实验一、二 拉伸和压缩实验
物体的弹性变形实验

物体的弹性变形实验引言:物体的弹性变形是指当外力作用于物体时,物体会发生一定的形状或尺寸的改变,但在外力去除后能够恢复原状的性质。
为了深入了解物体的弹性行为,科学家和工程师们进行了一系列弹性变形实验,以探索物体在不同条件下的变形特性和弹性恢复能力。
实验一:弹簧的拉伸实验弹簧是一种常见的弹性体,我们可以通过拉伸实验来观察其弹性变形。
首先,将一根弹簧固定在一固定的支架上,然后逐渐以均匀的力拉伸弹簧。
通过测量拉力与弹簧的伸长长度的关系,我们可以得到一个力-伸长曲线。
结果显示,在小范围内,拉力与伸长长度几乎成正比,表明弹簧的弹性变形符合胡克定律。
当拉力超过一定限度时,弹簧会发生塑性变形,不再恢复原状。
实验二:橡皮球的压缩实验橡皮球是另一种常见的弹性体。
为了观察其弹性变形,我们可以进行一项压缩实验。
将橡皮球放置在一个平面上,用手指以均匀的力进行压缩。
当手指施加的压力小于橡皮球的承受能力时,橡皮球会被压缩变形,但当力被去除时,橡皮球能够恢复到原来的形状。
这是因为橡皮球的分子链结构可以在受到外力后恢复到原来的状态。
实验三:金属丝的弯曲实验除了弹簧和橡皮球,金属丝也是一种常见的材料,具有良好的弹性特性。
为了研究其弹性变形,我们可以进行一项弯曲实验。
选取一根金属丝,固定在两个支架上,并在中间放置一个负重。
当负重施加在金属丝上时,金属丝会发生弯曲变形。
然而,一旦负重移除,金属丝会恢复到初始状态。
这是由于金属丝分子结构的特殊性,使其能够经受应力而复原。
实验四:弹性体的应力松弛实验弹性体松弛实验是研究弹性体应力松弛行为的一种方法。
在实验中,会对弹性体施加一定的压力或拉力,并测量弹性体释放应力的速度。
通过观察时间-应力曲线,我们可以了解弹性体在不同条件下应力持续存在的程度。
结果显示,弹性体的应力松弛速度随时间呈指数衰减,即最初的应力释放较快,之后减慢,最终趋于稳定。
结论:通过以上实验,我们可以深入了解物体的弹性变形特性。
材料拉伸与压缩试验报告

材料的拉伸压缩实验【实验目的】1.研究低碳钢、铸铁的应力——应变曲线拉伸图。
2.确定低碳钢在拉伸时的机械性能(比例极限R p 、下屈服强度R eL 、强度极限R m 、延伸率A 、断面收缩率Z 等等)。
3. 确定铸铁在拉伸时的力学机械性能。
4.研究和比较塑性材料与脆性材料在室温下单向压缩时的力学性能。
【实验设备】1. 微机控制电子万能试验机;2. 游标卡尺。
3、记号笔4、低碳钢、铸铁试件【实验原理】 1、拉伸实验低碳钢试件拉伸过程中,通过力传感器和位移传感器进行数据采集,A/D 转换和处理,并输入计算机,得到F-?l 曲线,即低碳钢拉伸曲线,见图1。
对于低碳钢材料,由图1曲线中发现OA 直线,说明F 正比于?l ,此阶段称为弹性阶段。
屈服阶段(B-C )常呈锯齿形,表示载荷基本不变,变形增加很快,材料失去抵抗变形能力,这时产生两个屈服点。
其中,B ?点为上屈服点,它受变形大小和试件等因素影响;B 点为下屈服点。
下屈服点比较稳定,所以工程上均以下屈服点对应的载荷作为屈服载荷。
测定屈服载荷Fs 时,必须缓慢而均匀地加载,并应用?s =F s / A 0(A 0为试件变形前的横截面积)计算屈服极限。
图1低碳钢拉伸曲线屈服阶段终了后,要使试件继续变形,就必须增加载荷,材料进入强化阶段。
当载荷达到强度载荷F b 后,在试件的某一局部发生显着变形,载荷逐渐减小,直至试件断裂。
应用公式?b =F b /A 0计算强度极限(A 0为试件变形前的横截面积)。
根据拉伸前后试件的标距长度和横截面面积,计算出低碳钢的延伸率?和端面收缩率?,即%100001⨯-=l l l δ,%100010⨯-=A A A ψ 式中,l 0、l 1为试件拉伸前后的标距长度,A 1为颈缩处的横截面积。
2、压缩实验 铸铁试件压缩过程中,通过力传感器和位移传感器进行数据采集,A/D 转换和处理,并输入计算机,得到F-?l曲线,即铸铁压缩曲线,见图2。
青岛理工大学--材料力学--实验报告

