徐州市中考数学模拟试卷(九)含答案解析

合集下载

徐州市2024届中考数学模拟精编试卷含解析

徐州市2024届中考数学模拟精编试卷含解析

徐州市2024年中考数学模拟精编试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在平面直角坐标系中,有两条抛物线关于x轴对称,且他们的顶点相距10个单位长度,若其中一条抛物线的函数表达式为y=2x+6x+m,则m的值是()A.-4或-14 B.-4或14 C.4或-14 D.4或142.函数y=ax2与y=﹣ax+b的图象可能是()A.B.C.D.3.在平面直角坐标系中,正方形A1B1C1D1、D1 E1E2B2、A2B2 C2D2、D2E3E4B3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为l,∠B1C1O=60°,B1C1∥B2C2∥B3C3…,则正方形A2017B2017C2017 D2017的边长是()A.()2016B.()2017C.()2016D.()20174.下列四个几何体中,主视图是三角形的是()A .B .C .D .5.两个有理数的和为零,则这两个数一定是( )A .都是零B .至少有一个是零C .一个是正数,一个是负数D .互为相反数 6.等式33=11x x x x --++成立的x 的取值范围在数轴上可表示为( ) A .B .C .D . 7.下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有( )A .1个B .2个C .3个D .4个 8.如图,AB 是O 的直径,弦CD AB ⊥,CDB 30∠=,CD 23=,则阴影部分的面积为( )A .2πB .πC .π 3D .2π 3 9.函数的自变量x 的取值范围是( ) A .x>1 B .x<1 C .x≤1 D .x≥110.如图,平行四边形ABCD 的周长为12,∠A=60°,设边AB 的长为x ,四边形ABCD 的面积为y ,则下列图象中,能表示y 与x 函数关系的图象大致是( )A .B .C .D .11.已知18xx-=,则2216xx+-的值是()A.60 B.64 C.66 D.7212.2cos 30°的值等于()A.1 B.2C.3D.2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.图中是两个全等的正五边形,则∠α=______.14.用不等号“>”或“<”连接:sin50°_____cos50°.15.矩形ABCD中,AB=8,AD=6,E为BC边上一点,将△ABE沿着AE翻折,点B落在点F处,当△EFC为直角三角形时BE=_____.16.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,点D是边AB上的动点,将△ACD沿CD所在的直线折叠至△CDA的位置,CA'交AB于点E.若△A'ED为直角三角形,则AD的长为_____.17.某校体育室里有球类数量如下表:球类篮球排球足球数量 3 5 4如果随机拿出一个球(每一个球被拿出来的可能性是一样的),那么拿出一个球是足球的可能性是_____.18.如图,MN是⊙O的直径,MN=4,∠AMN=40°,点B为弧AN的中点,点P是直径MN上的一个动点,则PA+PB 的最小值为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)无锡市新区某桶装水经营部每天的房租、人员工资等固定成本为250元,每桶水的进价是5元,规定销售单价不得高于12元/桶,也不得低于7元/桶,调查发现日均销售量p(桶)与销售单价x(元)的函数图象如图所示.(1)求日均销售量p(桶)与销售单价x(元)的函数关系;(2)若该经营部希望日均获利1350元,那么销售单价是多少?20.(6分)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.求证:AD是⊙O的切线.若BC=8,tanB=12,求⊙O 的半径.21.(6分)如图1,正方形ABCD的边长为8,动点E从点D出发,在线段DC上运动,同时点F从点B出发,以相同的速度沿射线AB方向运动,当点E运动到终点C时,点F也停止运动,连接AE交对角线BD于点N,连接EF 交BC于点M,连接AM.(参考数据:sin15°=624-,cos15°=624+,tan15°=2﹣3)(1)在点E、F运动过程中,判断EF与BD的位置关系,并说明理由;(2)在点E、F运动过程中,①判断AE与AM的数量关系,并说明理由;②△AEM能为等边三角形吗?若能,求出DE的长度;若不能,请说明理由;(3)如图2,连接NF,在点E、F运动过程中,△ANF的面积是否变化,若不变,求出它的面积;若变化,请说明理由.22.(8分)已知:如图,在△ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,E为BD的中点.求证:∠ACD=∠DEC ;(2)延长DE 、CB 交于点P ,若PB=BO ,DE=2,求PE 的长23.(8分)已知:如图,梯形ABCD 中,AD ∥BC ,DE ∥AB ,DE 与对角线AC 交于点F ,FG ∥AD ,且FG=EF. (1)求证:四边形ABED 是菱形;(2)联结AE ,又知AC ⊥ED ,求证:21·2AE EF ED = .24.(10分)如图,在△ABC 中,AB AC ,AE 是∠BAC 的平分线,∠ABC 的平分线BM 交AE 于点M ,点O 在AB 上,以点O 为圆心,OB 的长为半径的圆经过点M ,交BC 于点G ,交AB 于点F .(1)求证:AE 为⊙O 的切线;(2)当BC =4,AC =6时,求⊙O 的半径;(3)在(2)的条件下,求线段BG 的长.25.(10分)如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 坐标为(a ,0),点C 的坐标为(0,b ),且a 、b 4a -﹣6|=0,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O ﹣C ﹣B ﹣A ﹣O 的线路移动.a= ,b= ,点B 的坐标为 ;当点P 移动4秒时,请指出点P 的位置,并求出点P 的坐标;在移动过程中,当点P 到x 轴的距离为5个单位长度时,求点P 移动的时间.26.(12分)(1)解方程:x2﹣4x﹣3=0;(2)解不等式组:27.(12分)如图,以AD为直径的⊙O交AB于C点,BD的延长线交⊙O于E点,连CE交AD于F点,若AC=BC.(1)求证:AC CE=;(2)若32DEDF=,求tan∠CED的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解题分析】根据顶点公式求得已知抛物线的顶点坐标,然后根据轴对称的性质求得另一条抛物线的顶点,根据题意得出关于m的方程,解方程即可求得.【题目详解】∵一条抛物线的函数表达式为y=x2+6x+m,∴这条抛物线的顶点为(-3,m-9),∴关于x 轴对称的抛物线的顶点(-3,9-m ),∵它们的顶点相距10个单位长度.∴|m-9-(9-m )|=10,∴2m-18=±10,当2m-18=10时,m=1,当2m-18=-10时,m=4,∴m 的值是4或1.故选D .【题目点拨】本题考查了二次函数图象与几何变换,解答本题的关键是掌握二次函数的顶点坐标公式,坐标和线段长度之间的转换,关于x 轴对称的点和抛物线的关系.2、B【解题分析】A 选项中,由图可知:在2y ax =,0a >;在y ax b =-+,0a ->,∴0a <,所以A 错误;B 选项中,由图可知:在2y ax =,0a >;在y ax b =-+,0a -<,∴0a >,所以B 正确;C 选项中,由图可知:在2y ax =,0a <;在y ax b =-+,0a -<,∴0a >,所以C 错误;D 选项中,由图可知:在2y ax =,0a <;在y ax b =-+,0a -<,∴0a >,所以D 错误.故选B .点睛:在函数2y ax =与y ax b =-+中,相同的系数是“a ”,因此只需根据“抛物线”的开口方向和“直线”的变化趋势确定出两个解析式中“a ”的符号,看两者的符号是否一致即可判断它们在同一坐标系中的图象情况,而这与“b”的取值无关.3、C【解题分析】利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.解:如图所示:∵正方形A 1B1C 1D 1的边长为1,∠B1C 1O=60°,B1C 1∥B2C 2∥B3C 3…∴D 1E 1=B 2E 2,D 2E 3=B 3E 4,∠D1C 1E 1=∠C 2B 2E 2=∠C 3B 3E 4=30°,∴D 1E 1=C 1D 1sin30°=,则B2C 2===()1,同理可得:B3C 3==()2,故正方形A n B n C n D n的边长是:()n﹣1.则正方形A2017B2017C2017D2017的边长是:()2.故选C.“点睛”此题主要考查了正方形的性质以及锐角三角函数关系,得出正方形的边长变化规律是解题关键.4、D【解题分析】主视图是从几何体的正面看,主视图是三角形的一定是一个锥体,是长方形的一定是柱体,由此分析可得答案.【题目详解】解:主视图是三角形的一定是一个锥体,只有D是锥体.故选D.【题目点拨】此题主要考查了几何体的三视图,主要考查同学们的空间想象能力.5、D【解题分析】解:互为相反数的两个有理数的和为零,故选D.A、C不全面.B、不正确.6、B【解题分析】根据二次根式有意义的条件即可求出x的范围.【题目详解】由题意可知:3010xx-≥⎧⎨+>⎩,解得:3x,故选:B.【题目点拨】考查二次根式的意义,解题的关键是熟练运用二次根式有意义的条件.7、B【解题分析】解:根据中心对称的概念可得第一个图形是中心对称图形,第二个图形不是中心对称图形,第三个图形是中心对称图形,第四个图形不是中心对称图形,所以,中心对称图有2个.故选B.【题目点拨】本题考查中心对称图形的识别,掌握中心对称图形的概念是本题的解题关键.8、D【解题分析】分析:连接OD ,则根据垂径定理可得出CE =DE ,继而将阴影部分的面积转化为扇形OBD 的面积,代入扇形的面积公式求解即可.详解:连接OD ,∵CD ⊥AB , ∴13,2CE DE CD === (垂径定理), 故OCE ODES S ,= 即可得阴影部分的面积等于扇形OBD 的面积,又∵30CDB ∠=︒,∴60COB ∠= (圆周角定理),∴OC =2,故S 扇形OBD =260π22π3603⨯=, 即阴影部分的面积为2π3. 故选D.点睛:考查圆周角定理,垂径定理,扇形面积的计算,熟记扇形的面积公式是解题的关键.9、C【解题分析】试题分析:根据二次根式的性质,被开方数大于或等于0,可以求出x 的范围.试题解析:根据题意得:1-x≥0,解得:x≤1.故选C .考点:函数自变量的取值范围.10、C【解题分析】过点B 作BE ⊥AD 于E ,构建直角△ABE ,通过解该直角三角形求得BE 的长度,然后利用平行四边形的面积公式列出函数关系式,结合函数关系式找到对应的图像.【题目详解】如图,过点B 作BE ⊥AD 于E.∵∠A =60°,设AB 边的长为x ,∴BE =AB∙sin60°∵平行四边形ABCD 的周长为12,∴AB =12(12-2x )=6-x ,∴y =AD∙BE =(6-x )2x +(0≤x≤6).则该函数图像是一开口向下的抛物线的一部分,观察选项,C 符合题意.故选C.【题目点拨】本题考查了二次函数的图像,根据题意求出正确的函数关系式是解题的关键.11、A【解题分析】 将18x x -=代入原式2221124()4x x x x=+--=--,计算可得. 【题目详解】 解:当18x x-=时, 原式22124x x=+-- 21()4x x =-- 284=-644=-60=,故选A .【题目点拨】本题主要考查分式的加减法,解题的关键是熟练掌握完全平方公式.12、C【解题分析】分析:根据30°角的三角函数值代入计算即可.详解:2cos30°=2×32=3.故选C.点睛:此题主要考查了特殊角的三角函数值的应用,熟记30°、45°、60°角的三角函数值是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、108°【解题分析】先求出正五边形各个内角的度数,再求出∠BCD和∠BDC的度数,求出∠CBD,即可求出答案.【题目详解】如图:∵图中是两个全等的正五边形,∴BC=BD,∴∠BCD=∠BDC,∵图中是两个全等的正五边形,∴正五边形每个内角的度数是0 (52)1805-⨯=108°,∴∠BCD=∠BDC=180°-108°=72°,∴∠CBD=180°-72°-72°=36°,∴∠α=360°-36°-108°-108°=108°,故答案为108°.【题目点拨】本题考查了正多边形和多边形的内角和外角,能求出各个角的度数是解此题的关键.14、>【解题分析】试题解析:∵cos50°=sin40°,sin50°>sin40°,∴sin50°>cos50°.故答案为>.点睛:当角度在0°~90°间变化时,①正弦值随着角度的增大(或减小)而增大(或减小);②余弦值随着角度的增大(或减小)而减小(或增大);③正切值随着角度的增大(或减小)而增大(或减小).15、3或1【解题分析】分当点F落在矩形内部时和当点F落在AD边上时两种情况求BE得长即可.【题目详解】当△CEF为直角三角形时,有两种情况:当点F落在矩形内部时,如图1所示.连结AC,在Rt△ABC中,AB=1,BC=8,∴AC=22=10,AB BC∵∠B沿AE折叠,使点B落在点F处,∴∠AFE=∠B=90°,当△CEF为直角三角形时,只能得到∠EFC=90°,∴点A、F、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点F处,如图,∴EB=EF,AB=AF=1,∴CF=10﹣1=4,设BE=x,则EF=x,CE=8﹣x,在Rt△CEF中,∵EF2+CF2=CE2,∴x2+42=(8﹣x)2,解得x=3,∴BE=3;②当点F落在AD边上时,如图2所示.此时ABEF为正方形,∴BE=AB=1.综上所述,BE的长为3或1.故答案为3或1.