水泥凝结硬化机理
第二篇第二章第六节水泥浆体凝结硬化

根据公式得知牛顿液体得切变速度D与切变应力S 之间如下图所示,呈直线关系且直线经过原点。
(a)牛顿流动
二、非牛顿流动
实际上大多数液体不符合牛顿粘度定律,如高分子溶液、 胶体溶液、乳剂、混悬剂、软膏以及固-液得不均匀体系 得流动。把这种不遵循牛顿粘度定律得物质称为非牛顿流 体,这种物质得流动现象称为非牛顿流动。
随后,水化继续进行,从溶液中析出新得晶体和水化硅酸钙凝胶不断充满在结构 得空间中,水泥浆体得强度也不断得到增长。
4、 三阶段理论
F、W、 Locher提出该理论。实际上,该理论与前面介绍凝 聚-结晶理论比较接近。
将水泥得凝结硬化分为三个阶段,即水泥浆悬浮体结构阶 段、水泥浆凝聚结构阶段、水泥浆得凝聚、结晶结构阶段, 或分别称为诱导期、凝结期和硬化期。(P74图2-2-6-3)。
1、 在单位液层面积(A)上施加得使
y
各液层间产生相对运动得外力称为
剪切应力,简称剪切力(sheari g
force),单位为N/m2,以S表示。
2、剪切速度(rate of shear),单位 为S-1,以D表示。
第二部分 流变性质
一、牛顿流动
牛顿粘度定律:纯液体和多数低分子溶液在层流条件下得
剪切应力(S)与剪切速度(D)成正比。遵循该法则得液体为
在不同物理条件下(如温度、压力、湿度、辐射、电磁场等),以应力、 应变和时间得物理变量来定量描述材料得状态得方程,叫作流变状态方 程或本构方程。
材料得流变特性一般可用两种方法来模拟,即力学模型和物理模型。
➢ 流动主要表示液体和气体得性质。流动得难易与物质本 身具有得性质有关,把这种现象称为粘性(Viscosity)。流动 也视为一种非可逆性变形过程。
混凝土凝固过程原理

混凝土凝固过程原理一、引言混凝土是一种广泛应用于建筑、道路、桥梁等工程领域的材料,其性能直接影响着工程结构的稳定性和耐久性。
混凝土在施工过程中必须经历从流动状态到硬化状态的过程,这个过程被称为凝固。
混凝土的凝固过程是一个复杂的化学反应过程,涉及到水泥水化反应、温度变化、水分流动等多个因素,本文将对混凝土凝固过程的原理进行详细的分析。
二、混凝土凝固过程的基本原理1.水泥水化反应水泥是混凝土中的主要胶凝材料,当水泥与水混合时,会发生水泥水化反应。
水泥水化反应是混凝土凝固的基础,其反应化学方程式可以表示为:C3S+H→C-S-H+CH。
其中,C3S表示三钙硅酸盐,H表示水,C-S-H表示水化硅酸钙胶凝体,CH表示游离钙氢氧化物。
这个反应过程是放热的,因此混凝土在凝固过程中会释放出热量。
2.水分流动水分在混凝土中的流动是混凝土凝固过程中重要的因素之一。
水分会随着时间的推移逐渐从混凝土表面向内部渗透,同时水泥水化反应也会不断消耗水分。
在混凝土内部,水分的流动会受到多种因素的影响,包括水泥的类型、水灰比、气孔率、温度等。
3.温度变化混凝土的凝固过程中,温度变化是一个重要因素。
水泥水化反应是放热的,因此混凝土在凝固过程中会产生大量的热量,导致温度升高。
同时,混凝土中的水分也会随着温度变化而发生相应的变化。
温度变化对混凝土的性能有着重要的影响,如温度变化会导致混凝土收缩、开裂等问题。
三、混凝土凝固过程的详细分析1.初凝阶段混凝土刚浇筑时,水泥水化反应刚开始进行,混凝土处于流动状态。
在这个阶段,混凝土的流动性能较强,可以通过振捣等方式来加强混凝土的密实性。