材料力学实验报告系别班级姓名学号青岛理工大学力学实验室目录实验一、拉伸实验报告实验二、压缩实验报告实验三、材料弹性模量E和泊松比µ的测定报告实验四、扭转实验报告实验五、剪切弹性模量实验报告实验六、纯弯曲梁的正应力实验报告实验七、等强度梁实验报告实验八、薄壁圆筒在弯扭组合变形下主应力测定报告实验九、压杆稳定实验报告实验十、偏心拉伸实验报告实验十一、静定桁架结构设计与应力分析实验报告实验十二、超静定桁架结构设计与应力分析实验报告实验十三、静定刚架与压杆组合结构设计与应力分析实验报告实验十四、双悬臂梁组合结构设计与应力分析实验实验十五、岩土工程材料的多轴应力特性实验报告实验一拉伸实验报告一、实验目的与要求: 二、实验仪器设备和工具: 三、实验记录:1、试件尺寸实验后:屈服极限载荷:P S = kN 强度极限载荷:P b = kN 四、计算屈服极限: ==A P ss σ MPa 强度极限: ==A P bb σ MPa 延伸率: =⨯-=%10000L L L δ 断面收缩率: =⨯-=%10000A AA ψ 五、绘制P -ΔL 示意图:实验二 压缩实验报告一、实验目的与要求: 二、实验仪器设备和工具: 三、试件测量:材 料标 距 L 0 (mm) 直径(mm )截面面积 A 0 (mm 2) 截面(1)截面(2)截面(3)(1) (2) 平均 (1) (2) 平均 (1) (2) 平均材 料 标距 L(mm)断裂处直径(mm )断裂处 截面面积 A(mm 2)(1)(2) 平均材 料直 径(mm )截面面积 A 0(mm 2)强度极限载荷:P b = kN 五、计算强度极限应力: ==A P bb σ MPa 六、绘制P -ΔL 示意图:实验三 材料弹性模量E 和泊松比µ的测定实验报告一、实验目的与要求: 二、实验仪器设备和工具: 试件基本尺寸厚度h (mm )宽度b (mm )5.030.0载荷 (N )P载荷增量 (N ) △P各测点电阻应变仪读数(µε)轴向应变横向应变通道号( )通道号( )通道号( )通道号( )ε1(测点1) ε1′(测点2) ε2(测点3)ε2′(测点4)读 数增 量 读 数 增 量 读 数 增 量 读 数 增 量 5001000 500 1500 500 2000 500 2500 500 3000500平均应变(µε)i ε∆1、弹性模量计算 10PE A ε∆==∆⨯2、泊松比计算 21εμε∆==∆ 实验四 扭转实验报告一、实验目的与要求: 二、实验仪器设备和工具:三、试件尺寸:1、低碳钢:d=10mm2、铸铁: d=10mm 四、实验记录:1、低碳钢: 屈服载荷:M s = N ·m强度载荷:M b = N ·m2、铸铁: 强度载荷:M b = N ·m 五、计算:1、低碳钢: 316t d W π== mm 3屈服应力: 34ss tM W τ== MPa 极限应力: 34bb tM W τ== MPa 2、铸铁: 316t d W π== mm 3极限应力: bb tM W τ== MPa 实验五 剪切弹性模量实验报告一、实验目的与要求: 二、实验仪器设备和工具: 三、试件尺寸:直径d=10mm L=150mm b=100mm ΔT=5×200 N ·mm 载荷(N )百分表指示格数格数增量0 5 10 15 20 25增量平均值 ΔN= 格==324d I P π mm 4=∆=100Nδ mm ==∆bδϕ rad=∆∆=ϕP I TLG Gpa 实验六 纯弯曲梁的正应力实验报告一、 实验目的与要求:二、 实验仪器设备与工具:三、 实验装置简图及应变片布置图:载荷 (N )载荷 增量 (N ) 各测点电阻应变仪读数(µε) 通道号( ) 通道号( ) 通道号( ) 通道号( ) 通道号( ) ε1(测点1) ε2(测点2) ε3(测点3) ε4(测点4) ε5(测点5) 读 数增 量 读 数 增 量 读 数 增 量 读 数 增 量 读 数 增 量 5001000 500 1500 500 2000500各测点应变片至中性层距离(mm ) 梁的尺寸和有关参数Y 1(测点1) -20 宽度 b=20mm 高度h=40mm跨度 L=600mm 载荷距离 a=125mm 弹性模量 E=210GPa 惯性矩I z =bh 3/12 1µε=10-6ε 1MPa=1N/mm 2 1GPa=103MPaY 2(测点2) -10 Y 3(测点3) 0 Y 4(测点4) 10 Y 5(测点5)202500 500 3000500平均应变(µε)i ε∆测点应力(MPa )610i i E σε-=⨯∆⨯测 点理论值σi (MPa ) 实测值σi (MPa )相对误差12 3 4 5七、 实验七 等强度梁实验一、实验目的与要求:二、实验仪器设备与工具: 三、试件参数: 