2[1].3__算术平方根
精品课程平方根(1-3)课件

5 1 2 1 . 2 2
5. 19 ≈4.358 9.
活动六 归纳小结 深化新知
小结与提升:
本节课你学习了哪些知识?在探
索知识的过程中,你用了哪些方
法?对你今后的学习有什么帮助 ?
活动七 分层作业 提高能力
作业(必做题):
1.运用计算器计算下列各式的值(精确到 0.01). (1) 867 ,(2) 2 408. 2.估计与 40 最接近的两个整数是多少? 3.已知 1.720 1 1.311, 17.201 4.147 ,那么 0.001 720 1 的平方根 是 . 4.已知 2.36 1.536, 23.6 4.858, 若 x 0.485 8 ,则 x= . 5.(1)若 a 是 30 的整数部分, b 是 30 的小数部分,试确定 a 、 b 的值. (2)若 5 11 的小数部分为 a, 5 11 的小数部分为 b,求 a+b 的值. 6.一个长方形的长为 5 cm,宽为 3 cm,一个与它的面积相等的正方形 的边长是多少?
×
0 和 1 2.算术平方根等于本身的数有___.
活动4
巩固练习 反馈检测
练习:
9 . 3.若 x 3 ,则x=___
4.要使代数式 x 2 有意义,则 x的取值范围
是( B
A. x 2
)
3
B. x 2
49 81
C. x 2 D. x 2
5.求下列各数的算术平方根.
① 25 ② 5
活动七 分层作业 提高能力
作业(选做题):
∵1 1 12ຫໍສະໝຸດ 7.请你观察思考下列计算过程.
∵11 121 ,
2
∴ 121 11.
初中平方根公式大全

初中平方根公式大全中学时期,学习数学,尤其是四则运算,最重要的就是平方根,所以学生们都需要掌握各种平方根公式,这样才能够搞定这门学科。
下面,就给大家列举一下平方根的公式大全,大家一起来学习一下:一、求平方根的三种基本公式1、开平方法:针对两边各有一个数的平方根,让其和相乘得等于另一边的数。
如:√_9+_4=?√_9×_4=7所以_9+_4=72、分解质因数法:针对一边是质数或根式的平方根,通过分解质因数思想,可以求出答案。
如:√_81=?81=3^2×3^1所以_81=3×3=93、算术平方根差法:针对一边是平方差或是平方和的平方根,用算术平方根差法求解。
如:√_400-_16=?_400-_16=(_20+_4)×(_20-_4)=_20^2-_4^2所以_400-_16=_20^2-_4^2=20×16=320二、数列求和公式1、等差数列求和公式:用来求等差数列的首项和的公式,例如求1+2+3+…+10=?答案为:a1=1,d=1,n=10根据等差数列求和公式Sn=n/2×(a1+an)=(10/2)×(1+10)=55所以1+2+3+…+10=552、等比数列求和公式:用来求等比数列的首项和的公式,例如求1+2+4+…+2048=?答案为:a1=1,q=2,n=11根据等比数列求和公式Sn=a1×(1-q^n)/(1-q)=(1)×(1-2^11)/(1-2)=2047所以1+2+4+…+2048=2047依次类推,学会了上面这些公式,再也不用把每一项加起来的把数学考试中的这种题目考破头了,还可以把更多的精力放在其他知识上。
希望大家都能认真学习,培训出良好的数学功底。
人教版七年级数学下册 (平方根)实数课件教学(第2课时)

(2)因为6>4,所以 6 > 2,所以
61 >
21 =1.5.
2
2
归纳 比较数的大小,先估计其算术平方根的近似值
例3 小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁出一块面积 为300cm2的长方形纸片,使它的长宽之比为3∶2.她不知能否裁得出来,正 在发愁.你能帮小丽算出她能用这块纸片裁出符合要求的纸片吗?
能否用两个面积为 1 dm2 的小正方形拼成一个面积为 2 dm2 的 大正方形?
如图,把两个小正方形分别沿对角线剪开,将所得的 4 个直角 三角形拼在一起,就得到一个面积为 2 dm2 的大正方形.
你知道这个大正方形的边长是多少吗?
解:设大正方形的边长为 x dm,则 x2 = 2.
由算术平方根的意义可知
直线平行.
3.互如相果平两行 条直线都与第三条直线平行,那么这两 条直线也
.
[检测]
1.在同一平面内,不是重合( 的两)条直线的位置关C系
A.平行或垂直
B.相交或垂直
C.平行或相交
D.不能确定
2.下列说法正确D的是 ( ) A.不相交的两条线段是平行线
B.不相交的两条直线是平行线
C.不相交的两条射线是平行线
按键顺序:
a=
注意:不同的计算器的按键方式可能有所差别
例4 用计算器求下列各式的值: 3136=
2=
利用计算器计算下表中的算术平方根,并将计算结果填在表中,你 发现了什么规律?你能说出其中的道理吗?
… 0.062 5 0.625 6.25
62.5
… 0.25 0 6 2.5
7.906
625
第 五
相交线与平行线
2024年人教版数学七年级下册6.1第3课时平方根[1]-课件
![2024年人教版数学七年级下册6.1第3课时平方根[1]-课件](https://img.taocdn.com/s3/m/4fe91e5278563c1ec5da50e2524de518964bd3fa.png)
(1)36 36有是两正个数 平方根
解 由于62=36, 因此36的平方根是6与-6. 即 ± 36=±6.
(2) 2 5 9
有两个平方根
解:
由于 =
5
2
3
25 9
,
因此
25 9
的平方根是
5 3
与-
5 3
.
即±
25 9
=±
5 3
.
(3)1.21
有两个平方根
解: 由于1.12=1.21,
填一填2
写出左圈和右圈中的“?”表示的数:
x
8 -8
3
4
-
3 4
11 ?
-11 ?
0.6 ?
-0.6 ?
0
? ?
没有? ?
x2
?64
9 ?
16
121 0.36
0 -4
一、平方根的概念 根据上述问题,即要找出一个数,使它的平
方等于给定的数.我们抽象出下述概念:
如果有一个数x,使得x2=a,那么我们把x叫作 a的一个平方根,也叫作二次方根.
B. 22的平方根是2
C.非负数的平方根互为相反数 D.一个正数的算术平方根一定大于这个数的相反数
3. 判断下列说法是否正确.
(1)75
是
2 4
5 9
的一个平方根;
(2)6 是6的算术平方根;
正确. 正确.
(3)1 6 的值是±4; (4)(-4)2的平方根是-4.
不正确,是 4.
不正确,是 ±4.
下
所
有
父
母
我们,还在路上……
4.
分别求
算术平方根(最新)

