压作用D.对内轨产生向内的挤压作用14.(多选)匀速圆周运动的向心力公式有多种表达形式,下列表达中正确的是( )A.= B.=2r C.=ω D.=mω2r15.(多选)如图所示,A、B两球穿过光滑水平杆,两球间用一细绳连接,当该装置绕竖直轴′匀速转动时,两球在杆上恰好不发生滑动.若两球质量之比∶=2∶1,则关于A、B两球的下列说法中正确的是( )A.A、B两球受到的向心力之比为2∶1B.A、B两球角速度之比为1∶1C.A、B两球运动半径之比为1∶2D.A、B两球向心加速度之比为1∶216.(多选)如图所示,甲、乙两水平圆盘紧靠在一块,甲圆盘为主动轮,乙靠摩擦随甲无打滑转动.甲圆盘与乙圆盘的半径之比为r甲∶r乙=2∶1,两圆盘和小物体m1、m2之间的动摩擦因数相同,m1距O点为2r,m2距O′点为r,当甲缓慢转动起来且转速渐渐增加时( ).A.与圆盘相对滑动前m1与m2的角速度之比ω1∶ω2=2∶1B.与圆盘相对滑动前m1与m2的向心加速度之比a1∶a2=1∶2C.随转速渐渐增加,m1先起先滑动D.随转速渐渐增加,m2先起先滑动17.(多选)如图所示,将一质量为m的摆球用长为L的细绳吊起,上端固定,使摆球在水平面内做匀速圆周运动,细绳就会沿圆锥面旋转,这样就构成了一个圆锥摆,下列说法正确的是( )A.摆球受重力、拉力和向心力的作用B.摆球受重力和拉力的作用C.摆球运动周期为2πD.摆球运动的转速为θ18.(多选)如图所示,有一固定的且内壁光滑的半球面,球心为O,最低点为C,有两个可视为质点且质量相同的小球A和B,在球面内壁两个高度不同的水平面内做匀速圆周运动,A球的轨迹平面高于B球的轨迹平面,A、B两球与O点的连线与竖直线间的夹角分别为α=53°和β=37°,则( 37°=0.6)( )A.A、B两球所受支持力的大小之比为4∶3B.A、B两球运动的周期之比为2∶C.A、B两球的角速度之比为2∶D.A、B两球的线速度之比为8∶319.(多选)马路急转弯处通常是交通事故多发地带.如图,某马路急转弯处是一圆弧,当汽车行驶的速率为v0时,汽车恰好没有向马路内外两侧滑动的趋势.则在该弯道处( )A.路面外侧高、内侧低B.车速只要低于v0,车辆便会向内侧滑动C.车速虽然高于v0,但只要不超出某一最高限度,车辆便不会向外侧滑动D.当路面结冰时,与未结冰时相比,v0的值变小20.长为L的细线,拴一质量为m的小球,细线上端固定,让小球在水平面内做匀速圆周运动,如图所示,求细线与竖直方向成θ角时:(重力加速度为g)(1)细线中的拉力大小;(2)小球运动的线速度的大小.21.如图所示,有一质量为m1的小球A与质量为m2的物块B通过轻绳相连,轻绳穿过光滑水平板中心的小孔O.当小球A在水平板上绕O点做半径为r的匀速圆周运动时,物块B刚好保持静止.求:(重力加速度为g)(1)轻绳的拉力.(2)小球A运动的线速度大小.22.如图所示,用一根长为l=1 m的细线,一端系一质量为m=1 的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=37°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为.(g取10 2,结果可用根式表示)求:(1)若要小球离开锥面,则小球的角速度ω0至少为多大.(2)若细线与竖直方向的夹角为60°,则小球的角速度ω′为多大.23.长为L的细线,一端固定于O点,另一端拴一质量为m的小球,让其在水平面内做匀速圆周运动(这种运动通常称为圆锥摆运动),如图所示,摆线与竖直方向的夹角为α,求:(1)线的拉力大小;(2)小球运动的线速度的大小;(3)小球运动的周期.答案解析1.【答案】C【解析】匀速圆周运动指速度大小不变的圆周运动,线速度的方向时刻在变,故C正确.2.【答案】C【解析】雪橇运动时所受摩擦力为滑动摩擦力,方向与运动方向相反,与圆弧相切.又因为雪橇做匀速圆周运动时合力充当向心力,合力方向必定指向圆心.综上可知,C项正确.3.【答案】C【解析】依据向心力公式得:F1=m,当速率增加为原来的3倍时有:F2=,由题有:F2-F1=64 N,联立以上三式:64=8·m,m=8 N,解得:F1=8 N,C正确.4.【答案】D【解析】圆锥摆向心力由合外力供应,方向指向圆周运动的圆心,D对.5.【答案】C【解析】该小球在运动中受到重力G和绳子的拉力F,拉力F和重力G的合力供应了小球在水平面上做匀速圆周运到的向心力;向心力是沿半径方向上的全部力的合力,所以受力分析时,不要把向心力包括在内.C正确.6.【答案】B【解析】物块A受到的摩擦力充当向心力,A错;物块B受到重力、支持力、A对物块B的压力、A对物块B沿半径向外的静摩擦力和圆盘对物块B沿半径向里的静摩擦力,共5个力的作用,B正确;当转速增大时,A、B所受摩擦力都增大,C错误;A对B的摩擦力方向沿半径向外,D错误.故选B.7.【答案】B【解析】物块滑到最低点时受竖直方向的重力、支持力和水平方向的摩擦力三个力作用,依据牛顿其次定律得-=m,又=μ,联立解得μ=,选项B正确.8.【答案】A【解析】转盘匀速转动时,物块P所受的重力和支持力平衡,摩擦力供应其做匀速圆周运动的向心力,故摩擦力方向指向圆心O点,A项正确,B项错误;当转盘加速转动时,物块P做加速圆周运动,不仅有沿c方向指向圆心的向心力,还有指向a方向的切向力,使线速度大小增大,两方向的合力即摩擦力可能指向b,C项错误;当转盘减速转动时,物块P做减速圆周运动,不仅有沿c方向指向圆心的向心力,还有指向a相反方向的切向力,使线速度大小减小,两方向的合力即摩擦力可能指向d,D项错误.9.【答案】D【解析】物体做加速曲线运动,合力不为零,A错;物体做速度大小变更的圆周运动,合力不指向圆心,合力沿半径方向的分力等于向心力,合力沿切线方向的分力使物体速度变大,即除在最低点外,物体的速度方向与合力的方向夹角为锐角,合力与速度不垂直,B、C错,D对.10.【答案】C【解析】橡皮块做加速圆周运动,合力不指向圆心,但肯定指向圆周的内侧;由于做加速圆周运动,动能不断增加,故合力与速度的夹角小于90°;11.【答案】C【解析】在最低点由向心力公式得:-=m,得=+m,又由摩擦力公式有=μ=μ(+m),C选项正确.12.【答案】C【解析】对汽车探讨,依据牛顿其次定律得:-=m,则得=-m,可知,速度v越大,地面对汽车的支持力越小,则汽车对地面的压力也越小,故A错误.由上可知,汽车和驾驶员都具有向下的加速度,处于失重状态,驾驶员对座椅压力大小都小于他自身的重力,而驾驶员的重力未知,所以驾驶员对座椅压力范围无法确定,故B错误,C正确.假如某时刻速度增大到使汽车对地面压力为零,驾驶员具有向下的加速度,处于失重状态,故D错误.故选C.13.【答案】A【解析】火车在水平轨道上转弯时,做圆周运动,须要有力供应指向圆心的向心力,即方向指向内侧,此时外轨对火车的压力供应向心力,依据牛顿第三定律可知,火车对外轨产生向外的压力作用.故选A.14.【答案】【解析】15.