基于单片机智能浇花系统设计
基于单片机的智能浇水花架设计与实践

基于单片机的智能浇水花架设计与实践一、引言随着社会的发展,人们的生活水平不断提高,对于生活品质的要求也日益提高,户外装饰和花园种植逐渐成为人们生活中不可或缺的一部分。
随之而来的问题是植物的养护和管理成为了人们的一项大问题,尤其是对于一些忙碌的城市人来说,经常会忘记给植物浇水而导致植物的凋谢。
设计一个智能的花架系统就成为了非常有意义的事情,它可以帮助人们更方便地管理和照料自己的植物,并提高植物的存活率。
在本次设计与实践中,我们将基于单片机技术设计一个智能浇水花架系统。
通过传感器检测土壤湿度,自动控制水泵进行浇水,同时配合温湿度传感器进行环境监测,实现对植物生长环境的智能控制。
二、系统设计1. 系统架构智能浇水花架系统主要包括土壤湿度传感器、水泵、单片机控制模块、温湿度传感器和LCD显示屏。
系统主要的工作流程是:土壤湿度传感器检测土壤湿度,如果土壤湿度低于一定阈值,则单片机控制水泵进行浇水,同时温湿度传感器监测环境温湿度并在LCD显示屏上显示出来。
2. 硬件设计土壤湿度传感器采用模拟传感器,通过检测土壤的电导率来判断土壤湿度。
水泵通过继电器和单片机进行控制,当土壤湿度低于一定阈值时,单片机控制继电器闭合使得水泵可以工作。
温湿度传感器采用数字传感器,可以直接读取当前的环境温湿度。
LCD显示屏通过IIC总线与单片机进行通信。
单片机控制模块采用C语言进行编程,通过定时器中断实现对土壤湿度传感器的定时检测,并根据传感器的数据进行判断是否需要进行浇水;通过IIC总线与温湿度传感器进行通信并将数据显示在LCD屏幕上。
三、系统实现1. 硬件连接首先进行硬件的连接,将土壤湿度传感器和温湿度传感器连接到单片机的模拟输入引脚和数字输入引脚上,连接水泵和LCD显示屏。
接入电源和继电器作为输出控制。
2. 单片机编程3. 调试测试进行系统的调试和测试,检查传感器的读取是否准确,水泵的控制是否灵活,LCD显示屏是否正常显示环境温湿度。
基于单片机的智能浇水花架设计与实践

基于单片机的智能浇水花架设计与实践本文将介绍基于单片机的智能浇水花架的设计与实践,以及其在日常生活中的应用和意义。
一、设计与实践1. 设计原理智能浇水花架的设计原理是通过单片机实现对花盆内土壤湿度的检测,当土壤湿度低于一定阈值时,单片机将自动启动水泵给花盆浇水,从而实现对花卉的自动浇水。
2. 实践过程我们需要准备一个单片机开发板(比如Arduino)、土壤湿度传感器、水泵、继电器等硬件材料。
然后,搭建硬件连接,并编写相应的程序代码,通过单片机来控制土壤湿度传感器的检测和水泵的启动。
将整个系统安装在花架上,即可实现智能浇水花架的设计。
二、应用与意义1. 应用价值智能浇水花架的应用场景非常广泛,它可以应用在家庭花园、阳台花架、办公室绿植等多个场景中。
特别是对于一些特殊时期(比如出差、外出度假等),智能浇水花架能够为植物提供定时、定量的自动浇水服务,保证植物的生长和健康。
2. 意义和效果智能浇水花架的出现,不仅提升了家居环境的智能化水平,更为我们的生活带来了便利和舒适。
无需我们每天手动为植物浇水,智能浇水花架能够根据植物的生长需求来进行智能化管理,极大地减轻了我们的日常生活负担。
智能浇水花架也能够保证植物得到足够的水分,提高植物的存活率和生长质量。
三、未来展望随着科技的不断发展,智能浇水花架在未来还有很大的发展空间。
我们可以通过加入温湿度传感器、光照传感器等模块,来实现对各种环境因素的感知和管理。
结合互联网和智能手机App,可以实现对智能浇水花架的远程控制和管理,提高用户的使用体验和便利性。
可以通过声控、手势控制等新技术手段,来进一步提升智能浇水花架的智能化水平,为用户提供更加智能化、个性化的家居生活体验。