身边小事
学校要举行美术作品比 赛,小鸥很高兴,他想裁出 一块面积为25平方分米的正 方形画布,画上自己的得意 之作参加比赛,这块正方形 画布的边长应取多少?
5
因为 5 =25
2
小欧与同学们还要准备一些面 积如下的正方形画布,请你帮他 把这些正方形的边长都算出来.
填表:
正方形 的面积 边长
1 1
9 3
2、 a 是什么数?
被开方数a是非负数,即 a 0
a 是非负数,即 a 0
我能分清楚
下列各式中哪些有意义?哪些无意义?为什么?
5 ; 3 ; 3 ;
答:有意义的是
3 ;
2
5
无意义的是
3 3
3
2
试一试
你知道下列式子表示什么意思吗? 你能求出它们 的值吗? 25 =5
16
36
4 25
4
6
2 5
已知一个正数的平方, 求这个正数的问题.
概念引入
象5 =25, 那么5叫做25的算术平方根; 2 10 =100,那么10叫做100的算术平方根;
2
一般地, 一个正数 如果一个正数 的平方等于 那么这个正数 叫做 的算术平方根. 算术平方根
x
a
x
= a, 即 x = a ,
2 ____.
4 () 4 若 x 2, x _____. 则
新知应用
求下列各数的算术平方根: 49 (1)100 (2) (3)0.0001
64
解:(1)因为 10 =100,所以100的算术平方根为10, 即 100 =10。
2
思考: 4 的算术平方根是多少?
能力提升 探究
平方根重点知识

重点知识:1、 平方根:如果一个数X 的平方等于a ,即X²=a,那么这个数X 就叫做a 的平方根。
例如,422=,2是4的平方根,4)2(2=-,-2是4的平方根,即2和-2都是4的平方根。
2、算术平方根:如果一个正数X 的平方等于a,即X²=a,那么这个正数X 就叫做a 的算术平方根。
(特别规定:0的算术平方根是0)。
例如,422=,正数2是4的算术平方根。
虽然4)2(2=-,但-2不是正数,所以-2不是4的算术平方根。
3、表示方法:平方根:一个非负数a 的平方根记做 a ±,读作“正负根号 a ”;例如:5的平方根记做5±,读作“正负根号5”。
算术平方根:一个非负数a 的算术平方根记作a ,读作“根号a ”;例如,5的算术平方根记作5,读作“根号5”。
结论:一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根. 求一个非负数a 的平方根的运算,叫做开平方.练习题 A 组课前准备:写出并熟记1——20的平方:(1)21= ;22= ;23= ;24= ;25= ; 26= ;27= ;28= ;29= ;210= ;(2)211= ;212= ;213= ;214= ;215= ; 216= ;217= ;218= ;219= ;220= ;例1 求下列各数的平方根。
(1)121 (2)259 (3)0 (4)2)5(-例2、判断下列各数,哪些有算术平方根,哪些没有: 220.2,9,81,(2),2,(4),2,-------例3 求下列各数的算术平方根。
(1)225 (2)8164 (3)0.49 (4)625例4 下列说法是否正确?为什么?(1)5是25的平方根; (2)25的平方根是5; (3) -5是2)5(-的算术平方根;(4) 81的平方根是9±; (5)2是-4的算术平方根; (6) 9的算术平方根是3±。
《平方根》PPT优秀教学课件3

