福建省清流一中数学(人教A)必修5教案 1.2应用举例(一)

合集下载

人教A版高中数学必修5《一章 解三角形 1.2 应用举例 1.2 应用举例(通用)》优质课教案_11

人教A版高中数学必修5《一章 解三角形  1.2 应用举例  1.2 应用举例(通用)》优质课教案_11

《正余弦定理的应用(一)——距离测量问题》教学设计摘要:文章以人教A版高中数学教科书必修五为出发点,结合课程标准,通过对三维目标的设置和学生学情及教学重难点的分析,采用了小组讨论法、引导探究法、讲练结合法,按照复习回顾、讲授新课、随堂练习、小结、作业、教后反思等六个环节,就正余弦定理在距离测量问题方面的应用做了比较全面的教学设计,最后总结出解应用题的基本思路.设计在复习回顾部分特别加入了回顾小测,在例题讲解过程进行了点评和引申,在练习部分链接了相关的高考试题,这是该设计的三处亮点,旨在激发学生的学习热情和探究精神,也为高中数学一线教师的备课方式提供了一种案例参考.关键词:数学模型;正余弦定理;距离测量教学目标:知识目标:能够运用正弦定理和余弦定理等解三角形知识,解决不可到达点的距离测量问题.能力目标:能够将实际问题,尤其是距离测量问题转化成解三角形的问题进行解决.情感目标:(1)通过本节课所学知识解决一些生活中的实际问题,让学生体会数学的实用性;(2)通过小组讨论活动,培养学生的团队协作意识.学情分析:正余弦定理是高中数学中很重要的内容之一,在学生已经具备一些数学基本功的基础上,以正余弦定理本身为出发点,以其在实际生活中的应用为主线系统学习和掌握正余弦定理在诸如距离测量等的实际问题中的应用. 数学建模的过程是一个长期学习的过程,学生对数学必修内容的学习即将结束的时候,数学建模意识已经建立起来并达到成熟,教科书在必修5安排正余弦定理的应用是恰到好处,对教师的教和学都是有积极意义的.教学重点:分析测量问题的实际背景,从而找到测量距离的方法. 教学难点:从实际问题中抽象出正确的数学模型,同时做到操作的可行性.教学方法:小组讨论法、引导探究法、讲练结合法教学过程:一、 复习回顾1、正弦定理注:正弦定理可以解决以下的解三角形问题:(1)已知三角形的任意两边和其中一边的对角;(2)已知三角形的任意两角和一边.2、余弦定理注:余弦定理可以解决以下的解三角形问题:(1)已知三角形的三边;(2)已知三角形的任意两边和一角. R Cc B b A a 2sin sin sin === Cab b a c B ac c a b A bc c b a cos 2cos 2cos 2222222222-+=-+=-+=3、回顾小测(1)在ABC ∆中,若C B A 222sin sin sin +=,则ABC ∆的形状是______三角形.(2)在ABC ∆中,已知2a =,则cos cos b C c B +等于______.二、讲授新课一些实际问题:1、如何测量地球和月亮之间的距离;2、怎样在航行途中测出海上两个岛屿之间的距离;3、怎样测量不可到达的两点之间的距离.这将是我们今天要解决的问题.例1、设A 、B 两点在河的两岸,要测量两点之间的距离.测量者在A 的同测,在所在的河岸边选定一点C ,测出AC 的距离是55m , 51=∠BAC , 75=∠ACB ,求A 、B 两点间的距离(精确到0.1m ).分析:已知两角一边,可以用正弦定理解三角形.解:根据正弦定理,得B AC C AB sin sin =)(7.6554sin 75sin 55)7551180sin(75sin 55sin sin 55sin sin 000000m ABCACB ABC ACB AC AB ≈=--=∠∠=∠∠=答:A 、B 两点间的距离为65.7m .