【答案】【解析】两球的向心力都由细绳的拉力供应,大小相等,两球都随杆一起转动,角速度相等,A错,B对.设两球的运动半径分别为、,转动角速度为ω,则ω2=ω2,所以运动半径之比为∶=1∶2,C正确.由牛顿其次定律F=可知∶=1∶2,D正确.16.【答案】【解析】m1的角速度设为ω1,则有ω1r甲=ω2r乙,所以有ω1∶ω2=1∶2,选项A错.m1的向心加速度a1=2rω,同理m2的向心加速度a2=rω,所以发觉相对滑动前a1∶a2=1∶2,选项B对.随着转盘渐渐滑动,静摩擦力供应向心力,当起先发生相对滑动时,对m1有μm1g=m12rω1′2,可得此时角速度ω1′=,此时m2的角速度ω2′=2ω1′=2,此时,m2的向心力m2rω2′2=2μm2g,此时已经大于最大静摩擦力μm2g,即m2早于m1起先发生相对滑动,选项C错,D对.17.【答案】【解析】摆球受重力和绳子拉力两个力的作用,设摆球做匀速圆周运动的周期为T,则:θ=,r=θ,T=2π,转速n==,B、C正确,A、D错误.18.【答案】【解析】小球在运动的过程中受到的合力沿水平方向,且恰好供应向心力,依据平行四边形定则得,=,则==,故A正确.小球受到的合外力:θ=,r=θ,解得T=,则==,故B错误.依据公式θ=mω2r,所以ω==,所以==,故C正确.θ=m,得v=,则==,故D正确.19.【答案】【解析】当汽车行驶的速率为v0时,汽车恰好没有向马路内外两侧滑动的趋势,即不受静摩擦力,此时由重力和支持力的合力供应向心力,所以路面外侧高、内侧低,选项A正确;当车速低于v0时,须要的向心力小于重力和支持力的合力,汽车有向内侧运动的趋势,受到的静摩擦力向外侧,并不肯定会向内侧滑动,选项B错误;当车速高于v0时,须要的向心力大于重力和支持力的合力,汽车有向外侧运动的趋势,静摩擦力向内侧,速度越大,静摩擦力越大,只有静摩擦力达到最大以后,车辆才会向外侧滑动,选项C正确;由θ=m 可知,v0的值只与路面与水平面的夹角和弯道的半径有关,与路面的粗糙程度无关,选项D 错误.20.【答案】(1)(2)【解析】(1)小球受重力与细线的拉力两力作用,如图所示,竖直方向:θ=,故拉力=.(2)小球做圆周运动的半径r=θ,向心力=θ=θ,而=m,故小球的线速度v=.21.【答案】1)m2g(2)【解析】(1)物块B受力平衡,故轻绳拉力=m2g(2)小球A做匀速圆周运动的向心力等于轻绳拉力,依据牛顿其次定律m2g=m1解得v=.22.【答案】1)(2)2【解析】(1)若要小球刚好离开锥面,则小球只受到重力和细线的拉力,如图所示.小球做匀速圆周运动的轨迹圆在水平面内,故向心力水平,运用牛顿其次定律与向心力公式得:θ=mωθ解得:ω=即ω0==.(2)当细线与竖直方向成60°角时,由牛顿其次定律与向心力公式得:α=mω′2α解得:ω′2=,即ω′==2.23.【答案】对小球受力分析如图所示,小球受重力和线的拉力作用,这两个力的合力α指向圆心,供应向心力,由受力分析可知,细线拉力=.由=m=mω2R=m=α,半径R=α,得v==α,T=2π.【解析】。
高中物理必修二第6章_圆周运动练习题含答案

高中物理必修二第6章圆周运动练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 某活动中有个游戏节目,在水平地面上画一个大圆,甲、乙两位同学(图中用两个点表示)分别站在圆周上两个位置,两位置的连线为圆的一条直径,如图所示,随着哨声响起,他们同时开始按图示方向沿圆周追赶对方.若甲、乙做匀速圆周运动的速度大小分别为v1和v2,经时间t乙第一次追上甲,则该圆的直径为()A.t(v2−v1)πB.2t(v2−v1)πC.t(v1+v2)πD.2t(v1+v2)π2. 如图所示,光滑水平面上,小球在绳拉力作用下做匀速圆周运动,若小球运动到P 点时,绳突然断裂,小球将()A.将沿轨迹Pa做离心运动B.将沿轨迹Pb做离心运动C.将沿轨迹Pc做离心运动D.将沿轨迹Pd做离心运动3. 如图所示,用长为l的细绳拴着质量为m的小球在竖直平面内做圆周运动,则下列说法中正确的是()A.小球在圆周最高点时所受的向心力一定为小球的重力B.小球在最高点时绳子的拉力可能为零C.若小球刚好能在竖直平面内做圆周运动,则其在最高点的速率为零D.小球过最低点时绳子的拉力一定等于小球重力4. 如图所示,一个小球绕圆心O做匀速圆周运动,已知圆周半径为r,该小球运动的角速度大小为ω,则它运动线速度的大小为()A.ωrB.ωr C.ω2rD.ωr25. 关于做圆周运动的物体,下列说法中正确的是()A.所受合力一定指向圆心B.汽车通过凹形桥时处于超重状态C.汽车水平路面转弯时由重力提供向心力D.物体做离心运动是因为物体运动过慢6. 下列关于离心运动的说法错误的是()A.汽车转弯时限制速度,铁路转弯处轨道的外轨高于内轨都是为了更好地做离心运动B.脱水机的脱水原理是对离心原理的应用C.游乐场中高速转动磨盘把人甩到边缘上去是属于离心现象D.把低轨道卫星发射发射到高轨道上去,需要加速,是应用了离心原理7.如图所示,在匀速转动的水平圆盘上,沿半径方向放着用细线相连的质量相等的两个物体A和B,它们与盘面间的动摩擦因数相同.当匀速转动的圆盘转速恰为两物体刚好未发生滑动时的转速,烧断细绳,则两物体的运动情况将是()A.两物体沿切线方向滑动B.两物体沿半径方向滑动,离圆盘圆心越来越远C.两物体仍随圆盘一起做匀速圆周运动,不发生滑动D.物体A仍随圆盘一起做匀速圆周运动,物体B发生滑动,离圆盘圆心越来越远8. 如图所示,一偏心轮绕O点做匀速转动.偏心轮边缘上A、B两点的()A.线速度大小相同B.角速度大小相同C.向心加速度大小相同D.向心加速度方向相同9. 下列关于圆周运动的说法正确的是()=k,公式中的k值对所有行星和卫星都相等A.开普勒行星运动的公式R3T2B.做匀速圆周运动的物体,其加速度一定指向圆心C.在绕地做匀速圆周运动的航天飞机中,宇航员对座椅产生的压力大于自身重力D.相比较在弧形的桥底,汽车在弧形的桥顶行驶时,陈旧的车轮更不容易爆胎10. 甲、乙做匀速圆周运动的物体,它们的半径之比为3:1,周期之比是1:2,则()A.甲与乙的线速度之比为1:3B.甲与乙的线速度之比为6:1C.甲与乙的角速度之比为6:1D.甲与乙的角速度之比为1:211. 请对下列实验探究与活动进行判断,说法正确的题后括号内打“√”,错误的打“×”.(1)如图甲所示,在“研究滑动摩擦力的大小”的实验探究中,必须将长木板匀速拉出________(2)如图乙所示的实验探究中,只能得到平抛运动在竖直方向的分运动是自由落体运动,而不能得出水平方向的运动是匀速直线运动________(3)如图丙所示,在“研究向心力的大小与质量、角速度和半径之间的关系”的实验探究中,采取的主要物理方法是理想实验法________.12. 物体以4m/s的速度在半径为8m的水平圆周上运动,它的向心加速度是________m/s2,如果物体的质量是5kg,则需要________N的向心力才能维持它在圆周上的运动.13. 