【题目点拨】本题考查了矩形的性质、图形的折叠变换、勾股定理的应用等知识点,解题时要注意分情况讨论.16、3﹣3或1【解题分析】分两种情况:情况一:如图一所示,当∠A'DE=90°时;情况二:如图二所示,当∠A'ED=90°时.【题目详解】解:如图,当∠A'DE=90°时,△A'ED为直角三角形,∵∠A'=∠A=30°,∴∠A'ED=60°=∠BEC=∠B,∴△BEC是等边三角形,∴BE=BC=1,又∵Rt△ABC中,AB=1BC=4,∴AE=1,设AD=A'D=x,则DE=1﹣x,∵Rt△A'DE中,3DE,∴x=3(1﹣x),解得x=3﹣3,即AD的长为3﹣3;如图,当∠A'ED=90°时,△A'ED为直角三角形,此时∠BEC=90°,∠B=60°,∴∠BCE=30°,∴BE=12BC=1,又∵Rt△ABC中,AB=1BC=4,∴AE=4﹣1=3,∴DE=3﹣x,设AD=A'D=x,则Rt△A'DE中,A'D=1DE,即x=1(3﹣x),解得x=1,即AD的长为1;综上所述,即AD的长为33或1.故答案为331.【题目点拨】本题考查了翻折变换,勾股定理,等腰直角三角形的判定和性质等知识,添加辅助线,构造直角三角形,学会运用分类讨论是解题的关键.17、1 3【解题分析】先求出球的总数,再用足球数除以总数即为所求. 【题目详解】解:一共有球3+5+4=12(个),其中足球有4个,∴拿出一个球是足球的可能性=41 123=.【题目点拨】本题考查了概率,属于简单题,熟悉概率概念,列出式子是解题关键.18、【解题分析】过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B即为PA+PB的最小值,【题目详解】解:连接OB,OA′,AA′,∵AA′关于直线MN对称,∴''AN A N=∵∠AMN=40°,∴∠A′ON=80°,∠BON=40°,∴∠A′OB=120°,过O作OQ⊥A′B于Q,在Rt△A′OQ中,OA′=2,∴A′B=2A′Q=即PA+PB的最小值【题目点拨】本题考查轴对称求最小值问题及解直角三角形,根据轴对称的性质准确作图是本题的解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)日均销售量p(桶)与销售单价x(元)的函数关系为p=﹣50x+850;(2)该经营部希望日均获利1350元,那么销售单价是9元.【解题分析】(1)设日均销售p(桶)与销售单价x(元)的函数关系为:p=kx+b(k≠0),把(7,500),(12,250)代入,得到关于k,b的方程组,解方程组即可;(2)设销售单价应定为x元,根据题意得,(x-5)•p-250=1350,由(1)得到p=-50x+850,于是有(x-5)•(-50x+850)-250=1350,然后整理,解方程得到x1=9,x2=13,满足7≤x≤12的x的值为所求;【题目详解】(1)设日均销售量p(桶)与销售单价x(元)的函数关系为p=kx+b,根据题意得7500{12250k b k b +=+=, 解得k=﹣50,b=850,所以日均销售量p (桶)与销售单价x (元)的函数关系为p=﹣50x+850;(2)根据题意得一元二次方程 (x ﹣5)(﹣50x+850)﹣250=1350,解得x 1=9,x 2=13(不合题意,舍去),∵销售单价不得高于12元/桶,也不得低于7元/桶,∴x=13不合题意,答:若该经营部希望日均获利1350元,那么销售单价是9元.【题目点拨】本题考查了一元二次方程及一次函数的应用,解题的关键是通过题目和图象弄清题意,并列出方程或一次函数,用数学知识解决生活中的实际问题.20、(1)证明见解析;(2)352r =. 【解题分析】(1)连接OD ,由OD=OB ,利用等边对等角得到一对角相等,再由已知角相等,等量代换得到∠1=∠3,求出∠4为90°,即可得证;(2)设圆的半径为r ,利用锐角三角函数定义求出AB 的长,再利用勾股定理列出关于r 的方程,求出方程的解即可得到结果.【题目详解】(1)证明:连接OD ,OB OD =,3B ∴∠=∠,1B ∠=∠,13∴∠=∠,在Rt ACD ∆中,1290∠+∠=︒,()41802390∴∠=︒-∠+∠=︒,OD AD ∴⊥,则AD 为圆O 的切线;(2)设圆O 的半径为r ,在Rt ABC ∆中,tan 4AC BC B ==,根据勾股定理得:AB ==OA r ∴=,在Rt ACD ∆中,1tan 1tan 2B ∠==, tan 12CD AC ∴=∠=,根据勾股定理得:22216420AD AC CD =+=+=,在Rt ADO ∆中,222OA OD AD =+,即()2220r r =+,解得:2r =. 【题目点拨】此题考查了切线的判定与性质,以及勾股定理,熟练掌握切线的判定与性质是解本题的关键.21、(1)EF ∥BD ,见解析;(2)①AE=AM ,理由见解析;②△AEM 能为等边三角形,理由见解析;(3)△ANF 的面积不变,理由见解析【解题分析】(1)依据DE=BF ,DE ∥BF ,可得到四边形DBFE 是平行四边形,进而得出EF ∥DB ;(2)依据已知条件判定△ADE ≌△ABM ,即可得到AE=AM ;②若△AEM 是等边三角形,则∠EAM=60°,依据△ADE ≌△ABM ,可得∠DAE=∠BAM=15°,即可得到,即当△AEM 是等边三角形; (3)设DE=x ,过点N 作NP ⊥AB ,反向延长PN 交CD 于点Q ,则NQ ⊥CD ,依据△DEN ∽△BNA ,即可得出PN=64x+8,根据S △ANF =12AF×PN=12×(x+8)×64x+8=32,可得△ANF 的面积不变. 【题目详解】解:(1)EF ∥BD .证明:∵动点E 从点D 出发,在线段DC 上运动,同时点F 从点B 出发,以相同的速度沿射线AB 方向运动, ∴DE=BF ,又∵DE ∥BF ,∴四边形DBFE 是平行四边形,∴EF ∥DB ;(2)①AE=AM .∵EF ∥BD ,∴∠F=∠ABD=45°,∴MB=BF=DE ,∵正方形ABCD ,∴∠ADC=∠ABC=90°,AB=AD ,∴△ADE ≌△ABM ,∴AE=AM ;②△AEM 能为等边三角形.若△AEM 是等边三角形,则∠EAM=60°,∵△ADE ≌△ABM ,∴∠DAE=∠BAM=15°,∵tan ∠DAE=DE DA ,AD=8, ∴2﹣3=8DE , ∴DE=16﹣83,即当DE=16﹣83时,△AEM 是等边三角形;(3)△ANF 的面积不变.设DE=x ,过点N 作NP ⊥AB ,反向延长PN 交CD 于点Q ,则NQ ⊥CD ,∵CD ∥AB ,∴△DEN ∽△BNA ,∴NQ PN =DE PN, ∴8x 8PN PN -=, ∴PN=64x+8,∴S△ANF=12AF×PN=12×(x+8)×64x+8=32,即△ANF的面积不变.【题目点拨】本题属于四边形综合题,主要考查了平行四边形的判定与性质,等边三角形的性质,全等三角形的判定与性质,解直角三角形以及相似三角形的判定与性质的综合运用,解决问题的关键是作辅助线构造相似三角形,利用全等三角形的对应边相等,相似三角形的对应边成比例得出结论.22、(1)见解析;(2)PE=4.【解题分析】(1)根据同角的余角相等得到∠ACD=∠B,然后由圆周角定理可得结论;(2)连结OE,根据圆周角定理和等腰三角形的性质证明OE∥CD,然后由△POE∽△PCD列出比例式,求解即可. 【题目详解】解:(1)证明:∵BC是⊙O的直径,∴∠BDC=90°,∴∠BCD+∠B=90°,∵∠ACB=90°,∴∠BCD+∠ACD=90°,∴∠ACD=∠B,∵∠DEC=∠B,∴∠ACD=∠DEC(2)证明:连结OE∵E为BD弧的中点.∴∠DCE=∠BCE∵OC=OE∴∠BCE=∠OEC∴∠DCE=∠OEC∴OE ∥CD∴△POE ∽△PCD , ∴PO PE PC PD= ∵PB=BO ,DE=2∴PB=BO=OC ∴23PO PE PC PD == ∴223PE PE =+ ∴PE=4【题目点拨】本题是圆的综合题,主要考查了圆周角定理、等腰三角形的判定和性质、相似三角形的判定与性质,熟练掌握圆的相关知识和相似三角形的性质是解题的关键.23、 (1)见解析;(2)见解析【解题分析】分析:(1)由两组对边分别平行的四边形是平行四边形,得到ABED 是平行四边形. 再由平行线分线段成比例定理得到:FG CF AD CA =, EF CF AB CA = ,FG AD =EF AB,即可得到结论; (2)连接BD ,与AE 交于点H .由菱形的性质得到12EH AE BD =,⊥AE ,进而得到90DHE ∠= ,90AFE ∠=,即有DHE AFE ∠∠=,得到△DHE ∽△AFE ,由相似三角形的性质即可得到结论.详解:(1)∵ AD ∥BC DE ,∥AB ,∴四边形ABED 是平行四边形.∵FG ∥AD ,∴FG CF AD CA =. 同理 EF CF AB CA= . 得:FG AD =EF AB∵FG EF =,∴AD AB =.∴四边形ABED 是菱形.(2)连接BD ,与AE 交于点H .∵四边形ABED 是菱形,∴12EH AE BD =,⊥AE . 得90DHE ∠= .同理90AFE ∠=.∴DHE AFE ∠∠=.又∵AED ∠是公共角,∴△DHE ∽△AFE .∴EH DE EF AE =. ∴21·2AE EF ED =. 点睛:本题主要考查了菱形的判定和性质以及相似三角形的判定与性质.灵活运用菱形的判定与性质是解题的关键.24、(1)证明见解析;(2)32;(3)1. 【解题分析】(1)连接OM ,如图1,先证明OM ∥BC ,再根据等腰三角形的性质判断AE ⊥BC ,则OM ⊥AE ,然后根据切线的判定定理得到AE 为⊙O 的切线;(2)设⊙O 的半径为r ,利用等腰三角形的性质得到BE=CE=12BC=2,再证明△AOM ∽△ABE ,则利用相似比得到626r r -=,然后解关于r 的方程即可; (3)作OH ⊥BE 于H ,如图,易得四边形OHEM 为矩形,则HE=OM=32,所以BH=BE-HE=12,再根据垂径定理得到BH=HG=12,所以BG=1. 【题目详解】解:(1)证明:连接OM ,如图1,∵BM是∠ABC的平分线,∴∠OBM=∠CBM,∵OB=OM,∴∠OBM=∠OMB,∴∠CBM=∠OMB,∴OM∥BC,∵AB=AC,AE是∠BAC的平分线,∴AE⊥BC,∴OM⊥AE,∴AE为⊙O的切线;(2)解:设⊙O的半径为r,∵AB=AC=6,AE是∠BAC的平分线,∴BE=CE=12BC=2,∵OM∥BE,∴△AOM∽△ABE,∴OM AOBE AB=,即626r r-=,解得r=32,即设⊙O的半径为32;(3)解:作OH⊥BE于H,如图,∵OM⊥EM,ME⊥BE,∴四边形OHEM为矩形,∴HE=OM=32,∴BH=BE﹣HE=2﹣32=12,∵OH⊥BG,∴BH=HG=12,∴BG=2BH=1.25、(1)4,6,(4,6);(2)点P在线段CB上,点P的坐标是(2,6);(3)点P移动的时间是2.5秒或5.5秒.【解题分析】试题分析:(160.b-=可以求得,a b的值,根据长方形的性质,可以求得点B的坐标;(2)根据题意点P从原点出发,以每秒2个单位长度的速度沿着O C B A O----的线路移动,可以得到当点P移动4秒时,点P的位置和点P的坐标;(3)由题意可以得到符合要求的有两种情况,分别求出两种情况下点P移动的时间即可.试题解析:(1)∵a、b60.b-=∴a−4=0,b−6=0,解得a=4,b=6,∴点B的坐标是(4,6),故答案是:4,6,(4,6);(2)∵点P从原点出发,以每秒2个单位长度的速度沿着O−C−B−A−O的线路移动,∴2×4=8,∵OA=4,OC=6,∴当点P移动4秒时,在线段CB上,离点C的距离是:8−6=2,即当点P移动4秒时,此时点P在线段CB上,离点C的距离是2个单位长度,点P的坐标是(2,6);(3)由题意可得,在移动过程中,当点P到x轴的距离为5个单位长度时,存在两种情况,第一种情况,当点P在OC上时,点P移动的时间是:5÷2=2.5秒,第二种情况,当点P在BA上时,点P移动的时间是:(6+4+1)÷2=5.5秒,故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒.26、(1),;(2)1≤x <1.【解题分析】 试题分析:利用配方法进行解方程;首先分别求出两个不等式的解,然后得出不等式组的解.试题解析:(1)-1x=3-1x+1=7=7 x -2=± 解得:, (2)解不等式1,得x≥1 解不等式2,得x <1 ∴不等式组的解集是1≤x <1考点:一元二次方程的解法;不等式组.27、(1)见解析;(2)tan ∠CED 15 【解题分析】(1)欲证明AC CE =,只要证明EAC AEC ∠∠=即可;(2)由EDF COF ∆∆∽,可得32ED OC DF OF ==,设FO =2a ,OC =3a ,则DF =a ,DE =1.5a ,AD =DB =6a ,由BAD BEC ∆∆∽,可得BD •BE =BC •BA ,设AC =BC =x ,则有2267.5x a a ⨯=,由此求出AC 、CD 即可解决问题.【题目详解】(1)证明:如下图,连接AE ,∵AD 是直径,∴90ACD ∠︒=,∴DC ⊥AB ,∵AC =CB ,∴DA =DB ,∴∠CDA =∠CDB ,∵180EAC EDC ∠+∠︒=,180EDC CDB ∠+∠︒=,∴∠BDC =∠EAC ,∵∠AEC =∠ADC ,∴∠EAC =∠AEC ,∴AC CE =;(2)解:如下图,连接OC ,∵AO =OD ,AC =CB ,∴OC ∥BD ,∴EDF COF ∆∆∽, ∴32ED OC DF OF ==, 设FO =2a ,OC =3a ,则DF =a ,DE =1.5a ,AD =DB =6a ,∵∠BAD =∠BEC ,∠B =∠B ,∴BAD BEC ∆∆∽,∴BD •BE =BC •BA ,设AC =BC =x ,则有2267.5x a a ⨯=,∴3102x a =, ∴3102AC a =, ∴22362CD AD AC a =-=, ∴36152tan tan 53102a DC EDC DAC AC ∠=∠===.【题目点拨】本题属于圆的综合题,涉及到三角形的相似,解直角三角形等相关考点,熟练掌握三角形相似的判定及解直角三角形等相关内容是解决本题的关键.。