点评:1、AC 是根据测量的需要适当确定的线段,称其为基线.2、这是测量不能直接度量的两点的一种方案,可引申如下: 测量两点都不能到达的两点间距离,如下例.例2、A 、B 两点都在河的对岸(不可到达),设计一种测量两点间的距离的方法.分析:用例1的方法,可以计算出河的这一岸的一点C 到对岸两点的距离,再测出BCA ∠的大小,借助于余弦定理可以计算出A 、B 两点间的距离.解:测量者可以在河岸边选定两点C 、D ,测得CD a =,并且在C 、D 两点分别测得α=∠BCA ,β=∠ACD ,γ=∠CDB ,δ=∠BDA . 在BDC ADC ∆∆和中,应用正弦定理得:[])sin()sin()(180sin )sin(δγβδγδγβδγ+++=++-+=a a AC计算出AC 和BC 后,再在ABC ∆中,应用余弦定理计算出AB 两点间的距离请同学们想一想,还有没有别的测量方法?三、 随堂练习练习1、为了测量河宽,在岸的一边选定两点B A 、,望对岸的标记物C ,测得 45=∠CAB , 75=∠CBA ,120=AB 米,则河宽为 米.练习2、(2009年宁夏高考)为了测量两山顶M 、N 间的距离,飞机沿水平方向在A 、B 两点进行测量,A 、B 、M 、N 在同一个铅垂平面内(如示意图),飞机能够测量的数据有俯角和A 、B 间的距离,请设计一个方案,包括:①指出需要测量的数据(用字母表示,并在图中标出);②用文字和公式写出计算M 、N 间的距离的步骤.四、 小结解应用题的基本思路:[])sin(sin )(180sin sin γβαγγβαγ++=++-=a a BC αcos 222BC AC BC AC AB ⨯-+=五、作业P习题1.2A组1、2.19六、教后反思本节课是继正弦定理和余弦定理之后的应用型的章节,是基于正余弦定理基础之上的知识应用层次,正余弦定理的应用是高中重要且实用的章节,是知识层次的最高要求.能将实际问题转化为解三角形的问题,通过解三角形来求解实际问题是本节课的重点,也是知识能力的最高要求,通过学情分析,结合教材难易程度设计了本课,通过教学过程可以发现,学生对知识的应用已经上了一个台阶,需要在练习的过程中再加要求.基于以上分析,以后备课授课的过程中教师应该注意以下几点:首先,将课前测试科学合理的重视起来,做到新课前的小测巩固.这比单独的知识点的复习回顾效果明显,而且学生也有挑战感,让他们觉得自己是“跳起来吃到了桃子”,学生有成就感,教师也觉得开场有了激情,有了新课开演的前奏.其次,例题的教学分层次展开是本节课的一大亮点,这样做既降低了例题本身的难度,使得学生一节课后有一种自我整理为精华的感觉,更重要的是让学生在探究的过程中学会了化归思想,学会了如何将同类问题划归为基本问题.再次,课前准备这一环节也是必不可少的,比如本节课中要用到的距离测量的钢卷尺或者皮尺,角度测量的测角仪等,有的学生平时很少接触,可能不是很熟悉,这样的图片给学生做一课前演示准备是很有必要的,这样做无疑会让学生对新解决的问题产生“熟悉感”,会对新课的讲授起到一定的辅助作用.最后,练习的设计符合递进式原则,从易到难,也符合学生的认知规律,学生从做练习的过程中既能体会到成就感,也能感受到挑战性.在练习中加入一定难度的高考题链接,是遵循了新课改的基本理念的,以能力为基本要求,以知识点为基本依托,做到知识和考题的前呼后应.参考文献:[1] 张奠宙,宋乃庆.数学教育概论[M].北京:高等教育出版社,2004.10.[2] 傅佳.实施数学课堂教学有效性之我见[J]. 教育观察,2012, (06):71-72.[3] 张春莉,王小明.数学学习与教学设计[M].上海:上海教育出版社,2004.[4] 课程教材研究所.数学必修5[M].北京:人民教育出版社,2012.5.[5] 任志鸿.志鸿优化十年高考分类解析与应试策略(数学)[M] .海南:南方出版社,2013.1.。