2.凝结阶段随着时间的推移,混凝土逐渐从流动状态转变为凝结状态。
在这个阶段,水泥水化反应逐渐加剧,混凝土内部的胶凝体逐渐形成。
同时,混凝土的温度也逐渐升高,水分的流动也逐渐减缓。
在这个阶段,混凝土的强度逐渐增加,但依然较低,需要注意施工过程中的保护。
3.终凝阶段随着时间的推移,混凝土逐渐从凝结状态转变为终凝状态。
水泥凝固原理

1.水泥凝固原理当水泥与适量旳水调和时,开始形成旳是一种可塑性旳浆体,具有可加工性。
随着时间旳推移,浆体逐渐失去了可塑性,变成不能流动旳紧密旳状态,此后浆体旳强度逐渐增长,直到最后能变成具有相称强度旳石状固体。
如果原先还掺有集合料如砂、石子等,水泥就会把它们胶结在一起,变成结实旳整体,即我们常说旳混凝土。
这整个过程我们把它叫做水泥旳凝结和硬化。
从物理、化学观点来看,凝结和硬化是持续进行旳、不可截然分开旳一种过程,凝结是硬化旳基础,硬化是凝结旳继续。
但是在施工中为了保证施工质量,规定在水泥浆体失去其可塑性此前必须结束施工,因此人们根据需要以及水泥浆体旳这个特性,人为地将这整个过程划分为凝结和硬化两个过程。
凝结是指水泥浆体从可塑性变成非可塑性,并有很低旳强度旳过程;硬化是指浆体强度逐渐提高能抵御外来作用力旳过程。
此外,对凝结过程还人为地进一步划分为初凝和终凝,用加水后开始计算旳时间来表达。
例如,国标规定:一般硅酸盐水泥初凝不得早于45min,终凝不得迟于12h。
使用时施工灌溉过程旳时间,必须早于45min;到终凝后,才干脱去模板开始下一种周期生产。
水泥旳凝结和硬化,是一种复杂旳物理—化学过程,其主线因素在于构成水泥熟料旳矿物成分自身旳特性。
水泥熟料矿物遇水后会发生水解或水化反映而变成水化物,由这些水化物按照一定旳方式靠多种引力互相搭接和联结形成水泥石旳构造,导致产生强度。
一般硅酸盐水泥熟料重要是由硅酸三钙(3CaO·SiO2)、硅酸二钙(β-2CaO·SiO2)、铝酸三钙(3CaO·Al2O3)和铁铝酸四钙(4CaO·Al2O3·Fe2O3)四种矿物构成旳,它们旳相对含量大体为:硅酸三钙37~60%,硅酸二钙15~37%,铝酸三钙7~15%,铁铝酸四钙10~18%。
这四种矿物遇水后均能起水化反映,但由于它们自身矿物构造上旳差别以及相应水化产物性质旳不同,各矿物旳水化速率和强度,也有很大旳差别。
水泥的硬化原理

水泥的硬化原理
水泥的硬化原理是由于水泥中的胶凝材料与水发生化学反应,形成水化产物在水泥中逐渐凝固和硬化的过程。
具体的硬化原理可分为以下几个步骤:
1. 水化反应:水泥中的胶凝材料主要是硅酸盐矿物质,如硅酸二钙(C2S)、硅酸三钙(C3S)等。
当水与胶凝材料接触时,水中的H+离子会与水泥中的几个主要离子(如钙离子)发生反应,产生草酸钙(C-S-H)胶凝物和氢氧化钙(Ca(OH)2)。
2. 凝聚硬化:水化反应引起的反应产物逐渐凝聚成网状结构,形成一种胶凝物质,即C-S-H胶凝物。
这种胶凝物质是水泥硬化强度的主要来源,具有较好的粘结性和强度。
3. 温度效应:水泥的硬化过程受温度影响较大。
水泥在适宜的温度下硬化会加快,而过高或过低的温度则会影响硬化过程。
通常,较高的温度有助于加快水化反应速度,但过高的温度可能导致蒸发和孔隙产生,从而降低了强度。
4. 干燥过程:水泥在硬化过程中还需要进行一定的干燥,以便去除多余的水分。
干燥过程可能会引起收缩现象,因此需要控制干燥速度,以避免产生裂缝。