如图所示,A、B为啮合传动的两齿轮,已知R A=2R B,则A、B两轮边缘上两点角速度之比ωA:ωB=________,向心加速度之比a A:a B=________.14. 某中学的高一同学在学习了圆周运动的知识后,设计了一个课外探究性的课题,名称为:快速测量自行车的骑行速度.自行车的结构如图所示,他的设想是:通过计算踏脚板转动的角速度,推算自行车的骑行速度.经过骑行,他得到如下的数据:在时间t秒内踏脚板转动的圈数为N,那么脚踏板转动的角速度=________;为了推算自行车的骑行速度,这位同学还测量自行车的半径为R,计算了牙盘的齿数为m,飞轮齿数为n,则自行车骑行速度的计算公式可用以上已知数据表示为v=________.15. 一质点做半径为1m的匀速圆周运动,在1s的时间内转过30∘,则质点的角速度为________,线速度为________,向心加速度为________.16. 如图所示,在“用圆锥摆验证向心力表达式”的实验中,若测得小球质量为m,圆半径为r,小球到悬点大竖直高度为ℎ,则小球所受向心力大小为________.17. 汽车过平直桥、拱形桥、凹形桥,分别画出受力分析示意图并列出方程.18. 摩托车手在水平地面转弯时为了保证安全,将身体及车身倾斜,车轮与地面间的动摩擦因数为μ,车手与车身总质量为M,转弯半径为R.为不产生侧滑,转弯时速度应不大于________;设转弯、不侧滑时的车速为v,则地面受到摩托车的作用力大小为________.19. 自行车的大齿轮、小齿轮、后轮是相互关联的三个转动部分,三个轮子的半径不一样,它们的边缘有三个点分别为A、B、C,如图所示,当自行车运动时A、B、C三点中角速度最小的是________,向心加速度最大的是________.20. 某兴趣小组用如图甲所示的装置与传感器结合验证向心力表达式.实验时用手拨动旋臂产生圆周运动,力传感器和光电门固定在实验器上,实时测量角速度和向心力.(1)电脑通过光电门测量挡光杆通过光电门的时间,并由挡光杆的宽度d、挡光杆通过光电门的时间Δt、挡光杆做圆周运动的半径r自动计算出砝码做圆周运动的角速度,则其计算角速度的表达式为________.(2)图乙中取①②两条曲线为相同半径、不同质量下向心力与角速度的关系图线,由图可知.曲线①对应的砝码质量________(填“大于”或“小于”)曲线②对应的砝码质量.21. 如图所示,竖直平面内粗糙水平轨道AB与光滑半圆轨道BC相切于B点,一质量m1=1kg的小滑块P(视为质点)在水平向右的力F作用下,从A点以v0=0.5m/s的初速度滑向B点,当滑块P滑到AB正中间时撤去力F,滑块P运动到B点时与静止在B点的质量m2=2kg的小滑块Q(视为质点)发生弹性碰撞(碰撞时间极短),碰撞后小滑块Q恰好能滑到半圆轨道的最高点C,并且从C点飞出后又恰好落到AB的中点,小滑块P恰好也能回到AB的中点.已知半圆轨道半径R=0.9m,重力加速度g=10m/s2,求:(1)与Q碰撞前的瞬间,小滑块P的速度大小;(2)力F所做的功.22. 如图所示,长为L的轻绳下端连着质量为m的小球,上端悬于天花板上。
《圆周运动》练习题 (附解析)

在圆周运动中,最常见和最简单的是匀速圆周运动(因为速度是矢量,所以匀速圆周运动实际上是指匀速率圆周运动)。
一、选择题1.下列有关洗衣机中脱水筒的脱水原理的说法正确的是( )A.水滴受离心力作用而背离圆心方向甩出B.水滴受到向心力,由于惯性沿切线方向甩出C.水滴受到的离心力大于它受到的向心力,而沿切线方向甩出D.水滴与衣服间的附着力小于它所需要的向心力,于是水滴沿切线方向甩出2.关于铁道转弯处内外铁轨间的高度关系,下列说法中正确的是( )A.内、外轨一样高,以防列车倾倒造成翻车事故B.因为列车在转弯处有向内倾倒的可能,故一般使内轨高于外轨,以防列车翻倒C.外轨比内轨略高,这样可以使列车顺利转弯,减少车轮与铁轨的挤压D.以上说法均不正确3.在世界一级方程式锦标赛中,赛车在水平路面上转弯时,常常在弯道上冲出跑道,其原因是( )A.是由于赛车行驶到弯道时,运动员未能及时转动方向盘造成的B.是由于赛车行驶到弯道时,没有及时加速造成的C.是由于赛车行驶到弯道时,没有及时减速造成D.是由于在弯道处汽车受到的摩擦力比在直道上小造成的4.在光滑的轨道上,小球滑下经过圆弧部分的最高点A时,恰好不脱离轨道,此时小球受到的作用力是( )A.重力、弹力和向心力B.重力和弹力C.重力和向心力D.重力5.用长为L的细绳拴着质量为m的小球在竖直平面内做圆周运动,正确的说法是( )A.小球在圆周最高点时所受的向心力一定为重力B.小球在最高点时绳子的拉力有可能为零C.若小球刚好能在竖直平面内做圆周运动,则其在最高点的速率为0D.小球过最低点时绳子的拉力一定大于小球的重力6.在高速公路的拐弯处,路面建造得外高内低,即当车向右拐弯时,司机左侧的路面比右侧的要高一些,路面与水平面间的夹角为θ,设拐弯路段是半径为R的圆弧,要使车速为v时车轮与路面之间的横向(即垂直于前进方向)摩擦力等于零,θ应等于( )A.sin θ=B.tan θ=C.sin 2θ=D.cot θ=7.长为l的轻杆,一端固定一个小球,另一端固定在光滑的水平轴上,使小球在竖直面内做圆周运动,关于最高点的速度v,下列说法正确的是( )A.v的极小值为B.v由零逐渐增大,向心力也增大C.当v由逐渐增大时,杆对小球的弹力逐渐增大D.当v由逐渐减小时,杆对小球的弹力逐渐增大二、非选择题8.一根长l=0.625 m的细绳,一端拴一质量m=0.4 kg 的小球,使其在竖直平面内绕绳的另一端做圆周运动,g取10 m/s2,求:(1)小球通过最高点时的最小速度;(2)若小球以速度v=3.0 m/s通过圆周最高点时,绳对小球的拉力多大?若此时绳突然断了,小球将如何运动?参考答案1.D [根据离心运动的特点知,水滴的离心现象是由于水滴与衣服间的附着力小于水滴运动所需要的向心力,即提供的向心力不足,所以水滴沿切线方向甩出,正确选项为D.]2.C [铁道转弯处外轨比内轨略高,从而使支持力的水平方向分力可提供一部分向心力,以减少车轮与铁轨的挤压避免事故发生,C对,A、B、D错.]3.C [赛车在水平弯道上行驶时,摩擦力提供向心力,而且速度越大,需要的向心力越大,如不及时减速,当摩擦力不足以提供向心力时,赛车就会做离心运动,冲出跑道,故C正确.]4.D [小球在最高点恰好不脱离轨道时,小球受轨道的弹力为零,而重力恰好提供向心力,向心力并不是小球受到的力,而是根据力的作用效果命名的,故D正确,A、B、C均错误.]5.BD [设在最高点小球受的拉力为F1,最低点受到的拉力为F2,当在最高点v1>时,则F1+mg=m,即向心力由拉力F1与mg的合力提供,A错;当v1=时,F1=0,B对;v1=为球经过最高点的最小速度,即小球在最高点的速率不可能为0,C错;在最低点,F2-mg=m,F2=mg+m,所以经最低点时,小球受到绳子的拉力一定大于它的重力,D对.]6.B[当车轮与路面的横向摩擦力等于零时,汽车受力如图所示,则有:Nsin θ=m,Ncos θ=mg,解得:tan θ=,故B正确.]7.BCD [由于是轻杆,即使小球在最高点速度为零,小球也不会掉下来,因此v 的极小值是零;v由零逐渐增大,由F=可知,F也增大,B对;当v=时,F==mg,此时杆恰对小球无作用力,向心力只由其自身重力来提供;当v由增大时,则=mg+F′F′=m-mg,杆对球的力为拉力,且逐渐增大;当v由减小时,杆对球为支持力.