第八讲 离散因变量模型(LPM,Probit,Logit).

合集下载

第八章 离散因变量模型

第八章 离散因变量模型

第八章离散因变量模型离散(分类)因变量模型(Models with Discrete /Categorical Dependent Variables)分为二元选择模型(Binary Choice Models)和多类别选择(反应)模型(Multicategory Choice /Polytomous Response Models)。

在多类别选择模型中,根据因变量的反应类别(response category)是否排序,又分为无序选择模型(Multinominal Choice Models)和有序选择模型(Ordered Choice Models)(也称有序因变量模型Ordered Dependent Variable Models、有序类别模型Ordered Category Models等)一、二元选择模型设因变量1、线性概率模型(LPM模型)如果采用线性模型,给定,设某事件发生的概率为P i,则有所以称之为线性概率模型。

不足之处:1、不能满足对自变量的任意取值都有。

2、3、所以线性概率模型不是标准线性模型。

给定,为使,可对建立某个分布函数,使的取值在(0,1)。

2、Logit模型(Dichotomous/ Binary Logit Model)Logit模型是离散(分类)因变量模型的常用形式,它采用的是逻辑概率分布函数(Cumulative Logistic Probability Function)(e为自然对数的底),逻辑曲线如图4-1所示。

其中,二元Logit模型是掌握多类别Logit模型的基础。

图4-1 逻辑曲线(Logit Curve)以二元选择问题为例,设因变量有0和1两个选择,由自变量来决定选择的结果。

为了使二元选择问题的研究成为可能,首先建立随机效用模型:令表示个体i选择=1的效用,表示个体i选择=0的效用,显然当时,选择结果为1,反之为0。

将两个效用相减,即得随机效用模型:,记为(4-1)当时,,则个体i选择=1的概率为:若的概率分布为Logistic分布,则有即(4-2)式(4-2)即为最常用的二元选择模型——Logit模型。

logit 和probit模型的系数解释 -回复

logit 和probit模型的系数解释 -回复

logit 和probit模型的系数解释-回复Logit和Probit模型是常用的二元选择模型,用于分析二元变量的选择行为。

它们通常用于解释个体在做出选择时的决策,可以帮助我们理解各种影响因素对选择行为的影响。

在这篇文章中,我将逐步回答有关Logit和Probit模型的系数解释的问题,介绍这两个模型的基本原理、模型形式、系数解释和使用注意事项,以及如何解读模型中的系数。

首先,让我们从基本原理开始,了解Logit和Probit模型的背后逻辑。

Logit 和Probit模型都属于广义线性模型(Generalized Linear Models),它们基于一个相似的假设:选择行为是一个概率事件,可以由一组解释变量进行解释。

这些解释变量可以是个体特征(如年龄、性别、教育水平等),也可以是一些特定的因素(如收入水平、市场利率等)。

模型的目的是通过对这些解释变量的分析,预测和解释个体做出选择的概率。

接下来,让我们详细了解Logit和Probit模型的模型形式。

Logit模型使用的是逻辑函数(Logistic Function),而Probit模型使用的是标准正态分布的累积分布函数。

具体来说,Logit模型的形式为:p(y=1 x) = F(xβ) = 1 / (1 + e^(-xβ))其中,p(y=1 x)表示个体在给定解释变量x的情况下选择y=1的概率,F(x β)表示Logistic函数,x是解释变量的值,β是模型的系数。

相比之下,Probit模型的形式稍有不同:p(y=1 x) = Φ(xβ)其中,Φ(xβ)表示标准正态分布的累积分布函数,其他符号的含义与Logit 模型相同。

两个模型的模型形式不同,但它们都具有类似的特点:在x 趋近于正无穷时,概率趋近于1,而在x 趋近于负无穷时,概率趋近于0。

这种形式可以帮助我们理解个体选择行为的变化趋势。

现在让我们转向系数解释的问题。

模型的系数代表着解释变量对选择行为的影响程度。

probit模型与logit模型

probit模型与logit模型

probi‎t模型与l‎o git模‎型2013-03-30 16:10:17probi‎t模型是一‎种广义的线‎性模型。

服从正态分‎布。

最简单的p‎r obit‎模型就是指‎被解释变量‎Y是一个0‎,1变量,事件发生地‎概率是依赖‎于解释变量‎,即P(Y=1)=f(X),也就是说,Y=1的概率是‎一个关于X‎的函数,其中f(.)服从标准正‎态分布。