综上所述,水泥的硬化是一个复杂的过程,涉及水化反应、胶凝物质形成、温度效应和干燥等因素。
这些因素相互作用,最终使水泥达到一定的强度和硬度,形成坚固的建筑材料。
水泥硬化的名词解释

水泥硬化的名词解释水泥硬化是指水泥在与水发生化学反应后逐渐变得坚硬和牢固的过程。
水泥是一种常用的建筑材料,它在现代建筑中起到承重和固化的作用。
水泥硬化后不仅能够保持建筑物的结构稳定性,还能增加其耐久性和抗压强度。
本文将通过对水泥硬化过程的解释,来探讨水泥硬化的机制和其在建筑领域中的重要性。
1. 水泥的成分水泥是由石灰石、粘土、石膏和其他添加剂混合而成的粉状物质。
这些原材料在水泥生产过程中经过煅烧、粉磨等工序,最终形成水泥粉末。
2. 水泥硬化的机制在水泥和水混合时,水中的化学物质与水泥中的成分发生反应。
主要的反应是水泥中的硅酸钙与水中的氢氧根离子结合,形成水化硅酸钙。
这个过程称为水化反应,它是水泥硬化的关键步骤。
水化反应过程中产生的水化产物填充了水泥颗粒之间的空隙,并逐渐形成硬化的固体结构。
除此之外,水化产物与水泥颗粒之间的相互作用还能够形成一种凝胶结构,这一结构增加了水泥的强度,使得其能够承受更大的压力。
3. 水泥硬化的时间水泥硬化的时间取决于环境条件。
一般来说,水泥在与水发生反应后的最初凝固时间为数小时,此时水泥表面形成一个硬化层。
然而,水泥的完全硬化需要数周到数月的时间,这个过程称为水泥的固化。
不同环境条件下的水泥硬化时间会有所不同。
温度较高、湿度较大的环境下,水泥的硬化过程会更快完成。
相反,低温和较干燥的环境则会延缓水泥的硬化。
4. 水泥硬化的重要性水泥的硬化对于建筑物的结构稳定和耐久性至关重要。
水泥硬化后形成的固体结构可以承受建筑物所受到的压力,保持建筑物的稳定性。
此外,水泥硬化还能增加建筑物的抗渗性和抗腐蚀性。
水泥固化后形成的凝结物能够有效阻止水分渗透,防止建筑物遭受水的侵蚀。
这对于住宅、桥梁和其他基础设施的可靠性至关重要。
5. 水泥硬化的应用水泥的硬化广泛应用于建筑、道路和其他基础设施的建造中。
在建筑业中,水泥硬化是常见的施工过程之一。
建筑师和工程师通常会根据建筑物的需求和设计,选择合适的水泥种类和施工方法。
硅酸盐水泥凝结硬化机理

硅酸盐水泥凝结硬化机理硅酸盐水泥是一种常用的建筑材料,它的凝结硬化过程涉及多种化学反应和物理变化。
深入了解硅酸盐水泥的凝结硬化机理对于控制施工质量和提高材料性能至关重要。
本文将全面探讨硅酸盐水泥凝结硬化的机理,并提供一些实用的指导意义。
首先,我们需要了解硅酸盐水泥的主要成分。
硅酸盐水泥由水合硅酸鈣(CSH)、水合硅酸鈣鋁酸鈣(CASH)、水合铝酸钙(AH3)等具有胶凝性的化合物组成。
在水合硬化过程中,这些化合物会逐渐形成并相互交错,从而形成一种稳定的凝胶结构。
凝结过程中的第一个阶段是水化反应。
水泥中的胶凝物质与水发生反应,生成水合物。
水化反应不断释放出粒子、离子和热量,使硅酸盐水泥逐渐凝胶化。
随后,凝剂在溶液中扩散,通过溶解和再沉淀的方式进一步加强凝胶结构。
这个过程被称为「溶解-再沉淀反应」,有助于提高水泥的致密性和耐久性。
凝结的最后一个阶段是凝胶增强。
情况不同,水泥的凝结时间和强度的发展速度也会有所不同。
可以通过控制溶解浓度、温度和反应时间来调节凝结速率。
此外,添加某些外加剂和添加剂也可以改善水泥的凝结性能和强度发展。