梁的尺寸和有关参数载荷作用点到测试点距离 x 1 = mm x 2 = mm 距载荷点x 处梁的宽度 b 1 = mmb 2 = mm梁的厚度 h= mm 弹性模量E=210GPa载荷 (N )载荷 增量 (N ) 各测点电阻应变仪读数(µε) 通道号( )通道号( )通道号( )通道号( )ε1(测点1) ε2(测点2)ε3(测点3)ε4(测点4)读 数增 量 读 数 增 量 读 数 增 量 读 数 增 量平均应变(µε)i ε∆测点应力(MPa )610i i E σε-=⨯∆⨯测1、理论计算: 26x pxb h σ=2、实验值计算 610i i E σε-=⨯∆⨯ 3、理论值与实验值比较 100σσδσ=⨯理测理-% 测 点理论值σi (MPa ) 实测值σi (MPa )相对误差12 3 4实验八 薄壁圆筒在弯扭组合变形下主应力测定报告一、实验目的与要求: 二、实验仪器设备和工具: 三、试件参数: 四、实验记录:载荷(N )载荷 增量 (N )各测点电阻应变仪读数(µε)通道号( )通道号( )通道号( )045ε(测点1)00ε(测点2)45ε-(测点3)读 数增 量 读 数 增 量 读 数 增 量圆筒的尺寸和有关参数计算长度 L=240mm弹性模量 E=210GPa 外 径 D=40mm 泊 松 比 μ=0.30 内 径 d=35mm 扇臂长度 a=250mm平均应变(µε)i ε∆测点应力(MPa )610i i E σε-=⨯∆⨯测1、主应力及方向m 点实测值主应力及方向计算:()0000002245451,3450450()2()()2(1)21E Eεεσεεεεμμ--+=±-+--+=454500454522tg εεαεεε---==--0α=m 点理论值主应力及方向计算:圆筒抗弯截面模量:34(1)32Z D W πα=-= mm 3圆筒抗扭截面模量:34(1)16t D W πα=-= mm 3221,3()22σσστ=+022tg τασ-==0α=2、实验值与理论值比较比较内容实验值 理论值 相对误差/% 1/MPa σ3/MPa σ 0α/(°)3、误差分析实验九 压杆稳定实验报告一、实验目的与要求:二、实验仪器设备与工具: 试件参数及有关资料厚度h (mm ) 宽度b (mm )长度L (mm ) 220318最小惯性矩 I min =bh 3/12弹性模量E=210GPa载荷P/N应变仪读数(µε)121、绘出P -1和P -2曲线,以确定实测临界力cr P 实P122、理论临界力cr P 理计算 3min 12bh =理论临界力 min2cr EI P L理 3实验值cr P 实 理论值cr P 理 误差百分率 (%)|cr P 理-cr P 实|/ cr P 理六、误差分析实验十 偏心拉伸实验报告一、实验目的与要求: 二、实验仪器设备与工具: 试件 厚度h (mm )宽度b (mm )530弹性模量 E=210GPa 偏心距 e=10mm载荷 (N )载荷 增量各测点电阻应变仪读数(µε)通道号( )通道号( )(N )1ε(测点1)2ε(测点2)读 数增 量 读 数增 量 10002000 1000 3000 1000 4000 1000 50001000平均应变(µε)i ε∆1、求弹性模量E 12()2P εεε+== 0ppE A ε∆== 2、求偏心距e12()2m εεε-==26m Ehb e pε==∆ 3、应力计算理论值 206p MA bh σ=±= 实验值 max ()p m E σεε=+=min ()p m E σεε=-=六、误差分析:实验十一 静定桁架结构设计与应力分析实验报告一、实验目的与要求: 二、实验仪器设备与工具: 三、实验搭接的结构图: 杆件编号 应变片编号 应变值 计算应力值 理论应力值误差实验十二超静定桁架结构设计与应力分析实验报告一、实验目的与要求:二、实验仪器设备与工具:三、实验搭接的结构图:杆件编号应变片编号应变值计算应力值理论应力值误差实验十三静定刚架与压杆组合结构设计与应力分析实验报告一、实验目的与要求:二、实验仪器设备与工具:三、实验搭接的结构图:杆件编号应变片编号应变值计算应力值理论应力值误差实验十四双悬臂梁组合结构设计与应力分析实验一、实验目的与要求:二、实验仪器设备与工具:三、实验搭接的结构图:杆件编号应变片编号应变值计算应力值理论应力值误差实验十五岩土工程材料的多轴应力特性实验报告一、实验目的与要求:二、实验仪器设备与工具:三、实验结果记录试件高度h(mm)直径d(mm)横截面面积A0=bh(mm2)截面Ⅰ截面Ⅱ截面Ⅲ平均1、求弹性模量E弹性段的应力与应变的比值。