新人教版(A)高中数学必修5应用举例教案1

新人教版(A)高中数学必修5应用举例教案1

应用举例一、教学目标1.使学生了解仰角、俯角的概念,能根据直角三角形的知识解决实际问题,会把实际问题转化为数学问题来解决;2.通过本节的教学,进一步把形和数结合起来,提高学生分析问题、解决实际问题的能力;3.通过本节的教学,向学生渗透数学来源于实践又反过来作用于实践的观点,培养他们用数学的意识.二、重点·难点·疑点及解决办法1.重点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题.2.难点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题.3.疑点:练习中水位为+2.63这一条件学生可能不理解,教师最好用实际教具加以说明.4.解决办法:引导学生体会实际问题中的概念,建立数学模型,从而重难点,以教具演示解决疑点.三、教学过程1.仰角、俯角当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水平线下方的角叫做俯角.教学时,可以让学生仰视灯或俯视桌面以体会仰角与俯角的意义.2.例1如图,某飞机于空中A处探测到目标C,此时飞行高度米,从飞机上看地平面控制点B的俯角,求飞机A到控制点B距离(精确到1米).解决此问题的关键是在于把它转化为数学问题,利用解直角三角报知识来解决,在此之前,学生曾经接触到通过把实际问题转化为数学问题后,用数学方法来解决问题的方法,但不太熟练.因此,解决此题的关键是转化实际问题为数学问题,转化过程中着重语学生画几何图形,并说出题目中每句话对应图中哪个角或边(包括已知什么和求什么),会利用平行线的内错角相等的性质由已知的俯角得出中的,进而利用解直角三角形的知识就可以解此题了.解:在中,∴(米).答:飞机A到控制点B的距离约为4221米.[例1]小结:本章引言中的例子和例1正好属于应用同一关系式来解决的两个实际问题即已知和斜边,求的对边;以及已知和对边,求斜边.3.巩固练习 P.25.如图,某海岛上的观察所A发现海上某船只B并测得其俯角.已知观察所A 的标高(当水位为0m时的高度)为43.74m,当时水位为+2.63m,求观察所A到船只B的水平距离BC(精确到1m)为了巩固例1,加深学生对仰角、俯角的了解,配备了练习.由于学生只接触了一道实际应用题,对其还不熟悉,不会将其转化为数学问题,因此教师在学生充分地思考后,应引导学生分析:1.谁能将实物图形抽象为几何图形?请一名同学上黑板画出来.2.请学生结合图说出已知条件和所求各是什么?答:已知,求AB.这样,学生运用已有的解直角三角形的知识完全可以解答.对于程度较高的学生,教师还可以将此题变式,当船继续行驶到D时,测得俯角,当时水位为-1.15m,求观察所A到船只B的水平距离(精确到1m),请学生独立完成.【例2】如图所示,已知A、B两点间的距离是160米,从A点看B点的仰角是11°,AC长为1.5米,求BD的高及水平距离CD.此题在例1的基础上,又加深了一步,须由A作一条平等于CD的直线交BD于E,构造出,然后进一步求出AE、BE,进而求出BD与CD.设置此题,既使成绩较好的学生有足够的训练,同时对较差学生又是巩固,达到分层次教学的目的.解:过A作,于是,在中,∴(米)..∴(米).∴(米).(米).答:BD的高及水平距离CD分别是32.03米,157.1米.练习:为测量松树AB的高度,一个人站在距松树15米的E处,测得仰角,已知人的高度为1.72米,求树高(精确到0.01米).要求学生根据题意能画图,把实际问题转化为数学问题,利用解直角三角形的知识来解决它.。

高中数学 1.2应用举例教学设计 新人教A版必修5

高中数学 1.2应用举例教学设计 新人教A版必修5

1.2应用举例教材分析三维目标知识与技能能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.过程与方法通过将实际问题建立数学模型,使学生充分认识到建立数学模型的重要性,进行测量,掌握数学术语及数学作图方法,体会数学的严谨性.情感态度与价值观数学来源于生活,又应用于生活,一方面,三角形知识广泛应用于实际问题中,另一方面,实际问题的解决又推动了三角形的进一步完善和发展,通过亲自动手测量,写出实习报告等体会到数学市有用的,我能用数学,也能用好数学.教学重点分析测量问题的实际情景,从而找到测量距离的方法.教学难点实际问题向数学问题转化思路的确定,即根据题意建立数学模型,画出示意图.教学建议解三角形知识在实际问题中有着广泛的应用,如测量、航海等都要用到这方面的知识.对于解三角形的实际问题,我们要在理解一些术语(如坡角、仰角、俯角、方位角、方向角等)的基础上,正确地将实际问题中的长度、角度看成三角形相应的边和角,创造可解的条件,综合运用三角函数知识以及正弦定理和余弦定理来解决.学习这部分知识有助于增强学生的数学应用意识和解决实际问题的能力.本节的例1、例2是两个有关测量距离的问题.例1是测量从一个可到达的点到一个不可到达的点之间的距离问题,例2是测量两个不可到达的点之间距离的问题.对于例1可以引导学生分析这个问题实际上就是已知三角形两个角和一边解三角形的问题,从而可以用正弦定理去解决.对于例2首先把求不可到达的两点A、B之间的距离转化为应用余弦定理求三角形的边长的问题,然后把求未知的BC和AC的问题转化为例1中测量可到达的一点与不可到达的一点之间的距离问题.导入新课一湖北省十堰市郧县柳坡镇马蹄沟村,是一个世代被大山阻隔的小山村,在无法承载贫穷重负和生命重压之下,毅然决然以一己之力,用比较落后的方式,开始了一段长达五年的艰难的开山之旅。