2022年江苏省徐州市中考数学综合模拟试卷附解析

2022年江苏省徐州市中考数学综合模拟试卷附解析

2022年江苏省徐州市中考数学综合模拟试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.若tan (α+10°)=3,则锐角α的度数是( ) A .20° B .30° C .35° D .50° 2. 如图,△ABC 中,DE ∥BC ,且 DE 平分△ABC 的面积,则:DE BC 为( )A .1:2B .1:2C .1:3D .2:13.已知反比例函数2y x=-过两点 (x 1,y 1)、(x 2,y 2),当120x x <<时,y, 与 y 2 大小关 系为( )A .12y y =B .12y y >C .12y y <D . y 1与 y 2 大小不确定4.如图,AB 是⊙O 的直径,CD 是弦,CD ⊥AB 于点E ,则下列结论中不一定...正确的是( )A .∠COE=∠DOEB .CE=DEC .⌒AC =⌒AD D .OE=BE5.如图,菱形ABCD 中,∠B =60°,AB =2,E 、F 分别是BC 、CD 的中点,连接AE 、EF 、AF ,则△AEF 的周长为( )A .32B .33C .34D .36.以下四幅图形中有三幅图案是可以相互旋转得到的,另外的一幅是( )二、填空题7.某单位内线电话的号码由 3 个数字组成,每个数字可以是 1,2,3 的一个,如果不知道某人的内线电话号码,任意拨一个号码接通的概率是 .8.一只口袋里有相同的红、绿、蓝三种颜色的小球,其中有6个红球,5个绿球.若任意摸出一个绿球的概率是14,则任意摸出一个蓝球的概率是 . FAD E BC9.抛物线228y x x m =++与x 轴只有一个公共点,则m 的值为 . 10.已知□ABCD 的两条对角线相交于直角坐标系的原点0,且点A ,B 的坐标分别为A(-1,-5),B(-1,2),则C ,D 的坐标分别为 .11.一个凸多边形的内角和与外角和相等,它是 边形 .12.请写出一根2x =-,另一根满足11x -<<的一元二次方程 .13.池塘中放养了鲤鱼8000条,鲢鱼若干.在几次随机捕捞中,共抓到鲤鱼320条,鲢鱼400条.估计池塘中原来放养了鲢鱼_______条.14.如果一次函数y=2x+b 的图象与y 轴的交点坐标为(0,3),那么该函数图象不经过第 象限.15.一次函数y =kx+b(k≠0)的图象是 ,正比例函数y=kx(k ≠0)的图象是经过的一条直线.16.平行四边形的面积为S ,边长为5,该边上的高为h ,则S 与h 的关系为 ;当h=2时,S= ;当S=40时,h= .17.已知等腰△ABC 中,AB=AC ,∠B=60°,则∠A =_________.18.定义一种新运算:2a bad bc d c d =-+,利用这种算法计算2143--= .三、解答题19.路灯下,两个亭子及其影子的情况如图所示,请你确定灯泡的位置,并画出灯下小明 的影子.20.阅读下列解题过程,再回答问题:解方程:(2)(3)6x x -+=.解:26x -=,36x +=,得18x =,23x =.请你判断上述解题过程是否正确? .若不正确,请写出正确的解题过程.21.光明中学的甲、乙两支篮球队在集训期内进行了五场比赛,将比赛成进行统计后,绘制成如图所示的统计图. 已知甲队五场比赛成绩的平均分90x =分,方差241.2s =平方分.甲、乙两球队比赛成绩折线统计图(1)请你计算乙队五场比赛成绩的平均分x乙;(2)就这五场比赛,计算乙队成绩的方差;(3)如果从甲、乙两队中选派一支球队参加市篮球锦标赛,根据上述统计情况,试从平均分、折线的走势、方差三个方面分别进行简要分析,你认为选派哪支球队参赛更能取得好成绩?22.一池塘内有水2000 m3,现用抽水机抽水,每小时可抽水200 m3.(1)求池塘中余水量y(m3)与抽水时间x(h)之间的函数解析式;(2)求自变量x的取值范围;(3)画出它的图象.23.已知关于x的方程31123x kx++-=(k为常数)的解大于-1且不大于3,求k的取值范围.15k-<≤24.某工厂 3 个小组计划在.10 天内生产 500 件产品(每天生产量相同),按原先的生产速度,不能完成任务;如果每个小组每天比原先多生产 1 件产品,就能提前完成任务,每个小组原先每天生产多少件产品?25.如图,在等边△ABC中,D、E分别是AB、AC上的一点,AD=CE,CD、BE交于点F. (1)试说明△ADC≌△CEB;(2)求∠CFE 的度数.26.试判断:三边长分别为222n n +,21n +、2221n n ++(n>O)的三角形是否是直角三角形?并说明理由.27.如图 ,在△ABC 中,AD 垂直平分 BC ,H 是AD 上的一点,连接BH 、CH.(1)AD 平分∠BAC 吗?为什么?(2)你能找出几对相等的角?请把它们写出来(不需写理由).28.一种计算机每秒可做 108 次运算,它工作3×lO 3 s 共可做多少次运算?29.将下列各数在数轴上表示出来.(1)-4 的相反数;(2)-0. 25 的倒数;(3)0 的绝对值的相反数; (4)122-30.学校现有校舍面积20000平方米,为改善办学条件,计划拆除部分旧校舍,建造新校舍,使新建校舍的面积是拆除时校舍面积的3倍还多1000平方米.这样,计划完成的校舍总面积比现有校舍面积增加20%.已知拆除旧校舍每平方米需费用80元,建造新校舍每平方米需费用700元,问完成计划需费用多少元?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.A3.C4.D5.B6.B二、填空题7.18.2799.20810.C(1,5) D(1,-2)11.12.220x x+=(答案不唯一)13.1000014.四15.一条直线,原点16.S=5h,10,817.60°18.7三、解答题19.如图所示,虚线交点 P为灯泡的位置,线段 AB 为小明的影子.20.错误,正确答案为14x=-,23x=,21.(1)90分 (2)111. 6平方分 (3)从平均分看,两队的平均分相同,实力大体相当;从折线的走势看,甲队比赛成绩呈上升趋势,而乙队比赛成绩呈下降趋势,所以适合选甲队参赛;从方差看,甲队比赛成绩比乙队比赛成绩波动小,甲队成绩教稳定. 所以,选派甲队参赛更脂取得好成绩22.(1)y=2000-200x;(2)0≤x≤10;(3)图略23.15k-<≤24.25.(1)略;(2)60°26.是直角三角形,理由略27.( 1)由△ADB≌△ADC(SAS),得∠BAD=∠CAD. (2)7对,∠BHD = ∠CHD,∠ABD = ∠ACD,∠HBD =∠HCD, ∠BDA=∠CDA,∠ABH=∠ACH,∠AHB=∠AHC,∠BAD=∠CAD 28.11次31029.略30.3970000元。