此时,mg-F′=,F′=mg-,支持力F′逐渐增大,杆对球的拉力、支持力都为弹力,所以C、D也对,故选B、C、D.]8.(1)2.5 m/s(2)1.76 N 平抛运动解析(1)小球通过圆周最高点时,受到的重力G=mg必须全部作为向心力F向,否则重力G中的多余部分将把小球拉进圆内,而不能实现沿竖直圆周运动.所以小球通过圆周最高点的条件应为F向≥mg,当F向=mg时,即小球受到的重力刚好全部作为通过圆周最高点的向心力,绳对小球恰好没有力的作用,此时小球的速度就是通过圆周最高点的最小速度v0,由向心力公式有:mg=m解得:G=mg=mv0== m/s=2.5 m/s.(2)小球通过圆周最高点时,若速度v大于最小速度v0,所需的向心力F向将大于重力G,这时绳对小球要施加拉力F,如图所示,此时有F+mg=m解得:F=m-mg=(0.4×-0.4×10) N=1.76 N若在最高点时绳子突然断了,则提供的向心力mg小于需要的向心力m,小球将沿切线方向飞出做离心运动(实际上是平抛运动).。
物理圆周运动经典习题(含详细答案)

1. 在观看双人花样滑冰表演时,观众有时会看到女运动员被男运动员拉着离开冰面在空中做水平方向的匀速圆周运动.已知通过目测估计拉住女运动员的男运动员的手臂和水平冰面的夹角约为45°,重力加速度为g=10 m/s2,若已知女运动员的体重为35 kg,据此可估算该女运动员()A.受到的拉力约为350 2 N B.受到的拉力约为350 NC.向心加速度约为10 m/s2D.向心加速度约为10 2 m/s2图4-2-111. 解析:本题考查了匀速圆周运动的动力学分析.以女运动员为研究对象,受力分析如图.根据题意有G=mg=350 N;则由图易得女运动员受到的拉力约为350 2 N,A正确;向心加速度约为10 m/s2,C正确.答案:AC2.中央电视台《今日说法》栏目最近报道了一起发生在湖南长沙某区湘府路上的离奇交通事故.¥家住公路拐弯处的张先生和李先生家在三个月内连续遭遇了七次大卡车侧翻在自家门口的场面,第八次有辆卡车冲进李先生家,造成三死一伤和房屋严重损毁的血腥惨案.经公安部门和交通部门协力调查,画出的现场示意图如图4-2-12所示.交警根据图示作出以下判断,你认为正确的是() A.由图可知汽车在拐弯时发生侧翻是因为车做离心运动B.由图可知汽车在拐弯时发生侧翻是因为车做向心运动C.公路在设计上可能内(东)高外(西)低D.公路在设计上可能外(西)高内(东)低图4-2-12 2解析:由题图可知发生事故时,卡车在做圆周运动,从图可以看出卡车冲入民宅时做离心运动,故选项A正确,选项B错误;如果外侧高,卡车所受重力和支持力提供向心力,则卡车不会做离心运动,也不会发生事故,故选项C正确.答案:AC%3. (2010·湖北部分重点中学联考)如图4-2-13所示,质量为m的小球置于正方体的光滑盒子中,盒子的边长略大于球的直径.某同学拿着该盒子在竖直平面内做半径为R的匀速圆周运动,已知重力加速度为g,空气阻力不计,要使在最高点时盒子与小球之间恰好无作用力,则()A.该盒子做匀速圆周运动的周期一定小于2πR gB.该盒子做匀速圆周运动的周期一定等于2πR gC.盒子在最低点时盒子与小球之间的作用力大小可能小于2mgD.盒子在最低点时盒子与小球之间的作用力大小可能大于2mg图4-2-133解析:要使在最高点时盒子与小球之间恰好无作用力,则有mg =mv 2R ,解得该盒子做匀速圆周运动的速度v =gR ,该盒子做匀速圆周运动的周期为T =2πR v =2πR g .选项A 错误,B 正确;在最低点时,盒子与小球之间的作用力和小球重力的合力提供小球运动的向心力,由F -mg =mv 2R ,解得F =2mg ,选项C 、D 错误. 答案:B"4.图示所示, 为某一皮带传动装置.主动轮的半径为r 1,从动轮的半径为r 2.已知主动轮做顺时针转动,转速为n ,转动过程中皮带不打滑.下列说法正确的是( )A .从动轮做顺时针转动B .从动轮做逆时针转动C .从动轮的转速为r 1r 2nD .从动轮的转速为r 2r 1n4解析:本题考查的知识点是圆周运动.因为主动轮顺时针转动,从动轮通过皮带的摩擦力带动转动,所以从动轮逆时针转动,选项A 错误B 正确;由于通过皮带传动,皮带与轮边缘接触处的速度相等,所以由2πnr 1=2πn 2r 2 n 为频率,2πn 为角速度,得从动轮的转速为n 2=nr 1r 2,选项C 正确D 错误. 答案:BC5.质量为m 的石块从半径为R 的半球形的碗口下滑到碗的最低点的过程中,如果摩擦力的作用使得石块的速度大小不变,如图4-2-17所示,那么( )A .因为速率不变,所以石块的加速度为零B .石块下滑过程中受的合外力越来越大,C .石块下滑过程中受的摩擦力大小不变D .石块下滑过程中的加速度大小不变,方向始终指向球心图4-2-175解析:由于石块做匀速圆周运动,只存在向心加速度,大小不变,方向始终指向球心,D 对,A 错.由F 合=F 向=ma 向知合外力大小不变,B 错,又因石块在运动方向(切线方向)上合力为零,才能保证速率不变,在该方向重力的分力不断减小,所以摩擦力不断减小,C 错.答案:D6.2008年4月28日凌晨,山东境内发生两列列车相撞事故,造成了大量人员伤亡和财产损失.引发事故的主要原因是其中一列列车转弯时超速行驶.如图4-2-18所示,是一种新型高速列车,当它转弯时,车厢会自动倾斜,提供转弯需要的向心力;假设这种新型列车以360 km/h 的速度在水平面内转弯,弯道半径为1.5 km ,则质量为75 kg 的乘客在列车转弯过程中所受到的合外力为( ):A .500 NB .1 000 NC .500 2 ND .0图4-2-186解析:360 km/h =100 m/s ,乘客在列车转弯过程中所受的合外力提供向心力F =mv 2r =75×1002×103 N =500 N.答案:A7.如图4-2-19甲所示,一根细线上端固定在S 点,下端连一小铁球A ,让小铁球在水平面内做匀速圆周运动,此装置构成一圆锥摆(不计空气阻力).下列说法中正确的是( )A .小球做匀速圆周运动时,受到重力、绳子的拉力和向心力作用·B .小球做匀速圆周运动时的角速度一定大于 g l (l 为摆长)C .另有一个圆锥摆,摆长更大一点,两者悬点相同,如图4-2-19乙所示,如果改变两小球的角速度,使两者恰好在同一水平面内做匀速圆周运动,则B 球的角速度大于A 球的角速度D .