他们经历了令人难以想象的风险,终于打通了一条长400米的隧洞,从而大大拉近了闭塞小山村与现代大都市的时代距离。

高中数学新人教A版必修5教案 1.2 应用举例

高中数学新人教A版必修5教案 1.2 应用举例

正余弦定理及其应用的教案教学目标(一)知识与能力目标1.通过对正余弦定理的应用,加深对正余弦定理的理解.会用正余弦定理解三角形.(1)已知两角和任一边,求其它两边和一角.(2)已知两边和其中一边的对角,求另一边的对角及其它的边和角.(3)已知三边,用余弦定理,必有唯一解;(4)已知两边及其中一边的对角,(不妨设为a,b,A)解法有两种:2.理解掌握已知两边和其中一边的对角解三角形时,有一解或两解或无解三种情况,并会判断哪些条件使解三角形时出现一解、两解、无解.(二)过程与方法目标通过对正余弦定理及其变形式的应用,达到边角互化的目的,在题型中的操练,达到熟练掌握的同时,并掌握一定的解题技巧和方法。

(三)情感态度与价值观感受正余弦定理与其他知识间的紧密联系,体会万事万物间也存在着千丝万缕的关系。

教学重点和难点重点:1、正余弦定理的应用,用正余弦定理解三角形,特别是在已知两边和其中一边的对角解三角形时,解的情况2、利用正余弦定理实现边角互化,体现正余弦定理搭建边角互化的桥梁,是解三角形有利的两大工具。

难点:在具体的题型中真正体现正余弦定理作为桥梁的作用,并能挖掘出题目中的隐含条件,达到求解的目的。

教学设计:由复习引入到本节主要三个环节,分环节进行,典例剖析,讲练结合,层层递进,环环相扣。

教学过程设计 一、复习正余弦定理1、正弦定理:正弦定理精确地表达了三角形中各边和它所对角的正弦成正比.a =2RsinA ,b =2RsinB ,c =2RsinC .2、余弦定理:二、教师指导学生完成,教师最后总结.正余弦定理精确地表达了三角形中的边与角之间的关系,我们就可利用它根据三角形中的已知元素去求出未知元素.)(2sin sin sin 外接圆的半径表示ABC R R CcB b Aa∆===,2bc a c b cosA 222-+=,2ca b a c cosB 222-+=。

2abc b a cosC 222-+=2R sinCc2R,sinB b 2R,sinA a ===2Rc,sinC 2R b ,sinB 2R a sinA ===(一)解三角形二、合理使用正、余弦定理,使角边互相转化例3:在 ABC 中,已知acosA=bcosB ,判断三角形的形状。

人教A版必修5数学 精品导学案:1.2应用举例—①

人教A版必修5数学 精品导学案:1.2应用举例—①

§1.2应用举例—①班级姓名学号学习目标能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题学习过程一、课前准备复习1:在△ABC中,∠C=60°,a+b=232+,c=22,则∠A为.复习2:在△ABC中,sin A=sin sincos cosB CB C++,判断三角形的形状.二、新课导学※典型例题例1. 如图,设A、B两点在河的两岸,要测量两点之间的距离,测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离是a,∠BAC=α,∠ACB=β. 求A、B两点的距离.分析:这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离的问题例2. 如图,A、B两点都在河的对岸(不可到达),设计一种测量A、B两点间距离的方法.例3、坡度、仰角、俯角、方位角探究:AB是底部B不可到达的一个建筑物,A为建筑物的最高点,设计一种测量建筑物高度AB的方法.例4. 如图,一辆汽车在一条水平的公路上向正东行驶,到A处时测得公路南侧远处一山顶D 在东偏南15︒的方向上,行驶5km后到达B处,测得此山顶在东偏南25︒的方向上,仰角为8︒,求此山的高度CD.1. 台风中心从A 地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B 在A 的正东40千米处,B 城市处于危险区内的时间为( ).A .0.5小时B .1小时C .1.5小时D .2小时2. 在ABC ∆中,已知2222()sin()()sin()a b A B a b A B +-=-+,则ABC ∆的形状( ).A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形3.在ABC ∆中,已知4a =,6b =,120C =,则sin A 的值是 .4.在∆ABC 中,cos 5cos 3A bB a ==,则∆ABC 的形状是、c 分别为∠A 、∠B 、∠C 的对边,若::a b c A:B:C 的值.1. 隔河可以看到两个目标,但不能到达,的C 、D 两点,并测得∠ACB=75°,∠BCD=45°,∠ADC=30°,∠ADB=45°,A、B、C、D在同一个平面,求两目标A、B间的距离.2. 在∆ABC中,b=2a=,且三角形有两解,则A的取值范围是.教师个人研修总结在新课改的形式下,如何激发教师的教研热情,提升教师的教研能力和学校整体的教研实效,是摆在每一个学校面前的一项重要的“校本工程”。