总结:基于单片机的智能浇水花架是一种创新的家居设备,它通过单片机实现对花盆内土壤湿度的检测,从而实现对花卉的自动浇水。
智能浇水花架的应用价值广泛,能够为我们的生活带来便利和舒适。
未来,随着科技的发展,智能浇水花架还将不断提升智能化水平,为用户提供更加个性化、智能化的家居生活体验。
单片机自动浇花系统毕业设计

单片机自动浇花系统毕业设计毕业设计题目:基于单片机的自动浇花系统1.设计目的和意义为解决现代社会中常见的人们忙碌,缺乏时间照顾植物的问题,利用单片机技术设计一套自动浇花系统,能够实现在一定的时间间隔内根据种植植物的需求自动进行浇水和护理,达到养护植物的目的,减轻人们的负担,提高生活质量。
2.设计方案本系统采用单片机控制浇水,利用温湿度传感器感应土壤湿度情况及环境温湿度,从而确定自动浇花的适宜时机,控制水泵实现自动浇水。
同时采用光照传感器感应环境光照强度,从而确定室内亮度情况,控制LED灯实现自动补光。
此外,系统采用LCD显示屏展示环境温度、湿度、光照强度和浇水状态等信息,方便用户监控植物生长情况。
具体实现方案如下:1)硬件部分:- 单片机:采用51单片机;- 人机交互:采用液晶显示屏;- 传感器:温度传感器、湿度传感器、光照传感器;- 输出设备:水泵、LED灯。
2)软件部分:- 采用C语言编写,利用单片机的定时器和ADC功能实现温度、湿度、光照强度的采集;- 实现温度、湿度和光照强度的数据处理;- 根据采集的土壤湿度情况和植物的需求,确定自动浇水时机,控制水泵实现浇水;- 根据采集的光照强度情况,确定自动补光时机,控制LED灯进行补光;- 实现LCD显示屏显示环境信息和系统状态信息。
3.实现步骤- 电路设计和制作:包括单片机电路、传感器接口、输出设备接口等;- 编写单片机程序:包括温湿度传感器数据采集、光照传感器数据采集、数据处理、控制水泵浇水、控制LED灯补光、LCD显示等功能;- 软硬件测试:测试程序与硬件是否协调运行,是否能正常采集传感器数据并控制输出设备;- 调试和优化:根据测试结果对程序进行修改和优化。
4.预期效果本设计预期实现以下功能:- 根据土壤湿度情况和植物的需求自动浇水;- 根据光照强度情况自动补光;- 通过LCD显示屏实时显示环境温度、湿度、光照强度等信息;- 用户可以通过液晶显示屏进行操作、设置等。
基于STC89C52单片机的自动浇花系统设计

在测试过程中,我们发现系统的性能受到环境因素的影响较大,如土壤类型、 气候条件等。为了优化系统的性能,我们采取了多项措施。例如,针对不同类 型的土壤,我们通过调整模糊控制算法的参数,实现更为精准的浇水策略;此 外,我们还添加了更多的传感器节点,以获取更为准确的环境数据。这些优化 措施显著提高了系统的性能和稳定性。
在软件设计方面,我们采用定时器中断的方式来实现时间的测量。当超声波传 感器接收到反射回来的超声波时,会触发定时器中断。通过计算定时器计数值 与单片机的时钟频率,可以得出超声波的传播时间,从而计算出距离。
为了验证该系统的正确性和可靠性,我们进行了一系列实验。在实验中,我们 将超声波测距系统置于不同的距离处,测量实际距离与系统测距值的误差。实 验结果表明,在距离为50cm到200cm的范围内,系统测距误差小于2%。
关键词:STC89C52单片机、自动 浇花系统、设计
在当今社会,人们越来越重视生活质量,盆栽植物已成为许多家庭和办公室的 必备装饰。但植物的生长需要适量的水分,因此,设计一种能自动检测植物土 壤湿度并适时浇水的系统显得尤为重要。本次演示将介绍一种以STC89C52单 片机为核心的自动浇花系统,该系统能自动检测土壤湿度,并根据植物的需求 进行浇水。
系统优化
为了进一步提高系统的稳定性和可靠性,我们采取了以下措施进行系统优化:
1、采用更精确的传感器:选择测量精度更高的酒精传感器,可以提高系统的 测量准确性。