材料力学拉伸与压缩实验报告

材料力学拉伸与压缩实验报告一、实验目的本实验旨在通过拉伸与压缩实验,探讨材料在受力下的力学性能,了解材料的强度、延展性和变形特点,为材料的工程应用提供理论依据。
二、实验原理1. 拉伸实验原理:拉伸试验是通过对试样施加拉力,使其发生长度方向的拉伸变形,以研究材料的强度、延展性和断裂特性。
在拉伸过程中,可以通过载荷和位移数据来绘制应力-应变曲线,从而得到材料的力学性能参数。
2. 压缩实验原理:压缩试验是通过对试样施加压力,使其产生长度方向的压缩变形,以研究材料在受压状态下的变形特性和抗压性能。
通过测量载荷和位移数据,可以得到材料的应力-应变关系,并分析其力学性能。
三、实验装置及试样1. 实验装置:拉伸试验机、压缩试验机、数据采集系统等。
2. 试样:常用的拉伸试样为标准圆柱形试样,常用的压缩试样为标准方形试样。
四、实验步骤1. 拉伸实验:a. 准备好拉伸试样,安装在拉伸试验机上。
b. 设置合适的加载速率和采样频率,开始施加拉力。
c. 记录载荷和位移数据,绘制应力-应变曲线。
d. 观察试样的变形情况,记录拉伸过程中的各阶段特征。
2. 压缩实验:a. 准备好压缩试样,安装在压缩试验机上。
b. 设置合适的加载速率和采样频率,开始施加压力。
c. 记录载荷和位移数据,得到应力-应变关系曲线。
d. 观察试样的变形情况,记录压缩过程中的各阶段特征。
五、实验结果及分析1. 拉伸试验结果分析:根据绘制的应力-应变曲线,分析材料的屈服点、最大强度、断裂点等力学性能参数,并观察材料的断裂形态和变形特点。
2. 压缩试验结果分析:根据得到的应力-应变关系曲线,分析材料在受压状态下的变形和抗压性能,并观察材料的压缩断裂形态。
六、实验结论通过拉伸与压缩实验,我们得到了材料在拉伸和压缩条件下的力学性能参数,并对其力学性能进行了分析。
实验结果表明,材料在拉伸状态下具有较好的延展性和韧性,而在受压状态下表现出良好的抗压性能。
这些结果为材料的工程应用提供了重要参考。
实验一、二 拉伸和压缩实验

实验一 拉伸和压缩实验拉伸和压缩实验是测定材料在静载荷作用下力学性能的一个最基本的实验。
工矿企业、研究所一般都用此类方法对材料进行出厂检验或进厂复检,通过拉伸和压缩实验所测得的力学性能指标,可用于评定材质和进行强度、刚度计算,因此,对材料进行轴向拉伸和压缩试验具有工程实际意义。
不同材料在拉伸和压缩过程中表现出不同的力学性质和现象。
低碳钢和铸铁分别是典型的塑性材料和脆性材料,因此,本次实验将选用低碳钢和铸铁分别做拉伸实验和压缩实验。
低碳钢具有良好的塑性,在拉伸试验中弹性、屈服、强化和颈缩四个阶段尤为明显和清楚。
低碳钢在压缩试验中的弹性阶段、屈服阶段与拉伸试验基本相同,但最后只能被压扁而不能被压断,无法测定其压缩强度极限bc σ值。
因此,一般只对低碳钢材料进行拉伸试验而不进行压缩试验。
铸铁材料受拉时处于脆性状态,其破坏是拉应力拉断。
铸铁压缩时有明显的塑性变形,其破坏是由切应力引起的,破坏面是沿45︒~55︒的斜面。
铸铁材料的抗压强度bc σ远远大于抗拉强度b σ。
通过铸铁压缩试验观察脆性材料的变形过程和破坏方式,并与拉伸结果进行比较,可以分析不同应力状态对材料强度、塑性的影响。
一、 实验目的1.测定低碳钢的屈服极限s σ(包括sm σ、sl σ),强度极限b σ,断后伸长率δ和截面收缩率ψ;测定铸铁拉伸和压缩过程中的强度极限b σ和bc σ。
2.观察低碳纲的拉伸过程和铸铁的拉伸、压缩过程中所出现的各种变形现象,分析力与变形之间的关系,即P —L ∆曲线的特征。
3.掌握材料试验机等实验设备和工具的使用方法。
二、 实验设备和工具1. 液压摆式万能材料试验机。
2. 游标卡尺(0.02mm)。
三、 拉伸和压缩试件材料的力学性能sm s σσ(、sl σ)、b σ、δ和ψ是通过拉伸和压缩试验来确定的,因此,必须把所测试的材料加工成能被拉伸或压缩的试件。
试验表明,试件的尺寸和形状对试验结果有一定影响。
为了减少这种影响和便于使各种材料力学性能的测试结果可进行比较,国家标准对试件的尺寸和形状作了统一的规定,拉伸试件应按国标GB /T6397—1986《金属拉伸试验试样》进行加工,压缩试件应按国标GB /T7314—1987《金属压缩试验方法》进行加工。