人教A版高中数学必修五 1.2应用举例 教案

人教A版高中数学必修五 1.2应用举例 教案

1.2.解三角形应用举例一、教学目标:知识与技能:能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语;过程与方法:通过实际问题的解决,提高知识的综合运用能力和应用意识;情感、态度与价值观:激发学生学习数学的兴趣,并体会数学的应用价值;同时培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力二.重点难点重点:实际问题中抽象出一个或几个三角形,然后逐个解决三角形,得到实际问题的解难点:根据题意建立数学模型,画出示意图三、教材与学情分析首先通过巧妙的设疑,顺利地引导新课,为以后的几节课做良好铺垫。

其次结合学生的实际情况,采用“提出问题——引发思考——探索猜想——总结规律——反馈训练”的教学过程,根据大纲要求以及教学内容之间的内在关系,铺开例题,设计变式,同时通过多媒体、图形观察等直观演示,帮助学生掌握解法,能够类比解决实际问题。

对于例2这样的开放性题目要鼓励学生讨论,开放多种思路,引导学生发现问题并进行适当的指点和矫正四、教学方法问题引导,主动探究,启发式教学.五、教学过程(一)知识梳理:1、正弦定理和余弦定理2.仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图①).3.方位角从正北方向顺时针转到目标方向线的角(如图②,B点的方位角为α).4.方向角相对于某一正方向的角(如图③).(1)北偏东α:指从正北方向顺时针旋转α到达目标方向.(2)东北方向:指北偏东45°. (3)其他方向角类似.(二)课前热身1.若点A在点B的北偏西30°,则点B在点A的()A.北偏西30°B.北偏西60°C.南偏东30°D.南偏东60°2.在某次测量中,在A处测得同一平面方向的B点的仰角是60°,C点的俯角为70°,则∠BAC等于() A.10°B.50°C.120°D.130°3.一船向北航行,看见正西方向相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时()A.5海里B.5 3 海里C.10海里D.10 3 海里4.在相距2千米的A,B两点处测量目标C,若∠CAB=75°,∠CBA=60°,则A,C两点之间的距离为______千米.(三)考点剖析:考点一测量距离例1、如图,隔河看两目标A与B,但不能到达,在岸边先选取相距3千米的C,D两点,同时,测得∠ACB =75°,∠BCD=45°,∠ADC=30°,∠ADB=45°(A,B,C,D在同一平面内),求两目标A,B之间的距离.[规律方法] 求距离问题的注意事项:(1)选定或确定要求解的三角形,即所求量所在的三角形,若其他量已知则直接解;若有未知量,则把未知量放在另一确定三角形中求解.(2)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理.练习 1.郑州市某广场有一块不规则的绿地如图所示,城建部门欲在该地上建造一个底座为三角形的环境标志,小李、小王设计的底座形状分别为△ABC、△ABD,经测量AD=BD=7米,BC=5米,AC=8米,∠C=∠D.求AB的长度.考点二测量高度例2、要测量底部不能到达的电视塔AB的高度,在C点测得塔顶A的仰角是45°,在D点测得塔顶A 的仰角是30°,并测得水平面上的∠BCD=120°,CD=40 m,求电视塔的高度.[规律方法]求解高度问题应注意:(1)在测量高度时,要理解仰角、俯角的概念,仰角和俯角都是在同一铅垂面内,视线与水平线的夹角;(2)准确理解题意,分清已知条件与所求,画出示意图;(3)运用正、余弦定理,有序地解相关的三角形,逐步求解问题的答案,注意方程思想的运用.练习: 2.如图,测量河对岸的旗杆高AB时,选与旗杆底B在同一水平面内的两个测点C与D.测得∠BCD=75°,∠BDC=60°,CD=a,并在点C测得旗杆顶A的仰角为60°,则旗杆高AB为________.考点三测量角度例3、如图,位于A处的信息中心获悉:在其正东方向相距40海里的B处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C处的乙船,现乙船朝北偏东θ的方向沿直线CB前往B处救援,求cos θ的值.[规律方法]解决测量角度问题的注意事项:(1)明确方位角的含义;(2)分析题意,分清已知与所求,再根据题意正确画出示意图,这是最关键、最重要的一步;(3)将实际问题转化为可用数学方法解决的问题后,注意正、余弦定理的“联袂”使用.练习 3.如图,甲船以每小时30 2 海里的速度向正北方航行,乙船按固定方向匀速直线航行.当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,此时两船相距20海里,当甲船航行20分钟到达A2处时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距102海里.问:乙船每小时航行多少海里?六、课堂小结解斜三角形应用题的一般步骤:(1)分析:理解题意,分清已知与未知,画出示意图(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解(4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解七、课后作业1.课时练与测八、教学反思。