若f(.)是累积分布‎函数,则其为Lo‎g isti‎c模型Logit‎模型(Logit‎model‎,也译作“评定模型”,“分类评定模‎型”,又作Log‎i stic‎regre‎s sion‎,“逻辑回归”)是离散选择‎法模型之一‎,属于多重变‎量分析范畴‎,是社会学、生物统计学‎、临床、数量心理学‎、市场营销等‎统计实证分‎析的常用方‎法。

逻辑分布(Logis‎t ic distr‎i buti‎o n)公式P(Y=1│X=x)=exp(x’β)/1+exp(x’β)其中参数β‎常用极大似‎然估计。

Logit‎模型是最早‎的离散选择‎模型,也是目前应‎用最广的模‎型。

Logit‎模型是Lu‎c e(1959)根据IIA‎特性首次导‎出的;Marsc‎h ark(1960)证明了Lo‎g it模型‎与最大效用‎理论的一致‎性;Marle‎y (1965)研究了模型‎的形式和效‎用非确定项‎的分布之间‎的关系,证明了极值‎分布可以推‎导出Log‎i t 形式的‎模型;McFad‎d en(1974)反过来证明‎了具有Lo‎g it形式‎的模型效用‎非确定项一‎定服从极值‎分布。

此后Log‎i t模型在‎心理学、社会学、经济学及交‎通领域得到‎了广泛的应‎用,并衍生发展‎出了其他离‎散选择模型‎,形成了完整‎的离散选择‎模型体系,如Prob‎i t模型、NL模型(Nest Logit‎model‎)、Mixed‎Logit‎模型等。

模型假设个‎人n对选择‎枝j的效用‎由效用确定‎项和随机项‎两部分构成‎:Logit‎模型的应用‎广泛性的原‎因主要是因‎为其概率表‎达式的显性‎特点,模型的求解‎速度快,应用方便。

第八讲 离散因变量模型(LPM,Probit,Logit)

第八讲 离散因变量模型(LPM,Probit,Logit)
2 2
= F ( X i B) [1 − F ( X i B)]
∂E ( yi X i ) ∂F ( X i B ) ∂P r= = = 斜率: 斜率: ∂x j ∂x j ∂x j dF ( X i B ) ∂ ( X i B ) = = f ( X i B)β j d ( X iB) ∂x j
分布函数F的选取 (四) 分布函数 的选取
选取分布函数F的原则: 选取分布函数 的原则: 的原则
0 ≤ F ( X i B) ≤ 1
X iB → +∞
F ( X i B) → 1
X i B → −∞
F是单调函数 是单调函数
F ( X i B) → 0
按照上述原则F取作累计分布函数。 按照上述原则 取作累计分布函数。 取作累计分布函数 下面介绍三种不同分布函数下的计量模型: 下面介绍三种不同分布函数下的计量模型: LPM, Probit, Logit
注:括号里是p值。 括号里是 值
p ln( ) = −242.4576 + 0.6771Score − 0.4766 D1 1− p
(0.052) (0.052) (0.873) 值进行判断, (4)检验:可以直接根据括弧里的 p 值进行判断,也可以 )检验: 利用正态分布表查临界值进行检验。 利用正态分布表查临界值进行检验。
E ( yi X i )
P( yi = 0 X i ) = 1 − pi
= 1* P( yi = 1 X i ) + 0 * P( yi = 0 X i ) = 1 ∗ pi + 0 ∗ (1 − pi ) = pi
yi = E ( yi X i ) + ε i = pi + ε i = X i B + ε i