如果两个小球的质量相等,则在图乙中两条细线受到的拉力相等图4-2-197解析:如下图所示,小铁球做匀速圆周运动时,只受到重力和绳子的拉力,而向心力{是由重力和拉力的合力提供,故A 项错误.根据牛顿第二定律和向心力公式可得:mg tan θ=mlω2sin θ,即ω=g /l cos θ.当小铁球做匀速圆周运动时,θ一定大于零,即cos θ一定小于1,因此,当小铁球做匀速圆周运动时角速度一定大于g /l ,故B 项正确.设点S 到点O 的距离为h ,则mg tan θ=mhω2tan θ,即ω=g /h ,若两圆锥摆的悬点相同,且两者恰好在同一水平面内做匀速圆周运动时,它们的角速度大小一定相等,即C 项错误.如右上图所示,细线受到的拉力大小为F T =mg cos θ,当两个小球的质量相等时,由于θA <θB ,即cos θA >cos θB ,所示A 球受到的拉力小于B 球受到的拉力,进而可以判断两条细线受到的拉力大小不相等,故D 项错误.答案:B8.汽车甲和汽车乙质量相等,以相等速率沿同一水平弯道做匀速圆周运动,甲车在乙车的外侧.两车沿半径方向受到的摩擦力分别为Ff 甲和Ff 乙.以下说法正确的是( )A .Ff 甲小于Ff 乙B .Ff 甲等于Ff 乙C .Ff 甲大于Ff 乙D .Ff 甲和Ff 乙大小均与汽车速率无关8解析:本题重点考查的是匀速圆周运动中向心力的知识.根据题中的条件可知,两车在水平面做匀速圆周运动,则地面对车的摩擦力来提供其做圆周运动的向心力,则F 向=f ,又有向心力的表达式F 向=mv 2r ,因为两车的质量相同,两车运行的速率相同,因此轨道半径大的车的向心力小,即摩擦力小,A 正确.!答案:A9. 在高速公路的拐弯处,通常路面都是外高内低.如图4-2-20所示,在某路段汽车向左拐弯,司机左侧的路面比右侧的路面低一些.汽车的运动可看作是做半径为R 的圆周运动.设内外路面高度差为h ,路基的水平宽度为d ,路面的宽度为L .已知重力加速度为g .要使车轮与路面之间的横向摩擦力(即垂直于前进方向)等于零,则汽车转弯时的车速应等于( ) A. gRh L B. gRh d C. gRL h D. gRdh图4-2-209解析:考查向心力公式.汽车做匀速圆周运动,向心力由重力与斜面对汽车的支持力的合力提供,且向心力的方向水平,向心力大小F 向=mg tan θ,根据牛顿第二定律:F 向=m v 2R ,tan θ=h d ,解得汽车转弯时的车速v = gRh d ,B 对.{答案:B 10.如图4-2-24所示,一个竖直放置的圆锥筒可绕其中心OO ′转动,筒内壁粗糙,筒口半径和筒高分别为R 和H ,筒内壁A 点的高度为筒高的一半.内壁上有一质量为m 的小物块随圆锥筒一起做匀速转动,则下列说法正确的是( )A .小物块所受合外力指向O 点B .当转动角速度ω=2gH R 时,小物块不受摩擦力作用C .当转动角速度ω> 2gH R 时,小物块受摩擦力沿AO 方向D .当转动角速度ω< 2gH R 时,小物块受摩擦力沿AO 方向{ 图4-2-2410解析:匀速圆周运动物体所受合外力提供向心力,指向物体圆周运动轨迹的圆心,A 项错;当小物块在A 点随圆锥筒做匀速转动,且其所受到的摩擦力为零时,小物块在筒壁A 点时受到重力和支持力的作用,它们的合力提供向心力,设筒转动的角速度为ω,有:mg tan θ=mω2·R 2,由几何关系得:tanθ=H R ,联立以上各式解得ω=2gH R ,B 项正确;当角速度变大时,小物块所需向心力增大,故摩擦力沿AO 方向,其水平方向分力提供部分向心力,C 项正确;当角速度变小时,小物块所需向心力减小,故摩擦力沿OA 方向,抵消部分支持力的水平分力,D 项错.答案:BC11. 如图4-2-25所示,一水平光滑、距地面高为h 、边长为a 的正方形MNPQ 桌面上,用长为L 的不可伸长的轻绳连接质量分别为m A 、m B 的A 、B 两小球,两小球在绳子拉力的作用下,绕绳子上的某点O 以不同的线速度做匀速圆周运动,圆心O 与桌面中心重合,已知m A =0.5 kg ,L =1.2 m ,L AO =0.8 m ,a =2.1 m ,h =1.25 m ,A 球的速度大小v A =0.4 m/s ,重力加速度g 取10 m/s 2,求:(1)绳子上的拉力F 以及B 球的质量m B ;(2)若当绳子与MN 平行时突然断开,则经过 s 两球的水平距离;(与地面撞击后。
物理生活中的圆周运动练习题20篇含解析

物理生活中的圆周运动练习题20篇含解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,在水平桌面上离桌面右边缘3.2m 处放着一质量为0.1kg 的小铁球(可看作质点),铁球与水平桌面间的动摩擦因数μ=0.2.现用水平向右推力F =1.0N 作用于铁球,作用一段时间后撤去。
铁球继续运动,到达水平桌面边缘A 点飞出,恰好落到竖直圆弧轨道BCD 的B 端沿切线进入圆弧轨道,碰撞过程速度不变,且铁球恰好能通过圆弧轨道的最高点D .已知∠BOC =37°,A 、B 、C 、D 四点在同一竖直平面内,水平桌面离B 端的竖直高度H =0.45m ,圆弧轨道半径R =0.5m ,C 点为圆弧轨道的最低点,求:(取sin37°=0.6,cos37°=0.8)(1)铁球运动到圆弧轨道最高点D 点时的速度大小v D ;(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小F C ;(计算结果保留两位有效数字) (3)铁球运动到B 点时的速度大小v B ; (4)水平推力F 作用的时间t 。
【答案】(1)铁球运动到圆弧轨道最高点D 5;(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小为6.3N ;(3)铁球运动到B 点时的速度大小是5m/s ; (4)水平推力F 作用的时间是0.6s 。