福建省清流一中数学(人教A)必修五教案 余弦定理(一)

(由学生总结)若 ABC中,C= ,则 ,这时
由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例。
[例题分析]
例1.在 ABC中,已知 , , ,求b及A
⑴解:∵ = cos
= = ∴
求 可以利用余弦定理,也可以利用正弦定理:
⑵解法一:∵cos

解法二:∵sin 又∵ >
< ∴ < ,即 < <

评述:解法二应注意确定A的取值范围。
思考:在解三角形的过程中,求某一个角时既可用正弦定理也可用余弦定理,两种方法有什么利弊呢?
例2.在 ABC中,已知 , , ,解三角形
解:由余弦定理的推论得:
cos ;
cos ;
[随堂练习]第8页练习第1(1)、(2)题。
活动四:归纳整理、提高认识(2分钟)
(1)余弦定理是任何三角形边角之间存在的共同规律,勾股定理是余弦定理的特例;
(2)余弦定理的应用范围:①.已知三边求三角;②.已知两边及它们的夹角,求第三边。
活动五:作业布置、提高巩固
1、课后阅读:课本第5--6页
2、课后作业:第11页习题1.1A组第3题。
板书设计:
教学后记:
3.情感、态度与价值观
培养学生在方程思想指导下处理解三角形问题的运算能力;通过三角函数、余弦定理、向量的数量积等知识间的关系,来理解事物之间的普遍联系与辩证统一。
教学重点
余弦定理的发现和证明过程及其基本应用。
教学难点
勾股定理在余弦定理的发现和证明过程中的作用。
教学方法
启发、探究。
教学过程:
批注
活动一:创设情景、引入课题(5分钟)
C B
从而
同理可证
余弦定理:

高二数学人教A版必修5第一章1.2 应用举例 教案

1.2 应用举例【课题】:1.2.3解三角形在三角形面积计算上的应用【学情分析】:在学习本节之前学生能解决直角三角形以及已知三角形的一边和这边上的高的三角形面积计算问题。

学生学了正弦定理和余弦定理并积累了一些解三角形的知识后,对三角形的面积的计算就可以向学生提出更高的要求了。

因此,在学生已掌握了正弦定理、余弦定理的基础上,让学生探讨解决“已知二边及夹角和已知三边求三角形面积”的问题,就有了可能。

【教学目标】:(1)知识与技能:使学生掌握在“已知二边及夹角”和“已知三边”的条件下求三角形面积的方法;提高计算和使用计算工具的能力;进一步领会方程的思想,提高解决问题尤其是实际问题的能力(2)过程与方法:通过合作与探究,加深对正弦定理、余弦定理的理解,提高方程思想在实际中的运用能力(3)情态与价值:体验探求的乐趣,体会正弦定理、余弦定理的结构美,激发并提高学生学习数学的热情和兴趣【教学重点】:(1)公式的发现和它的灵活应用(2)方程思想的运用【教学难点】:在不同的条件下灵活的应用公式【课前准备】:Powerpoint或投影片【教学过程设计】:教学环节教学活动设计意图创设情景问题1:在三角形ABC中,a=4,b=3,C = 60°,则ABCS∆=______ 生:求出对应边上的高,再利用12S a h=⋅求解∵AC=b,BC=a,作AD⊥BC,则AD为三角形BC边上的高∴AD=bsinC1sin2ABCS ab C=创设情景,引出问题,让学生主动学习,积极思考,由浅入深,寻求答案,灵活应用例1:在△ABC中,根据下列条件,求三角形的面积S(精确到0.1cm2)(1)已知a=14.8cm,c=23.5cm, B=148.50;(2)已知B=62.70,C=65.80,b=3.16cm;(3)已知三边的长分别为a=41.4cm,b=27.3cm,c=38.7cm.例2:如图,在某市进行环境建设中,要把一个三角形的区域改造成市内公园,经过测量得到这个三角形区域的三条边分别为68cm ,88cm,127cm,这个区域的面积是多少?(精确到0.1cm2)例3:在△ABC中,求证:(1)222222sin sinsina b A Bc C++=(2)2222(cos cos cos)a b c bc A ca B ab C++=++例1,2是在不同条件下求三角形的面积问题,归根到底是灵活运用正弦定理和余弦定理,应让学生归纳总结方法并提高计算能力,例3是边化角或角化边思想的体现练一练1.在△ABC中,A=600,b=1,3ABCS=,则△ABC外接圆的半径是_________________.2. 在△ABC中,已知B=600,cosC=13,AC=36,则△ABC的面积是____3.在ABC∆中,193,32,222==++=acbbccba,求ABC∆的面积4.在△ABC中,2sin cos2A A+=,AC=2,AB=3,则△ABC的面积是_________________.通过练习进一步熟悉公式,灵活地针对不同的条件解决问题,从而增加学生学好数学的兴趣和信心基础练习:1、在△ABC 中,a=2,A=030,C=045,则△ABC 的面积是_________________ 解:由正弦定理sin sin a bA B=有sin 2sin1051)sin sin 30a B b A === ∴11sin 21)1222ABC S ab C ∆==⋅⋅= 2、在△ABC 中,a,b,c 分别为A ,B ,C的对边,且tan tan tan A B A B +=⋅,a=4,b+c=5,则△ABC 的面积为________________________35. 3 C.D.222A 解:由tan tan tan A B A B ++=⋅得tan tan 1tan tan A BA B+=-⋅∴ A+B=23π C=3π又 ∵ 22222cos 1645c a b ab C b bb c ⎧=+-=+-⎨+=⎩∴ b=32113sin 4sin 2223ABCS ab C π==⋅⋅⋅=∴选C3、在△ABC 中,已知a 比b 长2,b 比c 长2,且最大角的正弦是32,则△ABC 的面积是____________________解:由已知可知A 是最大角,所以3sin 2A =A=0060120或 又222(4)(2)2(2)cos c c c c c A +=++-⋅⋅+当A=0120时,上式化为260c c --=,解得c=3或c=-2(舍去) 当A=060时,上式无意义∴ 113153sin 532224ABCSbc A ==⋅⋅⋅= 4、在△ABC 中,a,b,c 分别为A ,B ,C 的对边的长,S 是△ABC 的面积,若a=4,b=5,S=53,求c 的长度。