2023~2024学年江苏省徐州市九年级中考数学模拟试卷

2023~2024学年江苏省徐州市九年级中考数学模拟试卷

2023~2024学年江苏省徐州市九年级中考数学模拟试卷一、选择题(本大题共8小题,每小题3分,共 24分)1. 2020的倒数是( )A. 2020B.−12020C.12020D. -20202. 如图,数轴上有A、B、 C、D四个点,其中表示绝对值相等的两个实数的点是( )A. 点A 与点 DB. 点 B 与点CC. 点 B 与点 DD. 点C与点D3.剪纸是一种百姓喜闻乐见的纸艺类活动,下列剪纸作品中是中心对称图形的是( )4. 下列几何体中,主视图和俯视图都为矩形的是( )5. 关于x的一元二次方程12x2+3x+k=0有两个不相等的实数根,则k的取值范围是( )A.k<92B.k=94C.k≥92D.k>946.某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是A. 中位数是4, 平均数是 3.75B. 众数是4, 平均数是 3.75C. 中位数是4,平均数是 3.8D. 众数是2, 平均数是3.87.如图,A、B、C、D为⊙O上的点,OC⊥AB于点E,若∠CDB=30°,OA=2,则AB的长为( )A.√3B. 2C.2√3D. 48.如图1,抛物线y=−x²+bx+c的顶点为P,与x轴交于A、B两点. 若A、B两点间的距离为m,n是m的函数,且表示n与m的函数关系的图象大致如图2所示,则n可能为( )A. PA+ABB. PA-ABC.PAAB D.ABPA二、填空题(本大题共 10 小题,每小题3分,共30分)9. 分解因式:x²-4x+4 = .10.新冠肺炎疫情“大决战”中,江苏先后派出共计2804名医务人员支援湖北,是全国派出医务人员最多的省份,也是最早到达湖北的医疗队之 . 用科学记数法可表示2804为 .11. 当分式x−2x+1的值为0时, x= .12.在平面直角坐标系xOy中,将点(-2,1)绕原点O旋转180°,所得到的对应点的坐标为 .13. 若a b= 1, 则2019 a+b的值是 .14.已知函数满足下列两个条件:①当x>0时,y随x的增大而增大;②它的图象经过点(1,4),请写出个符合上述条件的函数的表达式 .15. 如图, AB 是⊙O的一条弦,P是⊙O上一动点(不与点A、B重合)C、D分别是 AB、BP的中点. 若AB=4, ∠APB=45°, 则CD长的最大值为 .16.如图, 扇形 OAB 的圆心角为120°, C 为AB上点, 则∠ACB=°.17. 定义运算“*”, 规定x*y=a(x+y)+xy,其中a为常数,且1*2=5,则2*3= .18.如图,在⊙O中,半径R=5,P、B、C为⊙O上三点,且PA⊥BC, PA=3,PB=5.则 PC= .三、解答题: (本大题共 10小题,共86分.解答时应写出文字说明、证明过程或演算步骤) 19. (本题10分) 计算:(1)−√9+|−5|−(2+√3)0; (2)(1−1x+2)÷x2+2x+1x+2.20. (本题10分)(1) 解方程: 2x²−5x +2=0; (2) 解不等式组: {x +1≥2,3(x −1)>x +5.21. (本题7分)中国图书馆学会阅读推广委员会为拓展阅读开展“悦读悦听 悦览,码上同行”活动.某市为了了解市民每天的阅读时间情况,随机抽取了部分民进行调查.根据调查结果绘制如下尚不完整的频数分布表:(1) 补全表格:(2)将每天阅读时间不低于60 min 的市民称为“阅读爱好者”.若该市约有600万人,请估计该市能称为“阅读爱好者”的市民有多少万人?22. (本题7分) )抗击疫情,青年先行. 某高校大学生小丁积极参加社区抗击新冠肺炎联防联控工作,主动请缨参加小区居委会防控战疫. 按照居委会工作部署,志愿者工作分为体温检测记录组、便民代购组和环境消杀组:(1)大学生小丁被分到便民代购组的概率是 .(2)某中学教师王老师也加入抗疫队伍,那么王老师和小丁被分到同一组的概率是多少? (请用“画树状图”或“列表”等方法给出分析过程)23. (本题8分)已知: 如图,AB∥CD,E是AB的中点, CE=DE.求证: (1) ∠AEC=∠BED; (2) AC=BD.24. (本题8分)某药店销售甲、乙两种型号医用外科口罩,已知购买5个甲种型号和2个乙种型号共需16元,购买3个甲种型号和5个乙种型号共需 21元.(1)求甲、乙两种型号医用外科口罩的价格;(2)某学校为了做好开学防疫工作,计划购买甲、乙两种型号医用外科口罩共5000个,且总价不超过 13000 元,问乙种型号医用外科口罩最多购买多少个?25. (本题8分)如图,AB是⊙O的直径,BD交⊙O 于点C,E为BC的中点,连接AE交BD于点F,作FG⊥AB,垂足为G,连接AD,且∠D=2∠BAE.(1)求证: AD为⊙O 的切线;,AD=6,求 FG的长.(2) 若cosD=3526.(本题8分)如图,一艘巡逻艇航行至海面B处时,得知正北方向上距B 处20海里的C处有一渔船发生故障,就立即指挥港口A 处的救援艇前往C处营救.已知C处位于A处的北偏东45°的方向上,港口A位于B的北偏西30°的方向上. 求A、C之间的距离(结果精确到0.1海里,参考数据:√2≈1.41,√3≈1.73).27. (本题10分)我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.(1)如图1,在四边形ABCD中添加一个条件使得四边形 ABCD是“等邻边四边形”.请写出你添加的个条件是 .(2) 问题探究某同学提出了一个猜想:对角线互相平分且相等的“等邻边四边形”是正方形.她的猜想正确吗?请说明理由.(3)如图2, “等邻边四边形”ABCD中,AB=AD,∠BAD+∠BCD=90°,AC、BD为对角线,AC=√2AB.试探究线段BC、CD、BD之间的数量关系,并证明你的结论.28. (本题10分)如图1,抛物线y=ax²+(a+3)x+3(a≠0)与x轴交于点A(4, 0), 与y轴交于点B, 在x 轴上有一动点E(m, 0) (0<m<4), 过点E作x轴的垂线交直线AB于点 N, 交抛物线于点 P,过点 P 作PM⊥AB 于点 M.(1)求a的值和直线AB 的函数表达式;(2) 设△ PMN的周长为C₁, △AEN的周长为 C₂, 若C1C2=65,求m的值;(3)如图2,在(2)的条件下,将线段OE绕点O逆时针旋转得到OE',旋转角为α(0°<α<90°), 连接E'A、E'B, 求E′A+23E′B的最小值..。