材料力学实验

同时受到弯曲和扭转两种载荷作用下,用应变仪
测定已知点在不同方向上的应变值,并计算出实
验的正应力,从而验证理论计算值。
理论值计算主应力公式
1, 2
1 2
(
x
( x )2 4(t xy)2 )
tg 2 2t xy x
实验六 弯扭组合变形主应力测试 实验
利用已知参数的材料和专用设备,在标准试件
选择测力度盘。调整指针,对准零点,并调整自 动绘图器。
实验二 金属材料的压缩实验
四、实验步骤
3)安装试件 将试件两端面涂以润滑剂,然后准确地放在试验
机球形承垫的中心处。 4)检查试件 5)进行试验
缓慢均匀地加载,注意观察测力指针的转动情况 和绘图纸上的压缩图,以便及时而正确地测定屈服载 荷,并记录下来。
4、记下试验中试样屈服时的扭矩Ts和破坏时的最大扭矩Tb。
5、试样扭断后,立即关机,取下试样,试验结束。
实验三 金属材料的扭转实验
五、思考题
1.铸铁试件扭转实验,从加载到破坏你看到哪些现象。 2.为什么铸铁试件在扭转时沿着与轴线大致成45°的斜截 面上破坏? 3.低碳钢试件扭转实验,从加载到破坏你看到哪些现象。 4.分析两种材料的断口形状及产生原理。 5.铸铁在压缩和扭转破坏时,其断口方位均与轴线大致 成45°角,其破坏原因是否相同?
实验五 测定材料的剪切弹性模量
四、实验步骤
1.卡取试件直径,为了避免试件加工的锥度和椭圆度 影响,在标距 内选取3个卡点,3个卡点的位置分别选 在标距中间和接近标距的两端。
2.将已卡取直径为 、长为260mm的试件安装在NY— 4型测G扭转试验机上,并固紧。
3.调整两悬臂杆的位置。 4.调整设备加码进行试验。
金属材料的拉伸与压缩试验2

碳钢与铸铁的拉伸、压缩实验(实验一)一、实验目的1、测定碳钢在拉伸时的屈服极限s σ,强度极限b σ,延伸率δ和断面收缩率ψ,测定铸铁拉伸时的强度极限b σ。
2、观察碳钢、铸铁在拉伸过程中的变形规律及破坏现象,并进行比较,使用绘图装置绘制拉伸图(P-ΔL 曲线)。
二、实验设备微机控制电子万能材料试验机、液压式万能材料试验机、游标卡尺。
三、实验试祥1. 为使各种材料机械性质的数值能互相比较,避免试件的尺寸和形状对试验结果的影响,对试件的尺寸形状GB6397-86作了统一规定,如图1所示:图1用于测量拉伸变形的试件中段长度(标距L 0)与试件直径d 。
必零满足L 0/d 0=10或5,其延伸率分别记做和δ10和δ52、压缩试样:低碳钢和铸铁等金属材料的压缩试件一般做成很短的圆柱形,避免压弯,一般规定试件高度h 直径d 的比值在下列范围之内:1≤d h≤3为了保证试件承受轴向压力,加工时应使试件两个端面尽可能平行,并与试件轴线垂直,为了减少两端面与试验机承垫之间的摩擦力,试件两端面应进行磨削加工,使其光滑。
四、实验原理图2为试验机绘出的碳钢拉伸P-△L 曲线图,拉伸变形ΔL 是整个试件的伸长,并且包括机器本身的弹性变形和试件头部在夹头中的滑动,故绘出的曲线图最初一段是曲线,流动阶段上限B ‘受变形速度和试件形式影响,下屈服点B 则比较稳定,工程上均以B 点对应的载荷作为材料屈服时的载荷P S ,以试样的初始横截面积A0除PS ,即得屈服极限:0A Ps S =σ图2屈服阶段过后,进入强化阶段,试样又恢复了承载能力,载荷到达最大值P b ,时,试样某一局部的截面明显缩小,出现“颈缩”现象,这时示力盘的从动针停留在P b 不动,主动针则迅速倒退表明载荷迅速下降,试样即将被拉断。
以试样的初始横截面面积A 。
除P b 得强度极限为0A P b b =σ延伸率δ及断面收缩率φ的测定,试样的标距原长为L 0拉断后将两段试样紧密地对接在一起,量出拉断后的标距长为L 1延伸率应为 %100001⨯-=l l l δ断口附近塑性变形最大,所以L 1的量取与断口的部位有关,如断口发生于L ο的两端或在L ο之外,则试验无效,应重做,若断口距L 。
材料的力学实验报告