人教A 版高中数学必修五课件:1.2 应用举例 (共16张PPT)


பைடு நூலகம்
数学建模
实际情境
修改
提出问题
数学模型
数学结果
检验 不合乎实际
合乎实际
可用结果
小组评价:
• 完善实验报告,总结经验和不足
成功的秘诀就在于多努力一次。为了成功,你努力了多少次? 天空的高度是鸟儿飞出来的,水无论有多深是鱼儿游出来的。 人若勇敢就是自己最好的朋友。 说穿了,其实提高成绩并不难,就看你是不是肯下功夫积累——多做题,多总结。 不求做的最好,但求做的更好。 每个人心里都有一段伤痕,时间才是最好的疗剂。 如果你相信自己,你可以做任何事。 你被拒绝的越多,你就成长得越快;你学的越多,就越能成功。 吃别人吃不了的苦,忍别人受不了的气,付出比别人更多的,才会享受的比别人更多。 健康的身体是实目标的基石。 种子牢记着雨滴献身的叮嘱,增强了冒尖的气。 贪婪是最真实的贫穷,满足是最真实的财富。 有梦就去追,没死就别停。 君子坦荡荡,小人常戚戚。——《论语》 绝大多数人,在绝大多数时候,都只能靠自己。 书籍是全世界的营养品,生活里没有书籍就好像没有阳光;智慧里没有书籍就好像鸟儿没有翅膀。 萤火虫的光点虽然微弱,但亮着便是向黑暗挑战。 没有遇到挫折,永远不会懂得自己的力量有多大。 战士的意志要象礁石一样坚定,战士的性格要象和风一样温柔。 世上所有美好的感情加在一起,也抵不上一桩高尚的行动。
(测量高度问题)
测量任务
测量任务
• 基本工具 自制量角仪 卷尺 计算器 • 分组活动 三个小组设计方案,然后实地测量 • 活动时间 9月29日~10月8日
实验报告
小组测量任务交流
A
B
M
A
A
B E
MB
E
M E
讨论交流

高中数学 1.2应用举例(一)全册精品教案 新人教A版必修5

1.2解三角形应用举例 第一课时一、教学目标1、能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语2、激发学生学习数学的兴趣,并体会数学的应用价值;同时培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力二、教学重点、难点教学重点:由实际问题中抽象出一个或几个三角形,然后逐个解决三角形,得到实际问题的解 教学难点:根据题意建立数学模型,画出示意图三、教学设想1、复习旧知复习提问什么是正弦定理、余弦定理以及它们可以解决哪些类型的三角形?2、设置情境请学生回答完后再提问:前面引言第一章“解三角形”中,我们遇到这么一个问题,“遥不可及的月亮离我们地球究竟有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?我们知道,对于未知的距离、高度等,存在着许多可供选择的测量方案,比如可以应用全等三角形、相似三角形的方法,或借助解直角三角形等等不同的方法,但由于在实际测量问题的真实背景下,某些方法会不能实施。