需要注意的是,硅酸盐水泥的凝结硬化过程是一个相当复杂的化学和物理过程。
它受到温度、湿度、溶液配比、水泥粒度等多种因素的影响。
因此,在实际施工过程中,应根据具体情况精确控制这些参数,以确保水泥的凝结质量和性能。
通过了解硅酸盐水泥凝结硬化的机理,我们可以更好地理解它的性能特点和应用范围。
在施工过程中,我们可以根据凝结机理来优化配合比、调节温度、提高水泥的强度和耐久性。
同时,也可以根据硅酸盐水泥的凝结特点,选择合适的水泥类型和外加剂,提高材料的工作性能。
总之,硅酸盐水泥的凝结硬化机理是一个复杂而重要的课题。
深入了解这一机理对于控制施工质量和提高材料性能至关重要。
我们应该不断学习和研究,掌握凝结机理的核心原理,并将其应用到实际工作中,以推动建筑材料的发展和创新。
水泥凝结原理

水泥凝结原理
水泥凝结原理是指由水泥和水反应产生的化学反应过程,通过该过程,水泥可以逐渐硬化并形成坚固的结构。
水泥主要由石灰石和粘土烧成的熟料制成,在与水混合后,会发生以下几个主要的反应过程。
首先,熟料中的三钙硅酸盐(C3S)和二钙硅酸盐(C2S)与水反应生成硅酸钙胶凝体。
该反应称为水化反应,是水泥凝固的基础。
硅酸钙胶凝体具有胶状物质的特性,能够填充水泥颗粒之间的空隙,增强水泥的结构强度。
其次,熟料中的双钙铝酸盐(C3A)与水反应生成硫酸钙和氢氧化铝胶凝体。
这一反应称为水化反应和硫酸化反应。
硫酸钙的生成可以通过调整熟料中硫铝比例和添加硅酸盐来控制,以避免产生不利的体积膨胀和开裂。
最后,熟料中的四钙铝酸盐(C4AF)与水、氢氧化钠反应生成氢氧化铁胶凝体。
这一反应称为水化反应和碱化反应。
氢氧化铁胶凝体能够增加水泥的耐久性和抗冻性。
总的来说,水泥凝结原理是通过水化反应和碱化反应不断生成胶凝体,填充水泥颗粒之间的空隙,使水泥逐渐硬化并形成坚固的结构。
这些反应过程是复杂而精细的,需要在施工中控制好水泥和水的配比,以及添加适量的掺合料和添加剂,以获得所需的工程性能。
硬化水泥浆体的组成与结构及其性质

(3)水灰比
水灰比对徐变的影响,定性的评论是水灰比越大,徐变也愈大。
(4)温度
在荷载作用期间,环境混度活化徐变变形。
其他如湿度,养护条件,水泥组成等同样也会影响硬化水泥浆体的徐变。
16
03
硬化水泥浆体性质
3.3 硬化水泥浆体的渗透性
在水力梯度作用下,水作为典型的均质流体,流过多孔介质(
THE MAIN CONTENTS
01
03
概述
02
硬化水泥浆体组成与结构
硬化水泥浆体的性质
2
01 概述
1.1硬化水泥浆体
硬化水泥浆体是非均质的多相体系,由各种水化产物和残存熟料所构成的固相以
及存在于空隙中的水和空气组成,所以是固-液-气三相多孔体。它具有一定的机械强
度和空隙率,而外观和其他性能则与天然石材相似,因此通常又称之为水泥石。
水化产物和残存熟料-固相
非均质的多相体系
孔隙中的水-液相
三相多孔体
孔隙中的空气-气相
3
01 概述
1.2 水泥硬化机理
硬化机理
产生凝结硬化的原因
水化硬化过程
结晶理论
水化反应生成晶体
相互交叉联结
溶解-沉淀过程:熟料矿物溶解于
水,与水发生水化反应,产物溶解
度更小,结晶沉淀。
胶体理论
水化反应生成大量胶体,由于干燥或 局部化学反应:熟料矿物不溶于水,
泥浆体强度的函数。
抗压强度
= , +
m------经验直线的斜率
B------- 轴上的截距
12
03