0的算术平方根是 0 4、平方运算与开平方运算互为逆运算.
例2 求下列各数的算术平方根: 3是前面学习过的9的算术平方根,
例2 求下列各数的算术平方根:ቤተ መጻሕፍቲ ባይዱ
负数 没有算术平方根 只有非负数才平方根和算术平方根
读作“正、负根号a ”.
即
.
结论: 算术平方根的性质
正数有一个算术平方根, 有两个平方根。
0 有一个算术平方根—— 0 , 有一个平方根——0
(4) 62
3.例题解析
例1 求下列各式的值:
(1) 4 ( 2 ) 49 (3) (11)2 81
(4) 62
解:(3)∵ 112 (11)2
(11)2 11
3.例题解析
例1 求下列各式的值:
(1) 4 ( 2 ) 49 (3) (11)2 81
(4) 62
解:(4)∵ 62 62
62 6 a2 a
解:(1)∵
4.归纳数的平方根的特征
正数a的平方根有两个.
解:(负4)∵ 数没, 有平方根.
为什么?
自我检测:相信你是最棒的!
判断下列说法是否正确:
(1)-9的平方根是-3;
(× )
(2)49的平方根是7 ;
(× )
(3)(-2)2的平方根是±2 ;(√ )
(4)-1 是 1的平方根;
(√ )
(5) 16 的平方根是 ±4,16的算术平方根是4.(× )
(1)10; (2) 16 ; (3)0.49; 225
(4) ( 3) 2
(5) 9
解:(3)∵ (0.7)2 0.49
∴ 0.49 的平方根是 0.7
例2 . 求下列各数的平方根:
第2课时 平方根

2
(2)因为 2 = ,(± ) = ,
所以 2 的平方根是± .
(3)0.001 6;
(4) .
解:(3)因为(±0.04)2=0.001 6,
所以0.001 6的平方根是±0.04.
(4)因为 =14,(± ) =14,
2
所以 的平方根是± .
[变 式 1](2024 蓬莱期末)下列式子中正确的是( D )
A. .=0.3
C. (-) =-4
B.
=±
D.± =±11
求非负数的平方根的一般步骤:
(1)试算出哪些数的平方等于该数;
(2)写出这个非负数的平方根.
平方根的性质
[典例2]一个正数的两个平方根分别是2m-1和4-3m,求m.
解:因为一个正数的两个平方根分别是2m-1和4-3m,
(2)162的算术平方根是
16
.
Байду номын сангаас
;
与( ) (a≥0)的化简
2
[典例 4]计算:
(1)( ) ;
2
解:(1)2.
(2)3.
(3)4-π.
(2)( ) ;
2
(3) (-) .
谢谢观赏!
所以2m-1+4-3m=0,
解得m=3.
[变 式2](2024招远期末)若x+1是16的一个平方根,则x的值为3或-5 .
[变 式3](2024东营河口期末)解方程:
(x+2)2=25.
解:因为(x+2)2=25,
所以x+2=±5,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反
思
预
习
立 方 根
交
流
1.16的算术平方根的平方根是什么? 5的算术平方根是什么? 2、0的算术平方根是什么? 0的算术平方根有几个? 3、-2、-5、-6有算术平方根吗?为什么?
例
• • • •
题
例1:求下列各数的算术平方根: (1)625; (2)0.81; (3)6; (4)(-2)² (5) 256 (6) (0.25)2
h
d
应
用
• 例2:“欲穷千里目,更上一层楼”。说的是登 的高看得远。若观测点的高度为h,观测者视线 能达到的最远距离为d≈2hR ,其中R是地球半 径(通常取6400km),小丽站在海边一块岩石 上,眼睛离地面的高度为20M,她观测到远处一 艘船刚露出海平面,此时该小船离小丽有多远?
• 求下列各数的算术平方根: • (1)25; (2)0.0081; • (3)15² ; (4)(-2)² • 121 • (6)0
2.3 算术平方根
导
入
正数a有2个平方根,其 中正数a的正的平方根,也叫 做a的算术平方根。 例如,4的平方根是±2, 2叫做4的算术平方根。
举
例
• 4的平方根是±2,2叫做4的算术 平方根,记作 4 =2, • 2的平方根是“± 2 ”, 2 叫做 2的算术平方根, • 0只有一个平方根,0的平方根也叫 做0的算术平方根,即 0 =0
巩 固
2
( 5)
81
•
(7) (
4)
(8) ( 2)
2
强Leabharlann 化• 1、一个数的算术平方根等于它本身,这个 数是 。 • 2、若x² =16,则5-x的算术平方根是 。 • 3、若4a+1的平方根是±5,则a² 的算术平 方根是 。 • 4、 的平方根等于 ,算术平方根等 于 36 。
训
• 5、若|a-9|+ 是 。
1 a b =0,则 4 b
练
的平方根
• 6、 64 36 ,算术平方 的平方根是 根是 。 • 7、已知△ABC的三边分别是a、b、c, • 且 a 1 b² -4b+4=0,求c的取值范围。
提
高
• 8、已知y= x 2 + 2 x +3,求xy的算 术平方根。 • 9、在△ABC中,∠C=90°. • (1)如果AC=5,BC=12,求AB; • (2)如果AC=2,BC=1,求AB; • (3)如果AB=25,BC=24,求AC; • (4)如果AC=5,AB=12,求BC;