如因为没有足够的空间,不能用全等三角形的方法来测量,所以,有些方法会有局限性。

于是上面介绍的问题是用以前的方法所不能解决的。

今天我们开始学习正弦定理、余弦定理在科学实践中的重要应用,首先研究如何测量距离。

3、 新课讲授(1)解决实际测量问题的过程一般要充分认真理解题意,正确做出图形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,通过建立数学模型来求解(2)例1、如图,设A 、B 两点在河的两岸,要测量两点之间的距离,测量者在A 的同侧,在所在的河岸边选定一点C ,测出AC 的距离是55m ,∠BAC=︒51,∠ACB=︒75。

求A 、B 两点的距离(精确到0.1m)提问1:∆ABC 中,根据已知的边和对应角,运用哪个定理比较适当?提问2:运用该定理解题还需要那些边和角呢?请学生回答。

分析:这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离的问题,题目条件告诉了边AB 的对角,AC 为已知边,再根据三角形的内角和定理很容易根据两个已知角算出AC 的对角,应用正弦定理算出AB 边。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

活动一:创设情景、引入课题(5分钟)
1、复习旧知
复习提问什么是正弦定理、余弦定理以及它们可以解决哪些类型的三角形?
2、设置情境
请学生回答完后再提问:前面引言第一章“解三角形”中,我们遇到这么一个问题,“遥不可及的月亮离我们地球究竟有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?我们知道,对于未知的距离、高度等,存在着许多可供选择的测量方案,比如可以应用全等三角形、相似三角形的方法,或借助解直角三角形等等不同的方法,但由于在实际测量问题的真实背景下,某些方法会不能实施。

如因为没有足够的空间,不能用全等三角形的方法来测量,所以,有些方法会有局限性。

于是上面介绍的问题是用以前的方法所不能解决的。

今天我们开始学习正弦定理、余弦定理在科学实践中的重要应用,首先研究如何测量距离。

活动二:师生交流、进入新知(15分钟)
(1)解决实际测量问题的过程一般要充分认真理解题意,正确做出图形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,通过建立数学模型来求解
(2)例1、如图,设A、B两点在河的两岸,要测量两点之间的距离,测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离是55m,∠BAC=︒
51,∠ACB=︒
75。

求A、B两点的距离(精确到0.1m)
提问1:∆ABC中,根据已知的边和对应角,运用哪个定理比较适当?
提问2:运用该定理解题还需要那些边和角呢?请学生回答。

分析:这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离的问注
题,题目条件告诉了边AB 的对角,AC 为已知边,再根据三角形的内角和定理很容易根据两个已知角算出AC 的对角,应用正弦定理算出AB 边。

解:根据正弦定理,得 ACB AB ∠sin = ABC
AC ∠sin AB = ABC
ACB AC ∠∠sin sin = ABC ACB ∠∠sin sin 55= )7551180sin(75sin 55︒-︒-︒︒ = ︒︒54sin 75sin 55 ≈ 65.7(m) 答:A 、B 两点间的距离为65.7米
变式练习:两灯塔A 、B 与海洋观察站C 的距离都等于a km,灯塔A 在观察站C 的北偏东30︒,灯塔B 在观察站C 南偏东60︒,则A 、B 之间的距离为多少? 老师指导学生画图,建立数学模型。

解略:2a km
活动三:合作学习、探究新知(23分钟)
例2、如图,A 、B 两点都在河的对岸(不可到达),设计一种测量A 、B 两点间距离的方法。

分析:这是例1的变式题,研究的是两个不可到达的点之间的距离测量问题。

首先需要构造三角形,所以需要确定C 、D 两点。

根据正弦定理中已知三角形的任意两个内角与一边既可求出另两边的方法,分别求出AC 和BC ,再利用余弦定理可以计算出AB 的距离。

解:测量者可以在河岸边选定两点C 、D ,测得CD=a ,并且在C 、D 两点分别测得∠BCA=α, ∠
ACD=β,∠CDB=γ,∠BDA =δ,在∆ADC 和∆BDC 中,应用正弦定理得
AC =
)](180sin[)sin(δγβδγ++-︒+a = )sin()sin(δγβδγ+++a BC = )](180sin[sin γβαγ++-︒a = )
sin(sin γβαγ++a
板书设计:教学后记:。

相关文档
最新文档