2、增加滤波算法:在数据处理阶段加入滤波算法,可以去除采集数据中的噪 声,提高测量稳定性。
3、软件优化:针对软件中存在的潜在问题,进行优化和重构,提高系统的可 靠性。
算法设计:算法设计主要包括输入输出算法、模糊控制算法等。输入输出算法 用于读取传感器的值并输出控制信号;模糊控制算法则根据植物的需求和环境 因素,制定相应的浇水策略。
基于单片机的智能浇水花架设计与实践

基于单片机的智能浇水花架设计与实践引言如今,随着技术的不断发展,智能化已经渗透到了各个领域。
在农业领域,智能化技术也逐渐得到了应用,比如智能浇水系统。
智能浇水系统能够根据土壤的湿度和植物的需水量来自动浇水,大大减轻了农民的劳动负担,同时也提高了植物的生长效率。
本文将会介绍基于单片机的智能浇水花架的设计与实践。
一、智能浇水系统的原理智能浇水系统的核心原理是根据土壤的湿度和植物的需水量来决定是否进行浇水。
一般情况下,智能浇水系统包括土壤湿度传感器、控制模块和水泵等组成。
土壤湿度传感器用于检测土壤的湿度,当土壤的湿度低于设定值时,传感器将会发送信号给控制模块,控制模块再通过水泵给植物浇水。
这样一来,就可以实现智能化的浇水,提高植物的生长效率。
二、设计与实现1.硬件设计智能浇水花架的硬件设计包括主控单元、土壤湿度传感器、水泵、继电器和显示模块等。
主控单元采用单片机,用于接收土壤湿度传感器的数据并控制水泵的开关。
土壤湿度传感器用于检测土壤的湿度情况,根据检测结果来判断是否需要给植物浇水。
水泵用于给植物浇水,继电器用于控制水泵的开关。
显示模块用于显示当前的土壤湿度情况。
2.软件设计软件设计主要包括单片机程序的编写以及用户界面的设计。
单片机程序主要用于接收土壤湿度传感器的数据,并根据设定的阈值来判断是否需要给植物浇水,控制水泵的开关。
用户界面的设计可以使用简单的按钮和显示屏,用于设置土壤湿度的阈值和显示当前的土壤湿度情况。
3.实践在实践中,首先需要搭建起整个智能浇水花架的硬件系统,包括主控单元、土壤湿度传感器、水泵、继电器和显示模块等。
然后编写单片机程序,用于控制整个系统的运行。
接着设计用户界面,使用户可以方便地设置土壤湿度的阈值和查看当前的土壤湿度情况。
最后进行实地测试,根据不同植物的需水量和土壤的湿度情况来调整系统的参数,以达到最佳的浇水效果。
三、优缺点分析1.优点智能浇水花架可以根据土壤的湿度和植物的需水量来自动浇水,无需人工干预,减轻了农民的劳动负担,提高了植物的生长效率。
基于单片机的智能浇水系统设计与实现

基于单片机的智能浇水系统设计与实现第一章:绪论1.1 研究背景在生活中,植物是人们生活中不可缺少的物品。
但是,对于植物的养护需要花费大量的人力物力,而传统的浇水方式也存在时间不均匀、量不足或过多等问题,给植物的健康造成不良影响。
因此,为了满足人们对于智能、高效且健康的植物浇水技术的需求,提高植物养护的质量和效率,研究和开发基于单片机的智能浇水系统显得尤为重要。
1.2 研究意义利用单片机技术实现智能浇水系统,能够减轻人们的工作负担,同时提高浇水的准确性,保证植物健康生长。
此外,该系统还具备自动化、可视化、智能化等特点,可以在节约能源和资源的同时,提高养护效果,为人们生活带来便利。
1.3 现有研究进展目前,国内外对于单片机智能浇水系统的研究较多,研究方法常采用传感器技术、控制技术、通讯技术等,其中以控制技术为主。
对于温室、花园、家庭种植等不同场合,智能浇水系统的设计方式会有所不同。
第二章:智能浇水系统的设计2.1 系统框架设计针对电气控制系统的设计需求,可以将整个电气控制系统分为三个方面:传感、处理、操作。
其中,需要使用各种传感器检测植物的健康状况和环境温度、湿度等参数,然后通过单片机对数据进行处理和分析,根据处理结果控制系统执行相应的操作,满足对植物和环境的合理控制和管理。