2019-2020年徐州市初三中考数学一模模拟试卷【含答案】

2019-2020年徐州市初三中考数学一模模拟试卷【含答案】

2019-2020年徐州市初三中考数学⼀模模拟试卷【含答案】2019-2020年徐州市初三中考数学⼀模模拟试卷【含答案】⼀、选择题(本⼤题共12⼩题,共48分)1.若分式的值为零,则x的值是()A. 1B.C.D. 22.⼈体内某种细胞的形状可近似看做球状,它的直径是0.00000156m,这个数据⽤科学记数法可表⽰为()A. B. C. D.3.计算:()-1+tan30°?sin60°=()A. B. 2 C. D.4.下⾯的图形中,既是轴对称图形⼜是中⼼对称图形的是()A. B.C. D.5.为考察两名实习⼯⼈的⼯作情况,质检部将他们⼯作第⼀周每天⽣产合格产品的个数整理成甲、⼄两组数据,如下表:关于以上数据,说法正确的是()A. 甲、⼄的众数相同B. 甲、⼄的中位数相同C. 甲的平均数⼩于⼄的平均数D. 甲的⽅差⼩于⼄的⽅差6.如图,在△ABC中,∠ACB=90°,AC=BC=4,将△ABC折叠,使点A落在BC边上的点D处,EF为折痕,若AE=3,则sin∠BFD的值为()A. B. C. D.7.如图,在平⾯直⾓坐标系中,反⽐例函数y=(x>0)的图象与边长是6的正⽅形OABC的两边AB,BC分别相交于M,N两点.△OMN的⾯积为10.若动点P在x轴上,则PM+PN的最⼩值是()A.B. 10C.D.8.如图,四边形ABCD为⊙O的内接四边形.延长AB与DC相交于点G,AO⊥CD,垂⾜为E,连接BD,∠GBC=50°,则∠DBC的度数为()A.B.C.D.9.如图,?ABCD的对⾓线AC与BD相交于点O,AE⊥BC,垂⾜为E,AB=,AC=2,BD=4,则AE的长为()A. B. C. D.10.如图,在△ABC中,CA=CB=4,∠ACB=90°,以AB中点D为圆⼼,作圆⼼⾓为90°的扇形DEF,点C恰好在EF上,下列关于图中阴影部分的说法正确的是()A. ⾯积为B. ⾯积为C. ⾯积为D. ⾯积随扇形位置的变化⽽变化11.在边长为2的正⽅形ABCD中,对⾓线AC与BD相交于点O,P是BD上⼀动点,过P作EF∥AC,分别交正⽅形的两条边于点E,F.设BP=x,△BEF的⾯积为y,则能反映y与x之间关系的图象为()A.B.C.D.12.⼆次函数y=ax2+bx+c(a≠0)的部分图象如图所⽰,图象过点(-1,0),对称轴为直线x=2,下列结论:(1)2a+b=0;(2)9a+c>3b;(3)5a+7b+2c>0;(4)若点A(-3,y1)、点B(-,y2)、点C(,y3)在该函数图象上,则y1<y2<y3;(5)若⽅程a(x+1)(x-5)=c的两根为x1和x2,且x1<x2,则x1<-1<5<x2,其中正确的结论有()A. 1个B. 2个C. 3个D. 4个⼆、填空题(本⼤题共6⼩题,共24分)13.关于x的⼀元⼆次⽅程(m-1)x2-2x-1=0有两个实数根,则实数m的取值范围是______.>14.若数a使关于x的分式⽅程+=4的解为正数,且使关于y,不等式组的解集为y<-2,则符合条件的所有整数a的和为______.15.某兴趣⼩组借助⽆⼈飞机航拍,如图,⽆⼈飞机从A处飞⾏⾄B处需12秒,在地⾯C处同⼀⽅向上分别测得A处的仰⾓为75°,B处的仰⾓为30°.已知⽆⼈飞机的飞⾏速度为3⽶/秒,则这架⽆⼈飞机的飞⾏⾼度为(结果保留根号)______⽶.16.如图,直线l与⊙相切于点D,过圆⼼O作EF∥l交⊙O于E、F两点,点A是⊙O上⼀点,连接AE,AF,并分别延长交直线于B、C两点;若⊙的半径R=5,BD=12,则∠ACB的正切值为______.17.如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正⽅形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQAC,其中正确的结论的个数是______.18.在平⾯直⾓坐标系中,正⽅形ABCD的位置如图所⽰,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作第1个正⽅形A1B1C1C;延长C1B1交x轴于点A2,作第2个正⽅形A2B2C2C1,…,按这样的规律进⾏下去,第2016个正⽅形的⾯积是______.三、解答题(本⼤题共7⼩题,共78分)19.先化简,再求值:(-)÷(-1),其中a为不等式组的整数解.20.如图,在⼀条笔直的东西向海岸线l上有⼀长为1.5km的码头MN和灯塔C,灯塔C距码头的东端N有20km.⼀轮船以36km/h的速度航⾏,上午10:00在A处测得灯塔C 位于轮船的北偏西30°⽅向,上午10:40在B处测得灯塔C位于轮船的北偏东60°⽅向,且与灯塔C相距12km.(1)若轮船照此速度与航向航⾏,何时到达海岸线?(2)若轮船不改变航向,该轮船能否停靠在码头?请说明理由.(参考数据:≈1.4,≈1.7)21.如图,在平⾯直⾓坐标系中,⼀次函数y=kx+b(k≠0)的图象与反⽐例函数的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,6),点C的坐标为(-2,0),且tan∠ACO=2.(1)求该反⽐例函数和⼀次函数的解析式;(2)求点B的坐标;(3)在x轴上是否存在点E,使|AE-BE|有最⼤值?如果存在,请求出点E坐标;若不存在,请说明理由.22.为满⾜市场需求,某超市在中秋节来临前⼣,购进⼀种品牌⽉饼,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提⾼1元,每天要少卖出20盒.(1)当每盒售价定为多少元时,每天销售的利润P(元)最⼤?最⼤利润是多少?(2)为稳定物价,有关管理部门限定:这种⽉饼的每盒售价不得⾼于58元.如果超市想要每天获得6000元的利润,那么超市每天销售⽉饼多少盒?23.如图,平⾏四边形ABCD中,CG⊥AB于点G,∠ABF=45°,F在CD上,BF交CD于点E,连接AE,AE⊥AD.(1)若BG=1,BC=,求EF的长度;(2)求证:CE+BE=AB.24.如图1,抛物线y=ax2+bx+c经过平⾏四边形ABCD的顶点A(0,3)、B(-1,0)、D(2,3),抛物线与x轴的另⼀交点为E.经过点E的直线l将平⾏四边形ABCD分割为⾯积相等的两部分,与抛物线交于另⼀点F.点P为直线l上⽅抛物线上⼀动点,设点P的横坐标为t.(1)求抛物线的解析式;(2)当t何值时,△PFE的⾯积最⼤?并求最⼤值的⽴⽅根;(3)是否存在点P使△PAE为直⾓三⾓形?若存在,求出t的值;若不存在,说明理由.25.如图,直⾓△ABC中,∠BAC=90°,D在BC上,连接AD,作BF⊥AD分别交AD于E,AC于F.(1)如图1,若BD=BA,求证:△ABE≌△DBE;(2)如图2,若BD=4DC,取AB的中点G,连接CG交AD于M,求证:①GM=2MC;②AG2=AFAC.答案和解析1.【答案】A【解析】解:∵分式的值为零,∴|x|-1=0,x+1≠0,解得:x=1.故选:A.直接利⽤分式的值为零,则分⼦为零,分母不为零,进⽽得出答案.此题主要考查了分式的值为零,正确把握相关定义是解题关键.2.【答案】A【解析】解:0.00000156m,这个数据⽤科学记数法可表⽰为1.56×10-6m.故选:A.绝对值⼩于1的正数也可以利⽤科学记数法表⽰,⼀般形式为a×10-n,与较⼤数的科学记数法不同的是其所使⽤的是负指数幂,指数由原数左边起第⼀个不为零的数字前⾯的0的个数所决定.本题考查⽤科学记数法表⽰较⼩的数,⼀般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第⼀个不为零的数字前⾯的0的个数所决定.3.【答案】C【解析】解:()-1+tan30°?sin60°=2+=2+=故选:C.根据实数的运算,即可解答.本题考查了实数的运算,解决本题的关键是熟记实数的运算.4.【答案】B【解析】解:A、不是轴对称图形,是中⼼对称图形;B、是轴对称图形,也是中⼼对称图形;C、是轴对称图形,不是中⼼对称图形;D、不是轴对称图形,是中⼼对称图形.故选:B.结合选项根据轴对称图形与中⼼对称图形的概念求解即可.本题考查了中⼼对称图形与轴对称图形的知识.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中⼼对称图形的关键是要寻找对称中⼼,旋转180度后两部分重合.5.【答案】D【解析】解:A、甲的众数为7,⼄的众数为8,故原题说法错误;B、甲的中位数为7,⼄的中位数为4,故原题说法错误;C、甲的平均数为6,⼄的平均数为5,故原题说法错误;D、甲的⽅差为4.4,⼄的⽅差为6.4,甲的⽅差⼩于⼄的⽅差,故原题说法正确;故选:D.根据⼀组数据中出现次数最多的数据叫做众数;将⼀组数据按照从⼩到⼤(或从⼤到⼩)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;对于n个数x1,x2,…,x n,则x¯=(x1+x2+…+x n)就叫做这n个数的算术平均数;s2=[(x1-)2+(x2-)2+…+(x n-)2]进⾏计算即可.此题主要考查了众数、中位数、⽅差和平均数,关键是掌握三种数的概念和⽅差公式.6.【答案】A【解析】解:∵在△ABC中,∠ACB=90°,AC=BC=4,∴∠A=∠B,由折叠的性质得到:△AEF≌△DEF,∴∠EDF=∠A,∴∠EDF=∠B,∴∠CDE+∠BDF+∠EDF=∠BFD+∠BDF+∠B=180°,∴∠CDE=∠BFD.⼜∵AE=DE=3,∴CE=4-3=1,∴在直⾓△ECD中,sin∠CDE==,∴sin∠BFD=.故选:A.由题意得:△AEF≌△DEF,故∠EDF=∠A;由三⾓形的内⾓和定理及平⾓的知识问题即可解决.主要考查了翻折变换的性质及其应⽤问题;解题的关键是灵活运⽤全等三⾓形的性质、三⾓形的内⾓和定理等知识来解决问题.7.【答案】C【解析】解:∵正⽅形OABC的边长是6,∴点M的横坐标和点N的纵坐标为6,∴M(6,),N(,6),∴BN=6-,BM=6-,∵△OMN的⾯积为10,∴6×6-×6×-6×-×(6-)2=10,∴k=24,。

2023年江苏省徐州市中考数学模拟考试试卷附解析

2023年江苏省徐州市中考数学模拟考试试卷附解析

2023年江苏省徐州市中考数学模拟考试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.已如果半径为R 的两个等圆⊙O 1和⊙O 2交于A 、B 两点,⊙O 1 经过⊙O 2的圆心,那么AB 的长是( )A .34RB .32RC .3RD .23R2.二次函数2()(0)y a x m m a =++≠,无论m 取什么实数,图象的顶点必在( )A . 直线y=x 上B .直线y= 一x 上C . x 轴上D .y 轴上 3.若等腰三角形的一个外角为110°,则它的底角为( )A .55°B .70°C .55°或70°D .以上答案都不对 4.Rt △ABC 中,∠C=90°,AC=3,BC=4,CD ⊥AB 于D 点,以C 为圆心,3cm 为半径作⊙C ,则AB 与⊙C 的位置关系是( )A .相离B . 相切C .相交D .无法确定5.将三个面上做有标记的立方体盒子展开,以下有可能是它的展开图的是( )A .B .C .D . 6. 一只小狗正在平面镜前欣赏自己的全身像(如图),此时,它所看到的全身像是( )7.下列各个变形正确的是( )A .由 7x=4x-3,移项,得 7x-4x=3B .由 3(2x-1)=1+ 2(x-3),去括号,得6x-1 =1+2x-3C .由 2(2x-1)-3(x-3)= 1,去括号,得4x-2-3x-9= 1D .由 2(x+1)=x+8,去括号,移项,合并,得x=6二、填空题8.已知不等式组⎩⎨⎧--++112m x n m x <>的解集为-1<x <2,则(m +n)2008=_______________. 9.若一个数的平方等于3,则这个数是 .10.如图,几何体有m 个面,n 个顶点,l 条棱,则m n l +-= .11.从A市开往B市的特快列车,途中要停靠三个站点,如果任意两站间的票价都不相同,那么有种不同的票价.12.如图,∠DEF是∠ABC经过平移得到的,若∠ABC=30°,则∠DEF= .13.计算:(2x + y)(2x - y)= ;(2a -1)2= _.14.当x=1,2y=-1时,分式3x yxy-的值是 .15.在直角三角形ABC中,∠ACB=90O,∠A=30O,先以点C为旋转中心,将ΔABC按逆时针方向旋转45O,得ΔA1B1C.然后以直线A1C为对称轴,将ΔA1B1C轴对称变换,得ΔA1B2C,则A1B2与AB所夹的∠α的度数为 .16.某人到菜市场买鸡蛋,她对所要购买的鸡蛋逐一进行检查,最后她买到了自己满意的鸡蛋.在这个事件中用的是哪种数学方法?17.如图是一口直径AB为4米,深BC为2米的圆柱形养蛙池,小青蛙们晚上经常坐在池底中心O观赏月亮,则它们看见月亮的最大视角∠COD= 度,(不考虑青蛙的身高).18.观察图象,与图①中的鱼相比,图②中的鱼发生了一些变化.若图①中鱼上点P的坐标为(4,3.2),则这个点在图②中的对应点P1的坐标为 (图中的方格是边长为1的小正方形).19.钢筋的横截面面积是0.25π,长度为h,则钢筋的体积V=0.257πh,这里常量是,变量是.20.已知关于y的方程260y my+-=的一个根是-2,则m= .21.已知数据:25,22,21,25,19,26,22,28,24,27,25,26,26,27,29,28,36,24,25,30.在列频数分布表时,如果取组距为3,那么应分成组,分别是.22.在如图的方格纸中有一个菱形ABCD(A、B、C、D四点均为格点),若方格纸中每个最小正方形的边长为1,则该菱形的面积为.23.一条弦把圆的一条直径分成 2 cm 和6 cm两部分,若弦与直径所成的角为 30°,则圆心到弦的距离为 cm.24.一个几何体的三视图都是正方形,则这个几何体是 .三、解答题25.在摸奖活动中,游乐场在一只黑色的口袋里装有只颜色不同的50只小球,其中红球1只、黄球2只、绿球10只,其余为白球,搅拌均匀后,每2元摸1个球,奖品的标准在球上(如下图)(1) 如果花2元摸1个球,那么摸不到奖的概率是多少?(2) 如果花4元同时摸2个球,那么获得10元奖品的概率是多少?26.如图,△ABC 是边长为 2 的正三角形,以 BC 为直径作⊙O交AB,AC于D、E,连结DE.求:(1)⌒DE的度数;(2)DE 的长.27.在如图的方格纸中,每个小正方形的边长都为l,△ABC与△A1B1C1构成的图形是中心对称图形.(1)画出此中心对称图形的对称中心0;(2)画出将△A1B1C1沿直线DE方向向上平移5格,得到△A2B2C2,那么△A2B2C2绕点C2顺时针方向旋转,至少要旋转多少度再能与△CC1C2重合?(直接写出答案)28.试证明:不论m为何值,方程22----=总有两个不相等的实数根.2(41)0x m x m m22-=+b ac m4241>029.一不透明纸箱中装有形状、大小、质地等完全相同的4个小球,分别标有数字1,2,3,4.(1)从纸箱中随机地一次取出两个小球,求这两个小球上所标的数字一个是奇数另一个是偶数的概率;(2)先从纸箱中随机地取出一个小球,用小球上所标的数字作为十位上的数字;将取出的小球放回后,再随机地取出一个小球,用小球上所标的数字作为个位上的数字,则组成的两位数恰好能被3整除的概率是多少?试用树状图或列表法加以说明.30.如图①所示,长方形通过剪切可以拼成直角三角形,方法如下:仿照上图,用图示的方法,解答下列问题:(1)如图②所示,已知直角三角形,设计一种方案,将它分成若干块,再拼成一个与之等面积的长方形;(2)如图③所示,对任意一个三角形,设计一种方案,把它分成若干块,再拼成一个与它等面积的长方形.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.B3.C4.C5.C6.A7.D二、填空题8.19..211.1012.30°13.224y x -,1442+-a a14.-715.75°16.普查17.9018.(4,2.2)19.0.25π;V,h20.-121.6;18.5~21.5,21.5~24.5 ,24.5~27.5 , 27.5~30.5 ,30.5~33.5 ,33.5~36.522.1223.l24.立方体三、解答题25.(1)白球的个数37102150=---摸不到奖的概率是5037; (2)获10元的奖品只有一种可能即同时摸出两个黄球的获得10元奖品的概率是1225149251=⨯. 26.(1)连结 OD 、OE ,∵∠ B= ∠C= 60°,OB= OD=OE=OC ,∴∠BOD=∠COE=∠EOD=60°,∴⌒DE 的度数为60°(2)∵∠BOD=∠GOE=∠EOD=60°,∴BD= DE= EC ,∵∠DOE=60°,OD=OE , ∴∠ODE= ∠BDO=60°,∠ADE=60°,∴DE ∥BC .∴∠ADE=∠B=∠C= ∠AED=∠A= 60°,AD= DE=AE= BD ,∵AB=2,∴DE=12AB=1. 27.(1)BB l ,CC l 的交点就是对称中心;(2)图略,△A 2B 2C 2绕点C 2顺时针方向至少旋转90°可与△CC 1C 2重合28.224241>0b ac m -=+29.解:(1)从纸箱中随机地一次取出两个小球,所标数字的所有可能结果有: (12)(13)(14)(23)(24)(34),,,,,,,,,,,,共6种;而所标数字一个是奇数另一个是偶数的有4种,4263P ∴==. (2)画树状图:或用列表法:1 2 3 4 1 (11) (12) (13) (14) 2(21) (22) (23) (24) 3(31) (32) (33) (34) 4 (41) (42) (43) (44)所有可能出现的结果共有16种,其中能被3整除的有5种.516P ∴=. 30.第 二 次 第一 次第一次 第二次 组成的两位数 开始 1 2 1 2 3 4 (11(1(1(141 2 3 4 (2(2(2(24(33 4 1 2 3 4 1 2 3 4 (3(3(34(41(4(4(4(1)(2)。