离散选择模型

离散选择模型

Yi 0 1GPAi 2 INCOMEi ui
其中:
1 Yi 0
第i个学生拿到学士学位后三年内去读研 该生三年内未去读研
GPA=第i个学生本科平均成绩 INCOME=第i个学生家庭年收入(单位:千美元)
设回归结果如下(所有系数值均在10%水平统计上显著):
ˆ Yi 0.7 0.4GPAi 0.002 INCOMEi
yi 0 yi 1
函数可以简化为:
L (1 F ( X ))1 yi F ( X ) yi
yi 1
对方程左右取对数我们便得到:
ln L [ yi ln F ( X ) (1 yi ) ln(1 F ( X ))]
i 1
n
似然函数为
fi ln L n yi fi [ (1 yi ) ]xi 0 Fi 1 Fi i 1
Pr ob(Y 1 X ) X F ( X ) f ( X ) X
因此我们在遇到二元响应模型时,估计出参数我们不能盲目的 将其解释为:解释变量变动一个单位,相对应的因变量变化参 数个单位。
为了解决偏效应的问题我们引入调整因子的概念。 在上式中的 f ( X ) 我们 便称为比例因子或调整因子,它与全部 的解释变量有关,为了方便起见,我们要找一个适用于模型所有 斜率的调整因子。有两种方法可以解决: (1)用解释变量的观测值计算偏效应的表达式,调整因子为:
四、二元选择模型的估计
1.除了LPM模型以外,二元选择模型的估计都是以极大似然法为基础 的 。由前面的讨论我们知道:
P(Y 1 X ) F ( X )
由此我们可以得到模型的似然函数为:
P(Y1 y1 ,Yn yn X ) (1 F ( X )) F ( X )

离散因变量模型

离散因变量模型
0.6
0.4
0.2
0.0 X
-0.2 280 300 320 340 360 380 400 420
第10章 离散因变量模型
ቤተ መጻሕፍቲ ባይዱ
对 yi = + xi + ui 取期望,
E(yi) = + xi
(2)
下面研究 yi 的分布。因为 yi 只能取两个值,0 和 1,所以 yi 服从两点分布。 把 yi 的分布记为,
1.0
CNORM
CLOGISTIC
(依据(4)式)
= (1- - xi) ( + xi) = (1 - pi) pi = pi - pi2, (抛物线,依据(4)式)
上两式说明,误差项的期望为零,方差具有异方差。当 pi 接近 0 或 1 时,ui 具有较
小的方差,当 pi 接近 0.5 时,ui 具有最大方差(如图)。所以线性概率模型(1)回
10.1 线性概率模型 线性概率模型的形式如下,
yi = + xi + ui
(1)
其中 ui 为随机误差项,xi 为定量解释变量。yi 为二元选择变量。如利息税、 机动车的费改税(燃油税)问题等。设
1, 若 是 第 一 种 选 择 yi 0, 若 是 第 二 种 选 择
1.2 Y
1.0
0.8
归系数的 OLS 估计量具有无偏性和一致性,但不具有有效性。
y
0.25 0.2
1.4 Y
1.2
1.0
0.8
0.15
0.6
0.1
0.4
0.05
x
0.2 0.4 0.6 0.8
1
Var(ui2) = pi - pi2当pi = 0.5时最大

第八章 离散因变量模型

第八章 离散因变量模型

第八章离散因变量模型离散(分类)因变量模型(Models with Discrete /Categorical Dependent Variables)分为二元选择模型(Binary Choice Models)和多类别选择(反应)模型(Multicategory Choice /Polytomous Response Models)。

在多类别选择模型中,根据因变量的反应类别(response category)是否排序,又分为无序选择模型(Multinominal Choice Models)和有序选择模型(Ordered Choice Models)(也称有序因变量模型Ordered Dependent Variable Models、有序类别模型Ordered Category Models等)一、二元选择模型设因变量1、线性概率模型(LPM模型)如果采用线性模型,给定,设某事件发生的概率为P i,则有所以称之为线性概率模型。