2.2 系统硬件设计本系统主要硬件包括四个部分:传感器模块、单片机控制模块、液体泵模块和电源模块。
其中,传感器模块主要用于探测植物和环境的温度、湿度等物理参数,单片机模块则将传感器获得的信号数据进行处理,液体泵模块主要负责控制浇水和排水系统,电源模块则为整个控制系统提供电源支撑。
2.3 系统软件设计本系统的软件主要包括以下几个方面:传感器数据的采集、传感器数据的处理、及时报警、数据显示与记录等。
对于采集到的各项参数,需要对其进行分析和处理,在设定的参数范围内对数据进行控制,以达到智能化的要求。
同时,由于该系统设计具备即时交互的功能,因此需要提供一些人机交互界面,以方便用户随时进行操作和管理。
基于单片机的智能浇水花架设计与实践
基于单片机的智能浇水花架设计与实践随着智能家居的兴起,智能化的生活方式已经开始进入我们的日常生活。
基于单片机的智能浇水花架也逐渐变得流行起来。
本文将介绍基于单片机的智能浇水花架的设计与实践。
一、方案设计1. 系统架构设计基于单片机的智能浇水花架的系统架构主要分为三个部分:传感器模块、控制模块和执行模块。
传感器模块用于感知花架周围的环境信息,如温度、湿度等;控制模块用于接收传感器模块的数据,通过对数据的处理判断是否需要浇水,并控制执行模块进行相应的操作;执行模块用于实际执行浇水操作。
2. 硬件设计智能浇水花架的硬件主要包括单片机、传感器、电磁阀和水泵等。
单片机负责接收传感器模块的数据,并根据预设的浇水条件判断是否需要浇水,并控制电磁阀和水泵的开关。
传感器主要有温湿度传感器和土壤湿度传感器,用于感知花架的周围环境和土壤湿度情况。
电磁阀和水泵用于控制水的流动,实现对花架进行自动浇水。
软件设计主要包括采集传感器数据、判断是否需要浇水、控制执行模块进行相应的操作等功能。
单片机通过串口通信读取传感器数据,并对数据进行处理。
根据预设的浇水条件判断是否需要浇水,并通过控制电磁阀和水泵的开关进行相应的操作。
二、系统实现1. 硬件搭建搭建硬件平台,连接单片机、传感器、电磁阀和水泵等硬件设备。
将传感器连接到单片机的相应引脚,通过串口通信读取传感器数据。
将电磁阀和水泵连接到单片机的IO口,通过控制IO口的高低电平来控制电磁阀和水泵的开关。
2. 软件编程三、总结与展望本文主要介绍了基于单片机的智能浇水花架的设计与实践。
通过对系统架构进行设计,搭建相应的硬件平台,并通过编程实现相关功能,实现了对花架的智能浇水。
目前的智能浇水花架还存在一些问题,浇水时间和浇水量的控制还不够精确。
未来的工作可以进一步完善系统功能,改进控制算法,实现更精确的浇水效果。
还可以考虑添加其他功能,如远程控制和数据分析等,以提高花架的智能化水平。
基于单片机控制的园林智能浇水系统设计
基于单片机控制的园林智能浇水系统设计1. 引言随着科技的不断进步,智能化技术在各个领域的应用越来越广泛。
园林浇水系统作为其中的一个重要应用领域,借助单片机控制技术,实现对植物的精确浇水,不仅提高了浇水的效率,还节约了水资源。
本文将详细介绍基于单片机控制的园林智能浇水系统的设计。
2. 系统设计目标和功能2.1 系统设计目标基于单片机控制的园林智能浇水系统的设计目标包括提高浇水的精确度、节省水资源、减少人工干预、提高园林维护的效率等。
2.2 功能(1)定时浇水功能:系统能够按照预设的浇水时间进行浇水,确保植物得到适量的水分。
(2)土壤湿度监测功能:系统能够实时监测土壤湿度,并根据湿度的变化自动调整浇水量。
(3)温度监测功能:系统能够监测环境温度,并根据温度的高低进行相应的浇水调整。
(4)人工控制功能:系统允许用户通过手机或其他设备进行浇水系统的手动控制。
3. 系统设计硬件和软件组成3.1 硬件组成(1)单片机:选择适合于园林浇水系统的单片机,如Arduino。
(2)传感器:包括土壤湿度传感器、温度传感器等。
(3)执行器:用于控制浇水的电动阀门或水泵等。