【解析】 【详解】(1)小球恰好通过D 点时,重力提供向心力,由牛顿第二定律可得:2Dmv mg R=可得:D 5m /s v =(2)小球在C 点受到的支持力与重力的合力提供向心力,则:2Cmv F mg R-=代入数据可得:F =6.3N由牛顿第三定律可知,小球对轨道的压力:F C =F =6.3N(3)小球从A 点到B 点的过程中做平抛运动,根据平抛运动规律有:2y 2gh v = 得:v y =3m/s小球沿切线进入圆弧轨道,则:35m/s 370.6y B v v sin ===︒(4)小球从A 点到B 点的过程中做平抛运动,水平方向的分速度不变,可得:3750.84/A B v v cos m s =︒=⨯=小球在水平面上做加速运动时:1F mg ma μ-=可得:218/a m s =小球做减速运动时:2mg ma μ=可得:222/a m s =-由运动学的公式可知最大速度:1m v a t =;22A m v v a t -= 又:222m m A v v vx t t +=⋅+⋅ 联立可得:0.6t s =2.如图所示,水平长直轨道AB 与半径为R =0.8m 的光滑14竖直圆轨道BC 相切于B ,BC 与半径为r =0.4m 的光滑14竖直圆轨道CD 相切于C ,质量m =1kg 的小球静止在A 点,现用F =18N 的水平恒力向右拉小球,在到达AB 中点时撤去拉力,小球恰能通过D 点.已知小球与水平面的动摩擦因数μ=0.2,取g =10m/s 2.求: (1)小球在D 点的速度v D 大小; (2)小球在B 点对圆轨道的压力N B 大小; (3)A 、B 两点间的距离x .【答案】(1)2/D v m s = (2)45N (3)2m 【解析】 【分析】 【详解】(1)小球恰好过最高点D ,有:2Dv mg m r=解得:2m/s D v = (2)从B 到D ,由动能定理:2211()22D B mg R r mv mv -+=- 设小球在B 点受到轨道支持力为N ,由牛顿定律有:2Bv N mg m R-=N B =N联解③④⑤得:N =45N (3)小球从A 到B ,由动能定理:2122B x Fmgx mv μ-= 解得:2m x =故本题答案是:(1)2/D v m s = (2)45N (3)2m 【点睛】利用牛顿第二定律求出速度,在利用动能定理求出加速阶段的位移,3.如图所示,半径为R 的四分之三圆周轨道固定在竖直平面内,O 为圆轨道的圆心,D 为圆轨道的最高点,圆轨道内壁光滑,圆轨道右侧的水平面BC 与圆心等高.质量为m 的小球从离B 点高度为h 处(332R h R ≤≤)的A 点由静止开始下落,从B 点进入圆轨道,重力加速度为g ).(1)小球能否到达D 点?试通过计算说明; (2)求小球在最高点对轨道的压力范围;(3)通过计算说明小球从D 点飞出后能否落在水平面BC 上,若能,求落点与B 点水平距离d 的范围.【答案】(1)小球能到达D 点;(2)03F mg ≤'≤;(3)()()21221R d R ≤≤【解析】 【分析】 【详解】(1)当小球刚好通过最高点时应有:2Dmv mg R =由机械能守恒可得:()22Dmv mg h R -=联立解得32h R =,因为h 的取值范围为332R h R ≤≤,小球能到达D 点; (2)设小球在D 点受到的压力为F ,则2Dmv F mg R ='+ ()22Dmv mg h R ='- 联立并结合h 的取值范围332R h R ≤≤解得:03F mg ≤≤ 据牛顿第三定律得小球在最高点对轨道的压力范围为:03F mg ≤'≤(3)由(1)知在最高点D 速度至少为min D v =此时小球飞离D 后平抛,有:212R gt =min min D x v t =联立解得min x R =>,故能落在水平面BC 上,当小球在最高点对轨道的压力为3mg 时,有:2max 3Dv mg mg m R+=解得max D v =小球飞离D 后平抛212R gt =', max max D x v t ='联立解得max x =故落点与B 点水平距离d 的范围为:)()11R d R ≤≤4.如图所示,水平转台上有一个质量为m 的物块,用长为2L 的轻质细绳将物块连接在转轴上,细绳与竖直转轴的夹角θ=30°,此时细绳伸直但无张力,物块与转台间动摩擦因数为μ,设最大静摩擦力等于滑动摩擦力.物块随转台由静止开始缓慢加速转动,重力加速度为g ,求:(1)当转台角速度ω1为多大时,细绳开始有张力出现; (2)当转台角速度ω2为多大时,转台对物块支持力为零;(3)转台从静止开始加速到角速度3ω=.【答案】(1)1gLμω=(2)233g Lω=(3)132mgL ⎛ ⎝【解析】 【分析】 【详解】(1)当最大静摩擦力不能满足所需要向心力时,细绳上开始有张力:212sin mg m L μωθ=⋅代入数据得1gLμω=(2)当支持力为零时,物块所需要的向心力由重力和细绳拉力的合力提供22tan 2sin mg m L θωθ=⋅代入数据得233g Lω=(3)∵32ωω>,∴物块已经离开转台在空中做圆周运动.设细绳与竖直方向夹角为α,有23tan 2sin mg m L αωα=⋅代入数据得60α=︒转台对物块做的功等于物块动能增加量与重力势能增加量的总和即231(2sin 60)(2cos302cos60)2W m L mg L L ω=⋅+-o o o 代入数据得:1(3)2W mgL =【点睛】本题考查牛顿运动定律和功能关系在圆周运动中的应用,注意临界条件的分析,至绳中出现拉力时,摩擦力为最大静摩擦力;转台对物块支持力为零时,N=0,f=0.根据能量守恒定律求转台对物块所做的功.5.三维弹球()3DPinball 是Window 里面附带的一款使用键盘操作的电脑游戏,小王同学受此启发,在学校组织的趣味运动会上,为大家提供了一个类似的弹珠游戏.如图所示,将一质量为0.1m kg =的小弹珠(可视为质点)放在O 点,用弹簧装置将其弹出,使其沿着光滑的半圆形轨道OA 和AB 进入水平桌面BC ,从C 点水平抛出.已知半圆型轨道OA 和AB 的半径分别为0.2r m =,0.4R m =,BC 为一段长为 2.0L m =的粗糙水平桌面,小弹珠与桌面间的动摩擦因数为0.4μ=,放在水平地面的矩形垫子DEFG 的DE 边与BC 垂直,C 点离垫子的高度为0.8h m =,C 点离DE 的水平距离为0.6x m =,垫子的长度EF 为1m ,210/.g m s =求:()1若小弹珠恰好不脱离圆弧轨道,在B 位置小弹珠对半圆轨道的压力;()2若小弹珠恰好不脱离圆弧轨道,小弹珠从C 点水平抛出后落入垫子时距左边缘DE 的距离;()3若小弹珠从C 点水平抛出后不飞出垫子,小弹珠被弹射装置弹出时的最大初速度.【答案】(1)6N (2)0.2m (3)26/m s 【解析】 【分析】(1)由牛顿第二定律求得在A 点的速度,然后通过机械能守恒求得在B 点的速度,进而由牛顿第二定律求得支持力,即可由牛顿第三定律求得压力;(2)通过动能定理求得在C 点的速度,即可由平抛运动的位移公式求得距离;(3)求得不飞出垫子弹珠在C 点的速度范围,再通过动能定理求得初速度范围,即可得到最大初速度. 