材料的力学实验报告材料的力学实验报告材料的力学实验报告一目录一、拉伸实验...............................................................................2 二、压缩实验...............................................................................4 三、拉压弹性模量E 测定实验...................................................6 四、低碳钢剪切弹性模量G测定实验.......................................8 五、扭转破坏实验....................................................................10 六、纯弯曲梁正应力实验..........................................................12 七、弯扭组合变形时的主应力测定实验..................................15 八、压杆稳定实验. (18)一、拉伸实验报告标准答案实验结果及数据处理:例:(一)低碳钢试件强度指标:Ps=_____KN屈服应力ζs= Ps/A _____MPa P b =_____KN 强度极限ζb= Pb /A _____MPa 塑性指标:L1-LAA1伸长率100% %面积收缩率100% %LA低碳钢拉伸图:铸铁试件强度指标:最大载荷Pb =_____ KN强度极限ζb= Pb / A = ___ M Pa问题讨论:1、为何在拉伸试验中必须采用标准试件或比例试件,材料相同而长短不同的试件延伸率是否相同答:拉伸实验中延伸率的大小与材料有关,同时与试件的标距长度有关.试件局部变形较大的断口部分,在不同长度的标距中所占比例也不同.因此拉伸试验中必须采用标准试件或比例试件,这样其有关性质才具可比性.材料相同而长短不同的试件通常情况下延伸率是不同的(横截面面积与长度存在某种特殊比例关系除外).2、分析比较两种材料在拉伸时的力学性能及断口特征.答:试件在拉伸时铸铁延伸率小表现为脆性,低碳钢延伸率大表现为塑性;低碳钢具有屈服现象,铸铁无.低碳钢断口为直径缩小的杯锥状,且有450的剪切唇,断口组织为暗灰色纤维状组织。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一 拉伸和压缩实验拉伸和压缩实验是测定材料在静载荷作用下力学性能的一个最基本的实验。
工矿企业、研究所一般都用此类方法对材料进行出厂检验或进厂复检,通过拉伸和压缩实验所测得的力学性能指标,可用于评定材质和进行强度、刚度计算,因此,对材料进行轴向拉伸和压缩试验具有工程实际意义。
不同材料在拉伸和压缩过程中表现出不同的力学性质和现象。
低碳钢和铸铁分别是典型的塑性材料和脆性材料,因此,本次实验将选用低碳钢和铸铁分别做拉伸实验和压缩实验。
低碳钢具有良好的塑性,在拉伸试验中弹性、屈服、强化和颈缩四个阶段尤为明显和清楚。
低碳钢在压缩试验中的弹性阶段、屈服阶段与拉伸试验基本相同,但最后只能被压扁而不能被压断,无法测定其压缩强度极限bc σ值。
因此,一般只对低碳钢材料进行拉伸试验而不进行压缩试验。
铸铁材料受拉时处于脆性状态,其破坏是拉应力拉断。
铸铁压缩时有明显的塑性变形,其破坏是由切应力引起的,破坏面是沿45︒~55︒的斜面。
铸铁材料的抗压强度bc σ远远大于抗拉强度b σ。
通过铸铁压缩试验观察脆性材料的变形过程和破坏方式,并与拉伸结果进行比较,可以分析不同应力状态对材料强度、塑性的影响。
一、 实验目的1.测定低碳钢的屈服极限s σ(包括sm σ、sl σ),强度极限b σ,断后伸长率δ和截面收缩率ψ;测定铸铁拉伸和压缩过程中的强度极限b σ和bc σ。
2.观察低碳纲的拉伸过程和铸铁的拉伸、压缩过程中所出现的各种变形现象,分析力与变形之间的关系,即P —L ∆曲线的特征。
3.掌握材料试验机等实验设备和工具的使用方法。
二、 实验设备和工具1. 液压摆式万能材料试验机。
2. 游标卡尺(0.02mm)。
三、 拉伸和压缩试件材料的力学性能sm s σσ(、sl σ)、b σ、δ和ψ是通过拉伸和压缩试验来确定的,因此,必须把所测试的材料加工成能被拉伸或压缩的试件。
试验表明,试件的尺寸和形状对试验结果有一定影响。
为了减少这种影响和便于使各种材料力学性能的测试结果可进行比较,国家标准对试件的尺寸和形状作了统一的规定,拉伸试件应按国标GB /T6397—1986《金属拉伸试验试样》进行加工,压缩试件应按国标GB /T7314—1987《金属压缩试验方法》进行加工。