3.2 软件组成(1)单片机控制程序:根据传感器的信号和用户的设置,通过单片机的控制程序来实现对浇水系统的控制。
(2)手机APP或其他控制软件:与单片机进行通信,实现对浇水系统的远程控制和设置。
4. 系统工作原理4.1 土壤湿度监测和浇水控制流程通过土壤湿度传感器实时监测土壤湿度,如果湿度低于预设值,系统会自动打开电动阀门或水泵进行浇水;当湿度达到预设值时,系统会关闭电动阀门或水泵停止浇水。
4.2 温度监测和浇水调整流程系统通过温度传感器监测环境温度,当温度过高时,系统会增加浇水量以降低温度;当温度过低时,系统会减少浇水量以避免水分过多导致植物受损。
4.3 人工控制流程用户可以通过手机APP或其他控制软件对浇水系统进行手动控制,包括开启/关闭浇水以及调整浇水量等。
基于单片机的智能灌溉系统毕业设计
基于单片机的智能灌溉系统毕业设计好呀,今天咱们聊聊一个很有意思的话题,叫“基于单片机的智能灌溉系统”。
听起来挺高大上的吧?简单来说,就是用单片机这个小家伙来帮助咱们的植物喝水,让它们在阳光下茁壮成长。
想象一下,你的花花草草,甚至那些你默默照顾的小菜,怎么才能活得滋润?没错,就是靠这个智能灌溉系统了。
咱们得明白,植物也是有脾气的。
你不给它浇水,它可就不乐意了,叶子耷拉着像是小朋友不高兴一样。
现在的科技真是飞速发展,咱们的单片机就像个小精灵,能根据土壤的湿度、温度来判断什么时候该浇水。
这样一来,植物再也不用每天苦苦等水了,简直就是“水到渠成”。
想想,如果你能在家里用手机监控植物的“饮水状况”,那多酷呀。
这个系统的核心就是那块小小的单片机,真的是个了不起的小家伙。
它就像是植物的“保姆”,无时无刻不在关心着它们。
单片机通过传感器获取土壤的湿度信息,然后判断是该浇水了,还是再等等。
哎,别看它小,小小身板里可藏着大智慧。
比起以前还得靠手动浇水,省了不少事儿呢,简直让人忍不住感叹科技的力量。
这个智能灌溉系统的好处还不止于此。
它还可以根据天气变化进行调节。
要是遇上那种“说变就变”的天气,今天阳光明媚,明天就阴云密布,咱们的单片机可不会“瞎浇水”。
它通过天气预报数据,能够判断什么时候适合浇水,什么时候该歇一歇。
这样一来,不但省水,还能让植物在最适合的状态下生长,真是“事半功倍”呀。
咱们再说说这个系统的使用场景。
想象一下,你在外面旅游,心里还惦记着家里的那些小绿植,生怕它们被晒死或者渴死。
这个时候,你就可以通过手机APP查看它们的“健康状况”,说不定还可以远程控制,给它们来一场“及时雨”。
这种科技感满满的体验,真的是让人爱不释手。
在这个智能灌溉系统中,除了单片机,咱们还得提到那些传感器和水泵。
传感器就像是植物的“侦察兵”,它们在土壤里探测湿度,把信息回传给单片机。
而水泵则是执行者,接到命令后,水就呼啸而出,滋润那些渴望的根系。
智能浇花系统实验报告
一、实验目的1. 掌握智能浇花系统的基本原理和设计方法。
2. 熟悉单片机在智能控制系统中的应用。
3. 提高电子设计实践能力和创新能力。
二、实验原理智能浇花系统是一种基于单片机的自动化控制系统,通过传感器检测土壤湿度,根据预设参数自动控制水泵进行浇灌,实现植物的智能化管理。
本实验采用STC12C5A60S2单片机作为控制核心,利用土壤湿度传感器检测土壤湿度,通过LCD1602显示屏显示数据,并通过按键设置浇灌参数。
三、实验器材1. STC12C5A60S2单片机最小系统板2. 土壤湿度传感器3. 水泵4. LCD1602显示屏5. 44按键矩阵6. 电阻、电容等元器件7. 电源模块8. 仿真软件Proteus四、实验步骤1. 设计智能浇花系统电路图根据实验原理,设计智能浇花系统电路图,包括单片机、土壤湿度传感器、LCD1602显示屏、44按键矩阵、水泵等模块。