不足之处:1、不能满足对自变量的任意取值都有。

2、3、所以线性概率模型不是标准线性模型。

给定,为使,可对建立某个分布函数,使的取值在(0,1)。

2、Logit模型(Dichotomous/ Binary Logit Model)Logit模型是离散(分类)因变量模型的常用形式,它采用的是逻辑概率分布函数(Cumulative Logistic Probability Function)(e为自然对数的底),逻辑曲线如图4-1所示。

其中,二元Logit模型是掌握多类别Logit模型的基础。

图4-1 逻辑曲线(Logit Curve)以二元选择问题为例,设因变量有0和1两个选择,由自变量来决定选择的结果。

为了使二元选择问题的研究成为可能,首先建立随机效用模型:令表示个体i选择=1的效用,表示个体i选择=0的效用,显然当时,选择结果为1,反之为0。

将两个效用相减,即得随机效用模型:,记为(4-1)当时,,则个体i选择=1的概率为:若的概率分布为Logistic分布,则有即(4-2)式(4-2)即为最常用的二元选择模型——Logit模型。

离散因变量模型课件

离散因变量模型课件
特点
离散因变量模型可以处理分类数据,如性别、婚姻状况、学历等;可以分析不 同类别之间的比较和关系;通常采用概率论和统计学方法进行建模和分析。
离散因变量模型的应用场景
市场分析
用于分析市场细分、消费者行 为、品牌选择等,如消费者偏 好分析、市场占有率预测等。
人口学研究
用于分析人口统计数据,如婚 姻状况、生育率、教育程度等 ,可以揭示人口变化趋势和影 响因素。
自变量选择
根据研究目的和理论,选 择与因变量相关的自变量 ,可以是连续或离散变量 。
数据收集和处理
数据来源
确定数据来源,如调查、 数据库等。
数据清洗
对数据进行预处理,如缺 失值填充、异常值处理等 。
数据转换
对数据进行必要的转换, 以满足模型要求。
模型选择与拟合
模型选择
根据研究目的和数据特点,选择合适 的离散因变量模型,如Logit模型、 Probit模型等。
案例三:信用评分模型
总结词
信用评分模型是离散因变量模型在金融领域的典型应用,用于评估个人或企业的信用风 险。
详细描述
信用评分模型是一种常见的离散因变量模型应用,用于评估个人或企业的信用风险。通 过收集个人或企业的信用记录、历史表现和其他相关信息,可以建立信用评分模型,对 个人或企业的信用等级进行评估。这种模型可以帮助金融机构更准确地评估贷款申请人
社会学研究
用于分析社会现象和人类行为 ,如犯罪率、社会阶层、文化 差异等,可以揭示社会规律和 影响因素。
生物学研究
用于分析生物分类、物种分布 、生态平衡等,如物种多样性
分析、生态平衡评估等。
离散因变量模型与其他模型的比较
与连续因变量模型比较
离散因变量模型处理的是分类数据,而连续因变量模型处理 的是连续数据;离散因变量模型通常采用概率论和统计学方 法进行建模和分析,而连续因变量模型可以采用回归分析、 时间序列分析等方法。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、对Logit模型系数的解释:
p odds ln( ) L ln(odds) 1 p odds j x j x j x j x j
如果选择 F ( X i B) X i B
yi X i B i
yi E( yi X i ) i
E( yi X i ) E( X i B i ) X i B
P( yi 1 X i ) pi
E ( yi X i )
P( yi 0 X i ) 1 pi
1* P( yi 1 X i ) 0* P( yi 0 X i ) 1 pi 0 (1 pi ) pi
yi E ( yi X i ) i pi i X i B i
xj
对响应概率(p)的偏效应: j LPM的估计方法:OLS
2 2
F ( X i B) 1 F ( X i B)
E ( yi X i ) P F ( X i B) r 斜率: x j x j x j dF ( X i B) ( X i B) f ( X i B) j d ( X i B) x j
(四) 分布函数F的选取