【详解】(1)若小弹珠恰好不脱离圆弧轨道,那么对弹珠在A 点应用牛顿第二定律有2Amv mg R=, 所以,2/A v gR m s ==;那么,由弹珠在半圆轨道上运动只有重力做功,机械能守恒可得:2211222B A mv mv mgR =+,所以,2425/B A v v gR m s =+=; 那么对弹珠在B 点应用牛顿第二定律可得:弹珠受到半圆轨道的支持力26BN mv F mg N R=+=,方向竖直向上;故由牛顿第三定律可得:在B 位置小弹珠对半圆轨道的压力6N N F N ==,方向竖直向下;(2)弹珠在BC 上运动只有摩擦力做功,故由动能定理可得:221122C B mgL mv mv μ-=-,所以,2/C v m s ==;设小弹珠从C 点水平抛出后落入垫子时距左边缘DE 的距离为d ,那么由平抛运动的位移公式可得:212h gt =,0.8C x d v t v m +===, 所以,0.2d m =;(3)若小弹珠从C 点水平抛出后不飞出垫子,那么弹珠做平抛运动的水平距离0.6 1.6m s m ≤≤;故平抛运动的初速度'C s v t== 所以,1.5/'4/C m s v m s ≤≤;又有弹珠从O 到C 的运动过程只有重力、摩擦力做功,故由动能定理可得:()2201122'22C mg R r mgL mv mv μ--=-; 所以,0/v s ==,0//s v s≤≤,所以小弹珠被弹射装置弹出时的最大初速度为/s ; 【点睛】经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解.6.如图所示,一滑板放置在光滑的水平地面上,右侧紧贴竖直墙壁,滑板由圆心为O 、半径为R 的四分之一光滑圆弧轨道和水平轨道两部分组成,且两轨道在B 点平滑连接,整个系统处于同一竖直平面内.现有一可视为质点的小物块从A 点正上方P 点处由静止释放,落到A 点的瞬间垂直于轨道方向的分速度立即变为零,之后沿圆弧轨道AB 继续下滑,最终小物块恰好滑至轨道末端C 点处.已知滑板的质量是小物块质量的3倍,小物块滑至B 点时对轨道的压力为其重力的3倍,OA 与竖直方向的夹角为θ=60°,小物块与水平轨道间的动摩擦因数为μ=0.3,重力加速度g 取102/m s ,不考虑空气阻力作用,求:(1)水平轨道BC 的长度L ; (2)P 点到A 点的距离h . 【答案】(1)2.5R (2)23R 【解析】 【分析】(1)物块从A 到B 的过程中滑板静止不动,先根据物块在B 点的受力情况求解B 点的速度;滑块向左滑动时,滑板向左也滑动,根据动量守恒和能量关系列式可求解水平部分的长度;(2)从P 到A 列出能量关系;在A 点沿轨道切向方向和垂直轨道方向分解速度;根据机械能守恒列出从A 到B 的方程;联立求解h . 【详解】(1)在B 点时,由牛顿第二定律:2BB v N mg m R-=,其中N B =3mg ;解得2B v gR =从B 点向C 点滑动的过程中,系统的动量守恒,则(3)B mv m m v =+; 由能量关系可知:2211(3)22B mgL mv m m v μ=-+ 联立解得:L=2.5R ;(2)从P 到A 点,由机械能守恒:mgh=12mv A 2; 在A 点:01sin 60A A v v =,从A 点到B 点:202111(1cos60)22A B mv mgR mv +-= 联立解得h=23R7.如图所示,AB 为倾角37θ=︒的斜面轨道,BP 为半径R =1m 的竖直光滑圆弧轨道,O 为圆心,两轨道相切于B 点,P 、O 两点在同一竖直线上,轻弹簧一端固定在A 点,另一端在斜面上C 点处,轨道的AC 部分光滑,CB 部分粗糙,CB 长L =1.25m ,物块与斜面间的动摩擦因数为μ=0.25,现有一质量m =2kg 的物块在外力作用下将弹簧缓慢压缩到D 点后释放(不栓接),物块经过B 点后到达P 点,在P 点物块对轨道的压力大小为其重力的1.5倍,sin370.6,37cos 0.8︒︒==,g=10m/s 2.求:(1)物块到达P 点时的速度大小v P ; (2)物块离开弹簧时的速度大小v C ;(3)若要使物块始终不脱离轨道运动,则物块离开弹簧时速度的最大值v m . 【答案】(1)5m/s P v = (2)v C =9m/s (3)6m/s m v = 【解析】 【详解】(1)在P 点,根据牛顿第二定律:2PP v mg N m R+=解得: 2.55m/s P v gR ==(2)由几何关系可知BP 间的高度差(1cos37)BP h R =+︒物块C 至P 过程中,根据动能定理:2211sin 37cos37=22BP P C mgL mgh mgL mv mv μ-︒--︒-联立可得:v C =9m/s(3)若要使物块始终不脱离轨道运动,则物块能够到达的最大高度为与O 等高处的E 点, 物块C 至E 过程中根据动能定理:21cos37sin 37sin 53=02m mgL mgL mgR mv μ-︒-︒-︒-解得:6m/s m v =8.三维弹球(DPmb1D 是Window 里面附带的一款使用键盘操作的电脑游戏,小明同学受此启发,在学校组织的趣味班会上,为大家提供了一个类似的弹珠游戏.如图所示,将一质量为0.1kg 的小弹珠(可视为质点)放在O 点,用弹簧装置将其弹出,使其沿着光滑的半圆形轨道OA 和AB 运动,BC 段为一段长为L =5m 的粗糙水平面,与一倾角为45°的斜面CD 相连,圆弧OA 和AB 的半径分别为r =0.49m ,R =0.98m ,滑块与BC 段的动摩擦因数为μ=0.4,C 点离地的高度为H =3.2m ,g 取10m/s 2,求(1)要使小弹珠恰好不脱离圆弧轨道运动到B 点,在B 位置小滑块受到半圆轨道的支持力的大小;(2)在(1)问的情况下,求小弹珠落点到C 点的距离?(3)若在斜面中点竖直立一挡板,在不脱离圆轨道的前提下,使得无论弹射速度多大,小弹珠不是越不过挡板,就是落在水平地面上,则挡板的最小长度d 为多少?【答案】44.1,(2) 6.2m ;(3) 0.8m 【解析】 【详解】(1)弹珠恰好通过最高点A 时,由牛顿第二定律有:mg =m 2Av r从A 点到B 点由机械能守恒律有:mg×2R =221122B A mv mv 在B 点时再由于牛顿第二定律有:F N ﹣mg =m 2Bv R联立以上几式可得:F N =5.5N ,v B 44.1m/s ,(2)弹珠从B 至C 做匀速直线运动,从C 点滑出后做平抛运动,若恰能落在D 点 则水平方向:x =v′B t 竖直方向:y =H =212gt 又:x =y 解得:v′B =4m/s而v B >v′B =4m/s ,弹珠将落在水平地面上, 弹珠做平抛运动竖直方向:H =212gt ,得t =0.8s 则水平方向:x =v B t 421025故小球落地点距c 点的距离:s =22x H + 解得:s =6.2m(3)临界情况是小球擦着挡板落在D 点,经前面分析可知,此时在B 点的临界速度:v′B =4m/s则从C 点至挡板最高点过程中水平方向:x'=v′B t' 竖直方向:y′=2H ﹣d =212gt ' 又:x'=2H 解得:d =0.8m9.如图所示为某款弹射游戏示意图,光滑水平台面上固定发射器、竖直光滑圆轨道和粗糙斜面AB ,竖直面BC 和竖直靶板MN .通过轻质拉杆将发射器的弹簧压缩一定距离后释放,滑块从O 点弹出并从E 点进人圆轨道,绕转一周后继续在平直轨道上前进,从A 点沿斜面AB 向上运动,滑块从B 点射向靶板目标(滑块从水平面滑上斜面时不计能量损失).