2. 编写单片机程序使用C语言编写单片机程序,实现以下功能:(1)初始化单片机硬件资源;(2)读取土壤湿度传感器数据;(3)显示土壤湿度数据;(4)根据预设参数控制水泵进行浇灌;(5)通过按键设置浇灌参数。
3. 仿真实验使用Proteus软件对设计的智能浇花系统进行仿真实验,验证系统功能。
4. 硬件制作根据电路图制作智能浇花系统实物,并进行调试。
5. 测试与优化对智能浇花系统进行测试,验证其性能,并对系统进行优化。
五、实验结果与分析1. 仿真实验结果通过Proteus软件仿真实验,验证了智能浇花系统的基本功能,包括土壤湿度检测、数据显示、参数设置和浇灌控制。
2. 硬件制作结果根据电路图制作智能浇花系统实物,并进行调试。
系统运行稳定,能够根据预设参数自动控制水泵进行浇灌。
3. 测试与优化结果对智能浇花系统进行测试,验证其性能。
测试结果表明,系统能够准确检测土壤湿度,并根据预设参数进行浇灌。
在优化方面,可以通过调整按键设置和显示屏显示内容,提高用户体验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录1. 绪论 (1)1.1系统工作原理 (1)1.2系统模块 (1)1.3系统操作界面及其操作过程 (1)1.3.1 系统操作过程 (2)2. 部件的选择 (3)2.1芯片的选择 (3)2.2继电器的选择 (3)2.3阀门的选择 (3)2.3.1 电磁阀的选择 (3)3. 硬件设计 (4)3.1设备的结构 (4)3.1.1 中央处理单元 (4)3.1.2 LED显示部分 (4)3.1.3 电磁阀部分 (4)3.1.4按键部分 (4)3.1.5 指示灯部分 (4)3.2总电路设计图 (5)3.3AT89C51单片机电路 (6)3.4晶振电路 (7)3.5复位电路 (8)3.6按键电路 (9)3.9LED显示电路 (11)3.10电磁阀电路 (12)4. 软件设计 (12)4.1系统组成 (12)4.2消抖流程及程序 (13)4.3总流程及程序 (15)4.4按键处理总流程及程序 (18)4.5工作中的处理流程 (19)5. 结论 (20)参考文献 (22)AT89C51基于单片机智能浇花系统设计摘要:本设计是通过AT89C51单片机采用汇编语言进行编程,在LED液晶屏上实现小时,分,秒的显示;并利用单片机来实现计时,定时功能,同时通过7个按键开关和3个指示灯来实现参数设置和调节功能、浇花间隔时间的设定、浇水持续时间的设定、单片机对电磁阀的自动控制。
根据用户设定的时间顺利的完成浇花任务。
关键词:单片机,控制,显示,电磁阀1.绪论1.1 系统工作原理自动浇花系统的设计,其主要执行装置是一个电磁阀门,其一端连接水管,另外一端连接外置的水管作为浇水口,浇水的水量主要由单片机控制。
设备主要是通过控制浇水的时间间隔和浇水的持续时间来控制浇水量的。
1.2 系统模块系统主要是由单片机、电源、按键、显示、指示灯、复位电路、电机模块等组成。
1.3 系统操作界面及其操作过程图1.2 系统操作界面1.3.1 系统操作过程注:用上图中的数字编号代替相关按键A:放置设备,接上水管(注意:保证不漏水),插上插头。
B:按下按键4,接通电源,指示灯1亮起(只要电源保持接通则指示灯时刻保持亮起)。
C:按下按键5,显像管显像数字全部置为初始值(即上次设置的时间)。
同时指示灯2亮起,可以对设备工作的时间间隔进行设定。
D:利用按键8、9、10对设备工作的时间间隔进行设定和调节。
E:设定完时间间隔后,利用按键7(可以反复按按键7来切换指示灯2和指示灯3)将指示灯2切换到指示灯3,即可以对设备工作的持续时间进行设定了。
F:同上对设备工作持续时间进行设定。
G:设备工作时间设定完成后,按下按键7则设备开始工作。