2021年江苏省徐州市中考数学模拟检测试卷附解析

2021年江苏省徐州市中考数学模拟检测试卷附解析

2021年江苏省徐州市中考数学模拟检测试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.某学习小组在讨论“变化的鱼”,知道大鱼与小鱼是位似图形,如图所示,则小鱼上的点 (a ,b )对应大鱼上的点( ) A . ( -2a , -2b )B .(-a, -2b )C .(-2b, -2a )D . (-2a, -b )2.二次函数28y x x c =-+的最小值是( ) A .4B .8C .-4D .163.下列条件中,能识别梯形ABCD 是等腰梯形的条件是 ( ) A .一组对边相等B .有两个角相等C .对角线相等D .有两个角互补 4.下列计算正确的是( ) A .235+=B .236=·C .84=D .2(3)3-=- 5.在△ABC 中,AB= 14,BC= 2x ,AC= 3x ,则x 的取值范围是( ) A . 2.8x > B .2.814x << C .14x < D .714x << 6.不等式4(2)2(35)x x -≥-的正整数解的个数为( )A .0个B .1个C .2 个D .3 个7.如图,在△ABC 中,AB=AC ,∠A=36°,BD ,CE 分别为∠ABC 与∠ACB 的角平分线且相交于点F ,则图中的等腰三角形有( ) A .6个B .7个C .8个D .9个8.从图形的几何性质考虑,下列图形中,有一个与其他三个不同,它是( )A.B. C.D.9.一根绳子弯曲成如图2(1)所示的形状. 当用剪刀像图 2(2)那样沿虚线a把绳子剪断时,绳子被剪为5段;当用剪刀像图2(3)那样沿虚线b(b∥a)把绳子再剪一次时,绳子就被剪为 9段. 若用剪刀在虚线a、b之间把绳子再剪(1n-)次(剪刀的方向与a平行),这时绳子的段数是()A.41n+n+B.42n+D.45n+C.4310.若a a±=-时,a是()A.全体实数B.正实数C.负实数D.零11.-7,-12,+2 的代数和比它们绝对值的和小()A.-38 B.-4 C.38 D.4二、填空题12.晚上,小亮走在大街上,如图,他发现:当他站在大街两边的两盏路灯之间,并且自己被两边路灯照在地上的两个影子成一直线时,自己右边的影子长为 3m,左边的影子长为 1.5m,且自己的身高为 1.80 m,两盏路灯的高相同,两盏路灯之间的距离为 12m,则路灯的高度为m.13.如图,⊙O的直径 AB=8cm,C 为⊙O上的一点,∠BAC=30°,则BC=______cm.14.已知一等腰三角形的底边长为 10cm,腰为13 cm,那么此等腰三角形的面积为.15.小明去姑姑家做客,姑姑拿出一盒糖果(糖果形状完全相同,并且在果盒外面无法看到任何糖果),其中有20块巧克力糖、15块芝麻酥糖、4块夹心软糖,小明任意取出一块糖是糖的可能性最大.16.以△ABD 的边AB、AD为边分别向外作正方形ACEB和ADGF,连接DC、BF.利用旋转的观点,在此题中,△ADC绕着点逆时针旋转度可以得到△ .17. +14a +=( )2. 18.如图所示,两个全等菱形的边长为1厘米,一只蚂蚁由A 点开始按ABCDEFCGA 的顺序沿菱形的边循环运动,行走2008厘米后停下,则这只蚂蚁停在 点.三、解答题19.河边有一条笔直的公路,公路两侧是平坦地带,一次活动课,老师要求测量河的宽度.一同学的测量结果如图所示:30BCD ∠=,4570BDC CD ∠==,米. 请你帮助计算河的宽度AB (结果保留根号).20.甲、乙两超市同时开业,为了吸引顾客,都举行有奖酬宾活动:凡购物满 l00元,均可得到一次摸奖的机会,在一个纸盒里装有 2 个红球和 2个白球,除颜色外,其它全部相同,摸奖者一次从中摸出两个球,根据球的颜色决定送礼金券的多少见下表:如果只考虑中奖因素,你将会选择去哪个超市购物?21.你看过篮球赛吗 下图是篮球场简单图示,你知道在哪些区域投中是得2分吗?请用阴影表示.球两红一红一白 两白 甲礼金券 5元 10 元 5 元 乙礼金券 10 元5元10 元22.已知抛物线2y ax经过点A(12,-2)(1)求a的值,并写出这个二次函数的解析式;(2)说出这个二次函数的顶点坐标、对称轴、开口方向.23.用反证法证明“三角形三内角中,至少有一个内角小于或等于60°”.已知:∠A,∠B,∠C是△ABC的内角.求证:∠A,∠B,∠C中至少有一个小于或等于60°.证明:假设求证的结论不成立,即 .∴∠A+∠B+∠C> ,这与相矛盾,∴假设不成立,∴ .24.已知:如图,在□ABCD中,AC,BD交于点O,EF过点O,分别交CB,AD•的延长线于点E,F,求证:AE=CF.25.根据下列关系列不等式:(1)x 的2倍大于一5;(2)4 减去 2x 的差是负数;(3)y 与 3 的和不大于0. 5.26.如图,直线AB、CD相交于点0,OB平分∠DOE,若∠DOE=64°,求∠ACC的度数.27.某城市的一种出租车起步价是l0元(即行驶距离在3 km以内的都需付l0元车费),超过3 km后,每增加1 km加价l.2元(不足1 km部分按1 km计算).现在某人乘这种出租车从甲地到乙地,付车费l7.2元,从甲地到乙地的路程大约是多少?28.(1)已知两个数的和是17-,其中一个加数是37-,求另一个加数.(2)求45-的绝对值的相反数与265的相反数的差.29.检查一个商店里 10 袋白糖的重量,以 5 g 为基准,超出记为“+”,不足记为“-”,情况如下:-30 g,+20 g,-20 g,-10 g,-50 g,+30 g, -20 g, +30 g, +10 g, -10 g.(1)总的情况是超出还是不足?超出或不足的数量为多少?(2)最多的与最少的相差多少?30.本市新建的滴水湖是圆形人工湖,为测量该湖的半径,小杰和小丽沿湖边选取A、B、C 三根木柱,使得A、B之间的距离与A、C之间的距离相等,并测得BC长为240米,A到BC 的距离为5米,如图所示,•请你帮他们求出滴水湖的半径.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.D3.C4.B5.B6.B7.C8.C9.D10.D11.C二、填空题 12. 913.414.6015.巧克力16.A ,90, ABF17.2a ,12a +18.A三、解答题 19.解:在Rt ABC △中,30BCD ∠=,tan 30AB AC =,3tan 30AB AC ∴==, 在Rt △ABD 中,45BDC ∠=,∴AD AB =.又AC AD CD +=,70AB +=,35AB ∴=米.20.去甲超市购物一次摸奖获 10 元礼金券的概率是()1111266663P =+++=甲去乙超市购物一次摸奖获 10 元礼金券的概率是()111663P =+=乙所以应选择去甲超市购物.21.如图所示.22.(1)把点(12,-2) 的坐标代入2y ax =得212()2a -=∴a =—8.∴这个二次函数的解析式28y x =-(2)顶点为 (0,0),对称抽为 y 轴.因为a=-8<0,所以开口向下.23.没有一个内角小于或等于60°,180°,三角形的内角和为 180°,三角形三内角中至少有一个小于或等于60°24.提示:先证明△BOE ≌△DOF 得到OE=OF ,再证明△AOE ≌△COF ,得到AE=CF25.(1)2x>-5;(2)4-2x<0;(3)y+3≤0.526.32°27.9 km28.(1)27(2)35529.(1)不足 50g (2)80 g30.解:连结OA 交BC 于D ,连结OB .∵AB=AC ,∴⌒AB =⌒AC ,∴OA ⊥BC .在Rt △BOD 中,OB=R ,BD=12BC=120, OD=R-5, OB 2=OD 2+BD 2. 即R 2=(R-5)2+1202. 解得R=1442.5(米).。

2024年中考数学模拟测试试卷(带有答案)

2024年中考数学模拟测试试卷(带有答案)
A. B. C. D.
【答案】A
【解析】
【分析】设大巴车的平均速度为x千米/时则老师自驾小车的平均速度为 千米/时根据时间的等量关系列出方程即可.
【详解】解:设大巴车 平均速度为x千米/时则老师自驾小车的平均速度为 千米/时
根据题意列方程为:
故答案为:A.
【点睛】本题考查了分式方程的应用,找到等量关系是解题的关键.
21.教育部正式印发《义务教育劳动课程标准(2022年版)》,劳动课成为中小学的一门独立课程,湘潭市中小学已经将劳动教育融入学生的日常学习和生活中某校倡导同学们从帮助父母做一些力所能及的家务做起,培养劳动意识,提高劳动技能.小明随机调查了该校10名学生某周在家做家务的总时间,并对数据进行统计分析,过程如下:

∴ ,故D选项正确
∵ 是直角三角形, 是斜边,则 ,故C选项错误
故选:C.
【点睛】本题考查了等腰三角形的性质,直角三角形斜边上的中线等于斜边的一半,直径所对的圆周角是直角,切线的性质,熟练掌握以上知识是解题的关键.
12.如图,抛物线 与x轴交于点 ,则下列结论中正确的是()
A. B. C. D.
【答案】BD
【答案】2(答案不唯一)
【解析】
【分析】根据实数与数轴的对应关系,得出所求数的绝对值小于 ,且为整数,再利用无理数的估算即可求解.
【详解】解:设所求数为a,由于在数轴上到原点的距离小于 ,则 ,且为整数

∵ ,即
∴a可以是 或 或0.
故答案为:2(答案不唯一).
【点睛】本题考查了实数与数轴,无理数的估算,掌握数轴上的点到原点距离的意义是解题的关键.
15.如图,在 中 ,按以下步骤作图:①以点 为圆心,以小于 长为半径作弧,分别交 于点 ,N;②分别以 ,N为圆心,以大于 的长为半径作弧,在 内两弧交于点 ;③作射线 ,交 于点 .若点 到 的距离为 ,则 的长为__________.