拉伸试件分为比例的和非比例的两种。
比例试件应符合如下的关系00A k l =式中0l 称为标距,用于测量拉伸变形试验段的有效长度;0A 为标距部分的截面积,系数k 通常为5.65和11.3,前者称为短试件,后者称为长试件。
因此,短、长圆形试件的标距长度分别等于50d 和100d 。
本试验采用0d 为10mm ,0l 为100d 的长比例试件(图1—1)。
试件两端较粗的部分为装入试验机夹头中的夹持部分,起传递拉力之用,它的形状及尺寸可根据试验机的夹头形式而定。
图1—1 拉伸试件压缩试件通常为柱状,横截面为圆形,如图1-2所示。
试件受压时,两端面与试验机压头间的摩擦力很大使端面附近的材料处于三向压应力状态,约束了试件的横向变形,试件越短,影响越大,实验结果越不准确。
因此,试件应有一定的长度。
但是,试件太长又容易产生纵向弯曲而失稳。
金属材料的压缩试件通常采用圆试件。
铸铁压缩实验时取0)2~1(d l =。
图1—2 圆柱体压缩试件四、实验原理和方法1.低碳钢拉伸实验低碳钢试件在静拉伸试验中,通常可直接得到拉伸曲线,如图1—3所示。
用准确的拉伸曲线可直接换算出应力应变εσ-曲线。
首先将试件安装于试验机的夹头内,之后匀速缓慢加载(加载速度对力学性能是有影响的,速度越快,所测的强度值就越高),试样依次经过弹性、屈服、强化和颈缩四个阶段,其中前三个阶段是均匀变形的。
图1—3 低碳钢拉伸曲线OA段,没有任何残留变形。
在弹性阶段,载荷与变形(1)弹性阶段是指拉伸图上的'是同时存在的,当载荷卸去后变形也就恢复。
在弹性阶段,存在一比例极限点A,对应的应 ,此部分载荷与变形是成比例的。
力为比例极限p(2)屈服阶段对应拉伸图上的BC段。
金属材料的屈服是宏观塑性变形开始的一种标志,是由切应力引起的。
在低碳钢的拉伸曲线上,当载荷增加到一定数值时出现了锯齿现象。
这种载荷在一定范围内波动而试件还继续变形伸长的现象称为屈服现象。
屈服阶段中一个重要的力学性能就是屈服点。
低碳钢材料存在上屈服点和下屈服点,不加说明,一般都是指下F,即试件发生屈服而力首次下降前的最屈服点。
上屈服点对应拉伸图中的B点,记为SUF,是指不计初始瞬时效应的屈服阶段中的最小力值,注意这里的大力值。
下屈服点记为SL初始瞬时效应对于液压摆式万能试验机由于摆的回摆惯性尤其明显,而对于电子万能试验机或液压伺服试验机不明显。
图1—4 常见屈服曲线一般通过指针法或图示法来确定屈服点,综合起来具体做法可概括为:当屈服出现一对峰谷时,则对应于谷低点的位置就是屈服点;当屈服阶段出现多个波动峰谷时,则除去第一个谷值后所余最小谷值点就是屈服点。
图1-4给出了几种常见屈服现象和SL F 、SU F 的确定方法。
用上述方法测得屈服载荷,分别用式(1-1)、式(1-2)、式(1—3)计算出屈服点、下屈服点和上屈服点。
S σ=0/A F (1—1)SL σ=0/A F SL (1—2) SU σ=0/A F SU (1—3)(3)强化阶段 对应于拉伸图中的CD 段。
变形强化标志着材料抵抗继续变形的能力在增强。
这也表明材料要继续变形,就要不断增加载荷。
在强化阶段如果卸载,弹性变形会随之消失,塑性变形将会永久保留下来。
强化阶段的卸载路径与弹性阶段平行。
卸载后重新加载时,加载线仍与弹性阶段平行。
重新加载后,材料的比例极限明显提高,而塑性性能会相应下降。
这种现象称之为冷作硬化。
冷作硬化是金属材料的宝贵性质之一。
工程中利用冷作硬化工艺的例子很多,如挤压、冷拔等。
D 点是拉伸曲线的最高点,载荷为b F ,对应的应力是材料的强度极限或抗拉极限,记为b σ,用式(1—4)计算b σ=0/A F b (1-4)(4)颈缩阶段 对应于拉伸图的DE 段。
载荷达到最大值后,塑性变形开始局部进行。
这是因为在最大载荷点以后,冷作硬化跟不上变形的发展,由于材料本身缺陷的存在,于是均匀变形转化为集中变形,导致形成颈缩。
颈缩阶段,承载面积急剧减小,试件承受的载荷也不断下降,直至断裂。
断裂后,试件的弹性变形消失,塑性变形则永久保留在破断的试件上。
材料的塑性性能通常用试件断后残留的变形来衡量。
轴向拉伸的塑性性能通常用伸长率δ和断面收缩率ψ来表示,计算公式为%100/)(001⨯-=l l l δ (1-5)%100/)(010⨯-=A A A ψ (1-6)式中,0l 、0A 分别表示试件的原始标距和原始面积;1l 、1A 分别表示试件标距的断后长度和断口面积。