已知滑块质量5m g =,斜面倾角37θ=︒,斜面长25L cm =,滑块与斜面AB 之间的动摩擦因数0.5μ=,竖直面BC 与靶板MN 间距离为d ,B 点离靶板上10环中心点P 的竖直距离20h cm =,忽略空气阻力,滑块可视为质点.已知sin370.6,37cos 0.8︒︒==,取210/g m s =,求:(1)若要使滑块恰好能够到达B 点,则圆轨道允许的最大半径为多大?(2)在另一次弹射中发现滑块恰能水平击中靶板上的P 点,则此次滑块被弹射前弹簧被压缩到最短时的弹性势能为多大? (结果保留三位有效数字)(3)若MN 板可沿水平方向左右移动靠近或远高斜面,以保证滑块从B 点出射后均能水平击中靶板.以B 点为坐标原点,建立水平竖直坐标系(如图) ,则滑块水平击中靶板位置坐标(),x y 应满足什么条件?【答案】(1)0.1R m = (2) 24.0310J p E -=⨯ (3)38y x =,或38y x =,或83x y = 【解析】 【详解】(1)设圆轨道允许的半径最大值为R 在圆轨道最高点:2mv mg R= 要使滑块恰好能到达B 点,即:0B v =从圆轨道最高点至B 点的过程:21sin 2cos 02mgL mgR mgL mv θμθ-+-=-代入数据可得0.1R m =(2)滑块恰能水平击中靶板上的P 点,B 到P 运动的逆过程为平抛运动 从P 到B :t =y gt =v3sin y v v θ=代入数据可得:10m/s 3B v =从弹射至点的过程:21sin cos 02B Ep mgL mgL mv θμθ--=- 代入数据可得:24.0310J Ep -=⨯(3)同理根据平抛规律可知:1tan 372y x =︒ 即38y x = 或38y x = 或83x y =10.如图所示,光滑圆弧的圈心为O ,半径3m R =,圆心角53θ=︒,C 为圆弧的最低点,C 处切线方向水平,与一足够长的水平面相连.从A 点水平抛出一个质量为0.3kg 的小球,恰好从光滑圆弧的B 点的切线方向进人圆弧,进人圆弧时无机械能损失.小球到达圆弧的最低点C 时对轨道的压力为7.9N ,小球离开C 点进人水平面,小球与水平面间的动摩擦因数为0.2.(不计空气阻力,g 取210m/s ,sin530.8︒=,cos530.6︒=),求:(1)小球到达圆弧B 点速度的大小; (2)小球做平抛运动的初速度0v ; (3)小球在水平面上还能滑行多远.【答案】(1)5m/s B v =;(2)03m/s v =;(3)12.25x m = 【解析】 【详解】(1)对C 点小球受力分析,由牛顿第二定律可得:2Cv F mg m R-=解得7m /s c v =从B 到C 由动能定理可得:2211(1)22c B mgR cos mv mv θ-=- 解得:5m /s B v =(2)分解B 点速度0cos 3m /s B v v θ==(3)由C 至最后静止,由动能定理可得:2102c mgx mv μ-=-解得12.25m x =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆周运动练习题
1.下列关于做匀速圆周运动的物体所受的向心力的说法中,正确的是 (选C )
A .物体除其他的力外还要受到—个向心力的作用 C .向心力是一个恒力
B .物体所受的合外力提供向心力 D .向心力的大小—直在变化
2.关于匀速圆周运动的角速度与线速度,下列说法中正确的是(选BC )
A .半径一定,角速度与线速度成反比
B .半径一定,角速度与线速度成正比
C .线速度一定,角速度与半径成反比
D .角速度一定,线速度与半径成正比
3.正常走动的钟表,其时针和分针都在做匀速转动,下列关系中正确的是 (选B)
A .时针和分针的角速度相同
B .分针角速度是时针角速度的12倍
C .时针和分针的周期相同
D .分针的周期是时针周期的12倍
4.A 、B 两个质点,分别做匀速圆周运动,在相同的时间内它们通过的路程之比s A ∶s B =2∶3,转过的角度之比ϕA ∶ϕB =3∶2,则下列说法正确的是(选BC )
A .它们的半径之比R A ∶R
B =2∶3 B .它们的半径之比R A ∶R B =4∶9
C .它们的周期之比T A ∶T B =2∶3
D .它们的周期之比T A ∶T B =3∶2
5. 如图所示的圆锥摆中,摆球A 在水平面上作匀速圆周运动,关于A 的受力情况,下列说法中正确的是(选C )
A .摆球A 受重力、拉力和向心力的作用;
B .摆球A 受拉力和向心力的作用;
C .摆球A 受拉力和重力的作用;
D .摆球A 受重力和向心力的作用。
6.汽车甲和汽车乙质量相等,以相等速度率沿同一水平弯道做匀速圆周运动,甲车在乙车的外侧.两车沿半径方向受到的摩擦力分别为F f 甲和F f 乙,以下说法正确的是(选A )
A . F f 甲小于F f 乙
B . F f 甲等于F f 乙
C . F f 甲大于F f 乙
D . F f 甲和F f 乙大小均与汽车速率无关
7.一辆卡车在丘陵地匀速行驶,地形如图所示,由于轮胎太旧,途中爆胎,爆胎可能性最大的地段应是(选D )
A .a 处
B .b 处
C .c 处
D .d 处
8.游客乘坐过山车,在圆弧轨道最低点处获得的向心加速度达到20 m/s 2,g 取10 m/s 2,
那么在此位置座椅对游客的作用力相当于游客重力的 (选C )
A .1倍
B .2 倍
C .3倍
D .4倍
9.一汽车通过拱形桥顶点时速度为10 m/s ,车对桥顶的压力为车重的4
3,如果要使汽车在桥顶对桥面没有压力,车速至少为(选B )
A .15 m/s
B .20 m/s
C .25 m/s
D .30 m/s 10.如图所示,轻杆的一端有一个小球,另一端有光滑的固定轴O ,现给球一初速度,使球和杆一起绕O 轴在竖直面内转动,不计空气阻力,用F 表示球到达最高点时杆对小球的作用力,则F (选D ) A.一定是拉力 B.一定是推力 C.一定等于零
D.可能是拉力,可能是推力,也可能等于零 (第5题)(第15题)
11.飞机在飞越太平洋上空的过程中,如果保持飞行速度的大小和距离海平面的高度不变,则以下说法中正确的是(选C)
A.飞机做的是匀速直线运动
B.飞机上的乘客对座椅的压力略大于地球对乘客的引力
C.飞机上的乘客对座椅的压力略小于地球对乘客的引力
D.飞机上的乘客对座椅的压力为零
12.一滑雪者连同他的滑雪板质量为70kg ,他滑到凹形的坡底时的速度是20m/s ,坡底的圆弧半径是50m ,则在坡底时雪地对滑雪板的支持力是多少?
1260N
13.质量为m 的小球,用一条绳子系在竖直平面内做圆周运动,小球到达最高点时的速度为v ,到达最低点时的速变为24v gR ,则两位置处绳子所受的张力之差是多少?
6mg
14.汽车沿半径为R = 100m 的圆跑道行驶,设跑道的路面是水平的,路面作用于车的最大静摩擦力是车重的
10
1,要使汽车不致冲出圆跑道,车速最大不能超过多少?
10s m /。