一、 二元选择模型
二元选择模型的理论模型 二元选择模型经济计量的一般模型 线性概率模型(LPM) Logit 模型 Probit 模型Βιβλιοθήκη (一) 二元选择模型的理论模型
选择理论:效用是不可观测的,只能观测到选择行为
U i1 X i 1 i1
第i个个体选择1的效用
U i0 X i 0 i0 第i个个体不选择1(选择0)的效用
'
eZ ∵ ( Z ) 1 eZ pi ln( ) XiB 1 pi
得到:
pi ( X i B) e Xi B 1 pi 1 ( X i B)
yi 取1或0
取值范围
Li X i B i
pi 0,1
pi 其中 Li ln 1 pi
机会比率odds
第九章 离散因变量模型


实际经济分析当中的离散变量问题 对于单个方案的取舍购买决策、职业的选择、贷 款决策; 对于两个方案的选择。例如,两种出行方式的选 择,两种商品的选择。由决策者的属性和备选方 案的属性共同决定。 农业经济分析当中的离散因变量问题 农民技术采用、农村选举等等
内容
二元选择模型的三类模型介绍 二元选择模型的估计: 二元选择模型的检验: 二元选择模型的应用
U i1 U i0 X i (1 0 ) (i1 i0 )
y Xi
* i
i
yi 1( yi 0) y 0( y i 0) i
选择1
不选择1 (选择0)
(二) 二元选择的经济计量一般模型
P ( yi 1 X i ) P ( yi* 0) P ( i* Xi ) 1 P ( i* Xi ) 1 F ( X i ) F ( X i )
选取分布函数F的原则:
0 F ( X i B) 1
X i B
F ( X i B) 1
X i B
F是单调函数
F ( X i B) 0
按照上述原则F取作累计分布函数。 下面介绍三种不同分布函数下的计量模型: LPM, Probit, Logit
1、 线性概率模型(LPM)
E( yi X i ) 1 P 0 (1 P) F (Xi )
F ( t ) 1 F (t )
Y E (Y X )
总体回归模型
Y F ( XB)
样本回归模 型 F(X y
i
i
B) i (i 1, 2......n)
(三) 二元选择模型随机误差项及斜率
Li ,
P为y取1时的概率
(3) Logit 模型的边际分析 1、自变量的变化对响应概率(p)的影响:
dp e f (Z ) dZ (1 e Z )2
Z
p d ln( ) dZ 1 p j dx j dx j
p dp Z eZ f (Z ) j j (z)(1-(z)) j Z 2 x j dZ x j (1 e )
线性概率模型存在的问题及适用性
随机误差项是异方差:Var ( i ) pi (1 pi )
办法:可用WLS估计。 拟合值可能不在0-1之间,有可能大于1或小于0: 办法:强令预测值相应等于0或1 进行约束估计。
1
y
* i

y
0
i
Xi B 1 0 Xi B 1 Xi B 0
具有以上分布函数的二元选择模型称为Logit模型。
(2) Logit 模型的设定 Z e yi F ( X i B) i F (Z ) ( Z ) Z
1 e
模型 yi ( X i B) i 线性化 pi ( X i B)
eZ f (Z ) F (Z ) ( Z )(1 ( Z )) Z 2 (1 e )
对于回归模型: yi F ( X i B) i
E(i ) 1 F ( X i B) F ( X i B) F ( X i B) 1 F ( X i B) 0
Var ( i ) E ( i2 ) 1 F ( X i B) F ( X i B) F ( X i B) 1 F ( X i B)
LPM在实际的回归当中应用很少,用于理论模型的比较。
2、 Logit 模型
(1) Logit 模型的分布函数 如果选择
1 0.8 0.6 0.4 0.2 0 0 5 10 15 20 25 30
eZ 1 1 F (Z ) 1 1 eZ 1 eZ 1 e Z
Logistic分布函数
相关文档
最新文档