塑性材料颈缩部分的变形在总变形中占很大比例,研究表明,低碳钢试件颈缩部分的变形占塑性变形的80%左右,见图1-5。
测定断后伸长率时,颈缩部分及其影响区的塑性变形都包含在1l 之内,这就要求断口位置到最邻近的标距线大于3/0l ,此时可直接测量试件标距两端的距离得到1l 。
否则就要用移位法使断口居于标距的中央附近。
若断口落在标距之外则试验无效。
图 1—5 颈缩对伸长量的影响曲线(5)断口移位方法:当试样断口到最邻近标距端线的距离小于或者等于3l 时,必须用断口移位法来计算1l 。
具体方法是,在进行试验前,先把试件在标距内n 等份(一般十等份),并打上标记。
拉断试件后,在长段上从拉断处O 取基本等于短段格数得B 点。
若长段所余格数为偶数,则取其一半得C 点,这时,BC AB l 21+=,见图1—6a 。
若长段所余格数为奇数,则减1后的一半得到C 点、加1后的一半得到1C 点,这时11BC BC AB l ++=,见图1-6b 。
图 1—6 断口移中的方法2.铸铁拉伸实验铸铁是典型的脆性材料,拉伸曲线如图1—7所示,可以近似认为经弹性阶段直接断裂。
断裂面平齐且为闪光的结晶状组织,说明是由拉应力引起的。
其强度指标也只有抗拉强度b σ,用实验测得的最大力值b F ,除以试件的原始面积0A ,就得到铸铁的抗拉强度b σ,即b σ=b F / 0A (1-7)图 1—7 铸铁拉伸曲线图3.铸铁压缩实验铸铁在压缩实验过程中,压缩曲线有明显的非线性。
试件在到达最大压缩载 荷时有明显的塑性变形,圆柱形被压缩成鼓形,最后破坏。
测出压缩破坏载荷b F ,同样按式(1—7)计算铸铁的抗压强度bc σ。
进行压缩试验时,常用球面支承 加载,以保证试件端面与垫板均匀接触、均匀受压和压力通过试件轴线。
图1—8 给出了铸铁压缩试验的支承、曲线和断口情况。
图 1—8 铸铁压缩的支承、曲线和断口情况五、实验步骤(1)试件准备 在低碳钢试件上用铅笔或分规在平行试验段中部划出长度为mm l 1000=的标距线,并把0l 分成十等份。
对于拉伸试件,在标距的两端及中部三个位置上,沿两个相互垂直方向测量直径,以其平均值计算各横截面的面积,再取三者中的最小值为试件的Ao 。
对于压缩试件,以试件中间截面相互垂直方向直径的平均值计算Ao 。
(2)试验机准备 对于液压摆式万能试验机,根据试件的材料和尺寸选择合适的读数示力盘(12KN)和相应的摆锤。
安装好自动绘图器的传动装置、笔和纸等。
检查送油阀和回油阀是否处在关闭状态,液压泵电机启动前送、回油阀应在关闭状态。
(3)开启油泵电机,打开送油阀使活动台上升到标尺指针指示10mm 左右时,关闭送油阀。
并调整测力盘的主动指针和从动指针指零。
(4)安装试件。
拉伸试件应启动下夹头电动机调整下夹头的位置,以适应试件的长度后再夹紧,夹紧过程中及夹紧后千万不可启动下夹头升降电动机。
压缩试件必须放在球形支承垫的中央,并一定要安装好安全防护罩,再启动上升电动机使试件上升到距离上垫铁1mm 左右停止。
(5)正式实验 缓慢开启送油阀,使试件匀速缓慢加载。
加载时主动指针推动从动指针以一定速率偏转,当指针第一次停顿并回摆时的示值区间即为材料的屈服载荷范围,此时注意迅速记录下屈服点SL F ,随着载荷增大,主、从动指针再次出现停顿,此时的最大示值既为材料的强度载荷b F ,当指针从强度载荷b F 处出现回退时,对低碳钢拉伸试验请注意观察出现的颈缩现象。
b F 值可以在材料破坏后由从动指针读出。
(6)关机取试件 试件破坏后,立即关机。
取下试件,量取有关尺寸。
观察断口形貌,记录实验的相关数据。
六、实验结果处理以表格的形式处理实验结果。
根据记录的原始数据,计算出低碳钢的S σ、b σ、δ和ψ,铸铁的抗拉强度b σ和抗压强度bc σ。
将计算结果填入实验报告表。
七、分析与思考题1)比较低碳钢和铸铁在拉伸和压缩实验中力学性能有何异同?2) 低碳钢拉伸实验时如何观察和确定屈服载荷的大小?3) 低碳钢拉断时的应力是否就是强度极限?4)铸铁试件压缩时为何沿与轴线大约成045的方向被破坏?八、实验报告格式(仅供参考)实验名称: 班级: 实验日期:报告人: 同组者:1)实验目的:2)实验设备和工具:试验机名称: 型号: 读数精度:量具名称: 型号: 规格精度3)实验原理方法简述:4)实验步骤简述:5)实验数据和结果处理(见表1-1拉伸试件尺寸表和表1-2实验数据和处理结果。