2.部件的选择2.1芯片的选择AT89C51单片机是Atmel公司推出的一款产品,一般小芯片的价格都比较低,同样AT89C51作为一款小芯片产品其价格相对而言较为便宜,并且其与MCS-51系列兼容行很好,所以本系统决定采用AT89C51作为芯片。
2.2 继电器的选择设备在设计过程中需要一个继电器来控制电磁阀的工作。
由于需要工作电压在5V左右,而且能保证成本相对而言比较低。
所以选择了型号为JZC-36F的继电器,其工作电压在4V~45V之间,而且在市场上的价格为4元左右。
2.3 阀门的选择由于本设备采用单片机控制,并且电磁阀是由开关信号控制的,与单片机控制电路连接十分的方便,所以决定采用电磁阀作为阀门。
2.3.1 电磁阀的选择由于直动式电磁阀结构较为简单,动作可靠,而且设备需要在断电条件下铁芯始终保持在关闭状态,所以选用常闭型的直动式电磁阀。
具体为YCSM31系列的二位二通直动式电磁阀(常闭型)。
3.硬件设计3.1 设备的结构整个自动浇花设备的结构可以分为5大部分:中央处理单元(CPU),LED显示部分,电磁阀部分,按键部分,指示灯部分等。
3.1.1 中央处理单元CPU选用AT89C51,用其来对整个系统进行控制:(1)用其来控制整个LED显示器的显示;(2)根据按键的输入做出正确的计算并传输到LED显示器上从而实现时间的调整设定;(3)接受时间芯片DS1302的定时数据;(4)实现电磁阀的控制,从而使设备一切工作顺利进行;3.1.2 LED显示部分作为设备的显示器,此设备部分应该根据单片机的控制正确的做出显示,从而使整个设备处于正常的工作状态。
3.1.3 电磁阀部分电磁阀部分是本设备的执行设备,是本设备顺利执行工作的必要部分。
3.1.4按键部分它是整个系统中比较简单的部分,根据功能要求,本系统共需7个按键,除了电源按键和复位按键以外还有5个按键位于按键部分,分别是切换按键,上调按键,下调按键,左右调节按键,工作按键。
3.1.5 指示灯部分整个系统中最简单的部分,主要有三个只是灯,除了一个电源指示灯外还有2个指示灯,分别用于设定时间间隔和持续时间。
3.2 总电路设计图图4.1 总电路根据如图4.1所示的总电路主要由:晶振电路,复位电路,按键设置电路, LED 显示电路,电磁阀电路,以及电源电路等几个部分。
通过这几个分电路的分工合作,能够使得系统具有显示功能,并且具备键盘调整功能,同时能够对电磁阀进行有效的控制。
从而使设备顺利的进行工作。
3.3 AT89C51单片机电路图4.2 单片机电路AT89C5单片机的RST引脚连接复位电路,P2.7引脚连接电磁阀电路,P1.0~P1.7引脚连接按键电路,XTAL1和XTAL2引脚连接晶振电路,P2.0和P2.1引脚连接指示灯电路,P2.5~P2.7引脚连接放大电路从而和P0.0~P0.7引脚一起控制LED显示电路。
3.4 晶振电路图4.3 晶振电路AT89C51单片机芯片内部设有一个反相放大器所构成的振荡器,XTAL1和XTAL2分别为振荡电路的输入端和输出端。
在XTAL1和XTAL2引脚上外接定时元件,内部振荡电路就产生自激振荡。
定时元件常常是用石英晶体和电容组成的并联谐振回路。
系统选择了12MHZ的晶振片,两个30Pfd额电容C6和C7。
图a:上电复位电路图b:按键复位电路图4.4 AT89C51单片机的复位电路3.5 复位电路本设计采用的复位电路包括两个方面:上电复位电路(图a),按键复位电路(图b)。
a:上电复位电路:它是利用电容充电来实现复位的。
在接电瞬间,RST引脚端的电位与Vcc端相同,但是随着充电电流的减少,RST端的电位逐渐下降。
只要保证RST端为高电压的时间大于两个机器周期时,系统自动能实现正常复位。
b:按键复位电路:当要系统自动复位时,只需要按住S8按键,此时电源Vcc 经过电阻R1,R2分压,并且在RST端产生一个复位的高电平。
同样,只要保证RST 端保持高电压的时间大于两个机器周期时,系统自动能实现正常复位。