2022年江苏省徐州市中考数学复习模拟试卷附解析

2022年江苏省徐州市中考数学复习模拟试卷附解析

2022年江苏省徐州市中考数学复习模拟试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.为了解我市七年级20000名学生的身高,从中抽取了500名学生,对其身高进行统计分析,以下说法正确的是( )A .20000名学生是总体B .每个学生是个体C .500名学生是抽取的一个样本D .每个学生的身高是个体 2.已知:如图,AB CD ⊥,垂足为O ,EF 为过点O 的一条直线,则1∠与2∠的关系一定成立的是( )A .相等B .互余C .互补D .互为对顶角3.下列说法中,错误的是( )A .经过一点可以画无数条直线B .经过两点可以画一条直线C .两点之间线段最短D .三点确定一条直线4.把多项式224n m -+分解因式,其结果正确的是( )A .(2)(2)m n m n +-B .2(2)m n +C . 2(2)m n -D .(2)(2)n m n m +-5.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,•除颜色外其他全部相同,小李通过多次摸球试验后发现其中摸到红色、黑色球的概率为15%和45%,则口袋中白色球的个数很可能是( )A .6B .16C .18D .246.现实生活中存在大量的平移现象,下列现象属于平移变换的是( )A .行进中自行车车轮的运动B .急刹车后汽车在路面上的滑动C .人与镜子中的像D .台球在桌面上从一点到另一点的运动7.下列图形中,与如图1形状相同的是( )图 1 A . B . C . D .8.计算1(1)(3)3-÷-⨯的结果是( ) A .-1 B .19 C .1 D .-99.如图,1l ∥2l ,△ABC 为等边三角形,∠ABD=25°,则∠ACE 的度数是( )A .45°B .35°C .25°D .15°10.已如果半径为R 的两个等圆⊙O 1和⊙O 2交于A 、B 两点,⊙O 1 经过⊙O 2的圆心,那么AB 的长是( )A .34RB .32RC .3RD .23R11.已知平面内有一点P ,它的横坐标与纵坐标互为相反数,且与原点的距离为8,则点P 的坐标为( )A .(-4,4)或(4,-4)B .(4,-4)C .(32-,32)或(32,32-)D .(32,32-) 12.要了解全市八年级学生身高在某一范围内的学生所占比例的大小,需要知道相应样本的( )A .平均数B .最大值C .众数D .频率分布 13.如图,下列不等式一定能成立的是( ) A .∠5>∠3 B .∠4>∠3 C .∠6>∠2 D .∠5>∠614.矩形的三个顶点坐标分别为(-1,-2),(-1,2),(1,2),则第四个顶点的坐标是 ( )A .(1,-2)B .(2,1)C .(-2,1)D .(2,-l ) 15.如图,点D ,E ,F 分别是△ABC 三边的中点,且S △DEF =3,则△ABC 的面积等于( )A .6B .9C .12D .1516.用反证法证明“a >b ”时应假设( )A .a >bB .a <bC .a =bD .a ≤b 17.下列多项式中,不能运用平方差公式分解因式的是( ) A . 24m -+ B .22x y -- C .221x y - D .22()()m a m a --+二、填空题18.如图所示,四边形的两个内角的度数已知,则图中∠α+∠β= . 19.一水池有2个进水速度相同的进水口,l 个出水口,单开一个进水口每小时可进水2 m 3,单开一个出水口每小时可出水3m 2.某天0 h 到6 h 水池的蓄水量与放水时间的关系如图所示(至少打开一个进水口),给出以下3个论断:①O h 到3 h 只进水不出水;②3 h 到4 h 时不进水只出水;③4 h 到6 h 不进水不出水. 则错误的论断是 (填序号).20.等角的余角相等,改写成“如果……那么……”的形式: ,该命题是(填“真”或“假”)命题.21.如图,在Rt △ABC 中,AD 是BC 边上的高,若∠C=36°,则∠B= ,∠DAB= .22.新定义一种运算:1a b a b ab+*=-,则23*= . 23.如图,若把△ABC 绕A 点旋转一定角度就得到△ADE ,那么对应边AB= , AC= ,BC= ;对应角∠CAB= ,∠B= ,∠C= .24.若规定bc ad d c ba -=,则62114=-x x 的实数x 的值为_________. 25.在每周一次的市长接待日中,各种问题都有所反映,一个月后进行统计发现,有下列一张统计图,则在这一个月内接待了300人次时,反映中小学收费的有人次,反映土地审批的有人次,反映房产质量的有人次,反映婚姻纠纷的有人次,反映停车问题的有人次.三、解答题26.如图所示,有一四边形形状的铁皮ABCD, BC=CD,AB=2AD, ∠ABC=∠ADB=90°.(1)求∠C 的度教;(2)以 C 为圆心,CB为半径作圆弧⌒BD得一扇形CBD,剪下该扇形并用它围成一圆锥的侧面,若已知 BC=a,求该圆锥的底面半径.27.美化城市,改善人们的居住环境已成为城市建设的一项重要内容.我市近几年来,通过拆迁旧房,植草,栽树,修公园等措施,使城区绿地面积不断增加(如图所示).(1)根据图中所提供的信息回答下列问题:2003年底的绿地面积为公顷,比2002年底增加了公顷;(2)为满足城市发展的需要,计划到2005年底使城区绿地面积达到72.6公顷,试求04,05两年绿地面积的年平均增长率.A B CD M N D ′28.已知:如图,在□ABCD 中,AB =4,∠ABC =60°,对角线AC ⊥AB ,将□ABCD 对折,使点C 与点A 重合,折痕为MN , 试判断△AMD ′的形状,并说明理由.29.如图所示,在□ABCD 中,AE ⊥CD ,AF ⊥BC ,垂足为E ,F ,∠EAF=60°,CE=1,CF=4.求□ABCD 的各边长.30.如图,已知∠EFD=∠BCA ,BC=EF ,AF=DC.则AB=DE.请说明理由.(填空)解:∵AF=DC(已知) ∴AF+ =DC+即在△ABC和△ 中B C=EF( )∠ =∠ ( )∴△ABC≌△ ( )∴AB=DE( )A B C D EF【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.B3.D4.A5.B6.B7.B8.B9.B10.C11.C12.D13.A14.A15.C16.D17.B二、填空题18.194°19.②20.如果两个角是相等角的余角,那么这两个角相等21.54°, 36°22.-123.AD,AE,DE,∠EAD,∠D,∠E24.225.30,60,120,30,60三、解答题26.(1) ∵∠ADS=90°,AB=2AD,∴∠ABD=30° ,∵∠ABC=90°,∴∠DBC=60°,∵ BC=CD ,∴△BCD 为等边三角形,∴∠C=60°.(2)036060o r a ⋅=,∴6a r =. 27. (1)60;4(2)设年平均增长率为x ,则60(1+x )2=72.6,解得,x =0.1.28.△AMD ′是正三角形.29.由AE ⊥CD .AF ⊥BC 及∠EAF=60°想到,构造含60°角的直角三=角形.故延长AE 、BC 交于点P ,易知PC=2,PF=6.进而求出AF=AP=再在Rt △ABF 、Rt △ADE 中可分别求出AB=CD=4,AD=BD=630.FC ,FC ,AC=DF ,DEF ,已知,DFE ,ACB ,已知,AC=DF ,DEF ,SAS , 全等三角形的对应边相等.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省徐州市中考数学模拟试卷(九)一、选择题(共8小题,每题4分,满分32分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.﹣5的相反数是()A.﹣5 B.5 C.D.﹣2.地球绕太阳公转的速度约是110000千米/时,将110000用科学记数法表示为()A.11×104B.1.1×104C.1.1×105D.0.11×1063.如图所示某几何体的三视图,则这个几何体是()A.三棱锥B.圆柱C.球D.圆锥4.下列计算正确的是()A.x4•x4=x16B.(a3)2=a5C.(ab2)3=ab6D.a+2a=3a5.下列命题中,假命题是()A.对顶角相等 B.三角形两边的和小于第三边C.菱形的四条边都相等D.多边形的外角和等于360°6.某工厂现在平均每天比原计划多生产50台机器,现在生产600台所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A. =B. = C. = D. =7.如图,在正方形ABCD的外侧,作等边三角形ADE,AC、BE相交于点F,则∠BFC为()A.45° B.55°C.60°D.75°8.如图,已知直线y=﹣x+2分别与x轴,y轴交于A,B两点,与双曲线y=交于E,F两点,若AB=2EF,则k的值是()A.﹣1 B.1 C.D.二、填空题(本大题共有10小题.每小题3分,共30分.不需要写出解答过程,请把答案直接写在答题卡的相应位置上)9.分解因式:ma+mb=.10.若5件外观相同的产品中有1件不合格,现从中任意抽取1件进行检测,则抽到不合格产品的概率是.11.计算:( +1)(﹣1)=.12.△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是°.13.已知OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为点D、E,PD=10,则PE的长度为.14.代数式有意义时,x应满足的条件为.15.若(m﹣1)2+=0,则m+n的值是.16.如图,在▱ABCD中,DE平分∠ADC,AD=6,BE=2,则▱ABCD的周长是.17.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC到点F,使CF=BC.若AB=10,则EF的长是.18.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=.三、解答题(本大题共有10小题,共86分.请在答题卡指定区域作答,解答时应写出文字说明、证明过程或演算步骤)19.(1)计算: +()0+|﹣1|;(2)先化简,再求值:(x+2)2+x(2﹣x),其中x=.20.(1)解方程:2x2+4x﹣1=0;(2)解不等式:5x﹣2≤3x,并在数轴上表示解集.21.如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.22.如图,在边长为1个单位长度的小正方形所组成的网格中,△ABC的顶点均在格点上.①sinB的值是;②画出△ABC关于直线l对称的△A1B1C1(A与A1,B与B1,C与C1相对应).连接AA1,BB1,并计算梯形AA1B1B的面积.23.设中学生体质健康综合评定成绩为x分,满分为100分,规定:85≤x≤100为A级,75≤x≤85为B级,60≤x≤75为C级,x<60为D级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了名学生,α=%;(2)补全条形统计图;(3)扇形统计图中C级对应的圆心角为度;(4)若该校共有2000名学生,请你估计该校D级学生有多少名?24.现有A,B两种商品,买2件A商品和1件B商品用了90元,买3件A商品和2件B商品用了160元.(1)求A,B两种商品每件各是多少元?(2)如果小亮准备购买A,B两种商品共10件,总费用不超过350元,但不低于300元,问有几种购买方案,哪种方案费用最低?25.如图,轮船从点A处出发,先航行至位于点A的南偏西15°且与点A相距100km的点B处,再航行至位于点B的北偏东75°且与点B相距200km的点C处.(1)求点C与点A的距离(精确到1km);(2)确定点C相对于点A的方向.(参考数据:≈1.414,≈1.732)26.如图,在△ABC中,∠B=45°,∠ACB=60°,AB=3,点D为BA延长线上的一点,且∠D=∠ACB,⊙O为△ACD的外接圆.(1)求BC的长;(2)求⊙O的半径.27.如图1,点O在线段AB上,AO=2,OB=1,OC为射线,且∠BOC=60°,动点P以每秒2个单位长度的速度从点O出发,沿射线OC做匀速运动,设运动时间为t秒.(1)当t=秒时,则OP=,S△ABP=;(2)当△ABP是直角三角形时,求t的值;(3)如图2,当AP=AB时,过点A作AQ∥BP,并使得∠QOP=∠B,求证:AQ•BP=3.28.