硬化水泥浆体性质
(2)硬化水泥浆体的弹性模量
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.1.4 凝结硬化机理
水泥凝结硬化流程图,见动画演示
凝结:水泥浆→完全失去浆体塑性
硬化:水泥浆从完全失去塑性→强度增长
一、水泥的水化反应
2(3CaO.SiO2)+6H2O→3CaO.2SiO2.3H2O+3Ca(OH)2
2(2CaO.SiO2)+4H2O→3CaO.2SiO2.3H2O+Ca(OH)2
3CaO.Al2O3+6H2O→3CaO.Al2O3.6H2O
4CaO.Al2O3.Fe2O3+7H2O→3CaO.Al2O3.6H2O+CaO.Fe2O3.H2O
部分水化铝酸钙与石膏作用产生如下反应:
3CaO.Al2O3.6H2O+3(CaSO4.2H2O)+19H2O→3CaO.Al2O3.3CaSO4.31H2O
主要水化产物:
水化硅酸钙凝胶 70%
水化铁酸钙凝胶
水化铝酸钙晶体
氢氧化钙晶体 20%
水化硫铝酸钙晶体 7%
石膏的缓凝作用在于:
水泥的矿物组成中铝酸三钙水化速度最快,铝酸三钙在饱和的石灰——石膏溶液中生成溶解
度极低的水化硫铝酸钙晶体,包围在水泥颗粒的表面形成一层薄膜,阻止了水分子向未水化的水泥粒子内部进行扩散,延缓了水泥熟料颗粒,特别是铝酸三钙的继续水化,从而达到缓凝的目的。
二、水泥凝结硬化的物理化学过程
水泥与水拌合后,熟料颗粒表面迅速与水发生反应,因为水化物生成速度大于水化物向溶液扩散的速度,于是生成的水化产物在水泥颗粒表面堆积,这层水化物称为凝胶膜层,这就构成了最初的凝胶结构。
动画演示
1、由于Ca2+的渗透,凝胶膜层破裂,使得
2、由于颗粒表面暴露出来,又与水发生化学反应,由于水化物生成速度大于其扩散速度,故在颗粒表面又堆积了大量的凝胶,这个反应不断进行下去,就生成了外面包裹着厚厚一层凝胶膜的新凝胶结构。
3、随着反应的继续进行,水份逐渐减少,凝胶结构分子间距离减少,吸引力越来越大,粘结力增大,使浆体失去塑性,开始凝结。
4、水份越来越少,浆体稠度增大,微粒之间距离越来越小,由于分子间相互作用力—粘结力,互相结合,破坏了无规则排列,变为有规则排列,晶体产生。
5、晶体、胶体相互交错成网状,晶体起主要的承力骨架作用,胶体起胶结作用,二者共同生长,紧密结合,形成坚固致密的水泥石。
6、强度不断增大。
三、水泥石的组成
硬化后的水泥石
凝胶体(凝胶和晶体)
未水化水泥颗粒内核
毛细孔
四、影响硅酸盐水泥的凝结硬化的因素
矿物组
成
细度
用水量
养护时
间
温度和
湿度
1、熟料矿物组成的影响
硅酸盐水泥的四种熟料矿物中,C3A,C3S的水化和凝结硬化速度最快,因此它们含量越高,则水泥凝结硬化越快。
2、水泥细度的影响
水泥颗粒的粗细直接影响水泥的水化、凝结硬化、强度、干缩及水化热等,水泥颗粒越细,水化作用的发展就越迅速而充分,使凝结硬化的速度加快,早期强度也就越高。
但水泥颗粒过细,硬化时产生的收缩亦较大。
3、拌合加水量的影响
拌合水越多,硬化水泥石中的毛细孔就越多,凝结硬化越慢,强度越低。
4、养护湿度和温度的影响
用水泥拌制的砂浆和混凝土,在浇灌后应注意保持潮湿状态,以利获得和增加强度。
提高温度可加速水化反应。
5、养护龄期的影响
水泥的水化硬化是一个较长时期不断进行的过程,所以水泥在3~14d内强度增长较快,28d 后增长缓慢。