3.6 按键电路4.5按键电路系统采用非编码键盘,按键电路主要由5个按键组成,分别是S2---工作按键;S3---切换按键;S4---左右调节按键;S5---“+”调节按键;S6---“-”调节按键,本系统采用独立式的按键形式。
按照上图的电路连接方法,判断是否有键按下的方法是:查询哪一根接按键的I/O接口线为低电平,如果是低电平则说明这个接口线连接的按键处于按下状态。
相反,若为高电平则说明按键处于非按下状态。
3.9 LED显示电路图4.8 LED显示电路系统采用两个LED7段发光显示器Dpy Amber-CA, Dpy Amber-CA是共阳极的LED显示器,其两个AA端接高电平。
处于工作状态的数码管,其显示情况由单片机的P0.0~P0.7八个接线口决定,其八个口分别连接着数码管的八个段。
例如要在数码管DS1中显示1,而数码管DS2处于非工作状态,则需要将P2.6接线口置为1,P2.5接线口置为0,并且使P0.1和P0.2接线口置为1,而P0.0,P0.3~P0.7接线口置为0.7段字形码表:(由于系统只需要显示0~9十个数字,所以只列出了十个)显示字符共阴极字型码共阳极字型码0 3FH C0H1 06H F9H2 5BH A4H3 4FH B0H4 66H 99H5 6DH 92H6 7DH 82H7 07H F8H8 7FH 80H9 6FH 90H根据上面的7段字形码表可以进行编码,从而控制数码管的显示。
3.10 电磁阀电路图4.9 电磁阀电路如上图所示Q3为一个PNP三极管,D1为普通二极管,K1为JZC-36F继电器,M电动机符号来表示电磁阀。
在继电器失电的状态下,动合触电断开,动断触电闭合,当继电器得电后,动合触电闭合,动断触电断开,利用继电器的触电开关作用可以控制设备或者传送逻辑电平信号。
在本次系统设计中选用了动合触电开关,使继电器在失电状态下保持断开的状态,然而在得电的状态下保持闭合状态。
即当Q3基极得到一个高电平则继电器开关立即闭合,在处于低电平时继电器开关保持断开状态。
当继电器的开关闭合时,电磁阀处于一个通路的状态下,则电磁阀开始工作,设备开始浇水。
当继电器的开关断开时,则电磁阀不工作,设备也不工作。
4.软件设计4.1系统组成本系统共需要8个存储单元:1:当指示灯一亮,数码管1选中时,经过“+”,“-”调节按键调节过的显示数字存储与(41)H,其相应的PO值存储与(40)H。
2:当指示灯一亮起,数码管2选中时,经过“+”,“-”调节按键调节过的显示数字存储与(61)H,其相应的PO值存储与(61)H。
3:当指示灯二亮起,数码管1选中时,经过“+”,“-”调节按键调节过的显示数字存储与(51)H,其相应的PO值存储与(51)H。
4:当指示灯二亮起,数码管2选中时,经过“+”,“-”调节按键调节过的显示数字存储与(71)H,其相应的PO值存储与(71)H。
引脚功能程序入口地址标号功能程序元器件(接口)元器件代号P1.1 P11 PROM11 S6 "-"调节按键P1.2 P12 PROM12 S5 "+"调节按键P1.3 P13 PROM13 S4 左右调节按键P1.4 P14 PROM14 S3 切换按键P1.5 P15 PROM15 S2 工作按键P2.0 P20 DS1 指示灯一P2.1 P21 DS2 指示灯二P2.5 P25 DS02 数码管2P2.6 P26 DS01 数码管1P2.7 P27 B1 电磁阀P0.0 P01 a 数码管a口P0.1 P01 b 数码管b口P0.2 P02 c 数码管c口P0.3 P03 d 数码管d口P0.4 P04 e 数码管e口P0.5 P05 f 数码管f口P0.6 P06 g 数码管g口P0.7 P07 dp 数码管dp口4.2 消抖流程及程序为了确保CPU对一次按键动作只确定一次,系统采用软件消除抖动的方法。