如图,抛物线y=(x﹣3)2﹣1与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D.(1)求点A,B,D的坐标;(2)连接CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连接AE,AD,求证:∠AEO=∠ADC;(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作⊙E 的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出点Q的坐标.江苏省徐州市中考数学模拟试卷(九)参考答案与试题解析一、选择题(共8小题,每题4分,满分32分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.﹣5的相反数是()A.﹣5 B.5 C.D.﹣【考点】相反数.【专题】常规题型.【分析】根据相反数的定义直接求得结果.【解答】解:﹣5的相反数是5.故选:B.【点评】本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.2.地球绕太阳公转的速度约是110000千米/时,将110000用科学记数法表示为()A.11×104B.1.1×104C.1.1×105D.0.11×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将110000用科学记数法表示为1.1×105.故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图所示某几何体的三视图,则这个几何体是()A.三棱锥B.圆柱C.球D.圆锥【考点】由三视图判断几何体.【分析】根据一个空间几何体的主视图和俯视图都是三角形,可判断该几何体是锥体,再根据左视图的形状,即可得出答案.【解答】解:∵几何体的主视图和俯视图都是三角形,∴该几何体是一个锥体,∵俯视图是一个圆,∴该几何体是一个圆锥;故选D.【点评】本题考查的知识点是三视图,如果有两个视图为三角形,该几何体一定是锥,如果有两个矩形,该几何体一定柱,其底面由第三个视图的形状决定.4.下列计算正确的是()A.x4•x4=x16B.(a3)2=a5C.(ab2)3=ab6D.a+2a=3a【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【专题】计算题.【分析】根据同底数幂相乘,底数不变指数相加,幂的乘方,底数不变指数相乘,积的乘方,先把积的每一个因式分别乘方,再把所得到幂相乘,合并同类项,即把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.对各小题计算后利用排除法求解.【解答】解;A、x4•x4=x8,故A错误;B、(a3)2=a6,故B错误;C、(ab2)3=a2b6,故C错误;D、a+2a=3a,故D正确.故选:D.【点评】本题主要考查了同底数幂相乘,幂的乘方的性质,积的乘方的性质,合并同类项,熟练掌握运算性质并理清指数的变化是解题的关键.5.下列命题中,假命题是()A.对顶角相等 B.三角形两边的和小于第三边C.菱形的四条边都相等D.多边形的外角和等于360°【考点】命题与定理.【分析】分别利用对顶角的性质、三角形的三边关系、菱形的性质及多边形的外角和对四个选项分别判断后即可确定正确的选项.【解答】解:A、对顶角相等,正确,是真命题;B、三角形的两边之和大于第三边,错误,是假命题;C、菱形的四条边都相等,正确,是真命题;D、多边形的外角和为360°,正确,为真命题,故选:B.【点评】本题考查了命题与定理的知识,解题的关键是熟知对顶角的性质、三角形的三边关系、菱形的性质及多边形的外角和定理,属于基础知识,难度较小.6.某工厂现在平均每天比原计划多生产50台机器,现在生产600台所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A. =B. = C. = D. =【考点】由实际问题抽象出分式方程.【分析】设原计划平均每天生产x台机器,则实际平均每天生产(x+50)台机器,根据题意可得,现在生产600台所需时间与原计划生产450台机器所需时间相同,据此列方程即可.【解答】解:设原计划平均每天生产x台机器,则实际平均每天生产(x+50)台机器,由题意得, =.故选B.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.7.如图,在正方形ABCD的外侧,作等边三角形ADE,AC、BE相交于点F,则∠BFC为()A.45° B.55°C.60°D.75°【考点】正方形的性质;等腰三角形的性质;等边三角形的性质.【分析】根据正方形的性质及全等三角形的性质求出∠ABE=15°,∠BAC=45°,再求∠BFC.【解答】解:∵四边形ABCD是正方形,∴AB=AD,又∵△ADE是等边三角形,∴AE=AD=DE,∠DAE=60°,∴AB=AE,∴∠ABE=∠AEB,∠BAE=90°+60°=150°,∴∠ABE=(180°﹣150°)÷2=15°,又∵∠BAC=45°,∴∠BFC=45°+15°=60°.故选:C.【点评】本题主要是考查正方形的性质和等边三角形的性质,本题的关键是求出∠ABE=15°.8.如图,已知直线y=﹣x+2分别与x轴,y轴交于A,B两点,与双曲线y=交于E,F两点,若AB=2EF,则k的值是()A.﹣1 B.1 C.D.【考点】反比例函数图象上点的坐标特征;一次函数图象上点的坐标特征;等腰直角三角形.【专题】压轴题.【分析】作FH⊥x轴,EC⊥y轴,FH与EC交于D,先利用一次函数图象上点的坐标特征得到A (2,0),B(0,2),易得△AOB为等腰直角三角形,则AB=OA=2,所以EF=AB=,且△DEF为等腰直角三角形,则FD=DE=EF=1;设F点坐标为(t,﹣t+2),则E点坐标为(t+1,﹣t+1),根据反比例函数图象上点的坐标特征得到t(﹣t+2)=(t+1)•(﹣t+1),解得t=,这样可确定E点坐标为(,),然后根据反比例函数图象上点的坐标特征得到k=×.【解答】解:作FH⊥x轴,EC⊥y轴,FH与EC交于D,如图,A点坐标为(2,0),B点坐标为(0,2),OA=OB,∴△AOB为等腰直角三角形,∴AB=OA=2,∴EF=AB=,∴△DEF为等腰直角三角形,∴FD=DE=EF=1,设F点横坐标为t,代入y=﹣x+2,则纵坐标是﹣t+2,则F的坐标是:(t,﹣t+2),E点坐标为(t+1,﹣t+1),∴t(﹣t+2)=(t+1)•(﹣t+1),解得t=,∴E点坐标为(,),∴k=×=.故选:D.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.二、填空题(本大题共有10小题.每小题3分,共30分.不需要写出解答过程,请把答案直接写在答题卡的相应位置上)9.分解因式:ma+mb=m(a+b).【考点】因式分解-提公因式法.【专题】因式分解.【分析】这里的公因式是m,直接提取即可.【解答】解:ma+mb=m(a+b).故答案为:m(a+b)【点评】本题考查了提公因式法分解因式,公因式即多项式各项都含有的公共的因式.10.若5件外观相同的产品中有1件不合格,现从中任意抽取1件进行检测,则抽到不合格产品的概率是.【考点】概率公式.【分析】根据不合格品件数与产品的总件数比值即可解答.【解答】解:∵在5个外观相同的产品中,有1个不合格产品,∴从中任意抽取1件检验,则抽到不合格产品的概率是:.故答案为:.【点评】本题主要考查概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.11.计算:( +1)(﹣1)=1.【考点】二次根式的乘除法;平方差公式.【专题】计算题.【分析】两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数.就可以用平方差公式计算.结果是乘式中两项的平方差(相同项的平方减去相反项的平方).【解答】解:( +1)(﹣1)=.故答案为:1.【点评】本题应用了平方差公式,使计算比利用多项式乘法法则要简单.12.△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是140°.【考点】三角形的外角性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵∠A=60°,∠B=80°,∴∠C的外角=∠A+∠B=60°+80°=140°.故答案为:140.【点评】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.13.已知OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为点D、E,PD=10,则PE的长度为10.【考点】角平分线的性质.【分析】根据角平分线上的点到角的两边距离相等可得PE=PD.【解答】解:∵OC是∠AOB的平分线,PD⊥OA,PE⊥OB,∴PE=PD=10.故答案为:10.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键,作出图形更形象直观.14.代数式有意义时,x应满足的条件为x≠±1.【考点】分式有意义的条件.【分析】根据分式有意义,分母等于0列出方程求解即可.【解答】解:由题意得,|x|﹣1≠0,故答案为:x≠±1.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.15.若(m﹣1)2+=0,则m+n的值是﹣1.【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的性质列式求出m、n的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,m﹣1=0,n+2=0,解得m=1,n=﹣2,所以m+n=1+(﹣2)=﹣1.故答案为:﹣1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.如图,在▱ABCD中,DE平分∠ADC,AD=6,BE=2,则▱ABCD的周长是20.【考点】平行四边形的性质;等腰三角形的判定与性质.【分析】根据角平分线的定义以及两直线平行,内错角相等求出∠CDE=∠CED,再根据等角对等边的性质可得CE=CD,然后利用平行四边形对边相等求出CD、BC的长度,再求出▱ABCD的周长.【解答】解:∵DE平分∠ADC,∴∠ADE=∠CDE,∵▱ABCD中,AD∥BC,∴∠ADE=∠CED,∴∠CDE=∠CED,∵在▱ABCD中,AD=6,BE=2,∴AD=BC=6,∴CE=BC﹣BE=6﹣2=4,∴CD=AB=4,∴▱ABCD的周长=6+6+4+4=20.故答案为:20.【点评】本题考查了平行四边形对边平行,对边相等的性质,角平分线的定义,等角对等边的性质,是基础题,准确识图并熟练掌握性质是解题的关键.17.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC到点F,使CF=BC.若AB=10,则EF的长是5.【考点】平行四边形的判定与性质;直角三角形斜边上的中线;三角形中位线定理.【专题】压轴题.【分析】根据三角形中位线的性质,可得DE与BC的关系,根据平行四边形的判定与性质,可得DC与EF的关系,根据直角三角形的性质,可得DC与AB的关系,可得答案.【解答】解:如图,连接DC.DE是△ABC的中位线,∴DE∥BC,DE=,∵CF=BC,∴DE∥CF,DE=CF,∴CDEF是平行四边形,∴EF=DC.∵DC是Rt△ABC斜边上的中线,∴DC==5,∴EF=DC=5,故答案为:5.【点评】本题考查了平行四边形的判定与性质,利用了平行四边形的判定与性质,直角三角形斜边上的中线等于斜边的一半.18.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=.【考点】正方形的性质;菱形的性质.【分析】图1中根据勾股定理即可求得正方形的边长,图2根据有一个角是60°的等腰三角形是等边三角形即可求得.【解答】解:如图1,∵AB=BC=CD=DA,∠B=90°,∴四边形ABCD是正方形,连接AC,则AB2+BC2=AC2,∴AB=BC=,如图2,∠B=60°,连接AC,∴△ABC为等边三角形,∴AC=AB=BC=.故答案为:.【点评】本题考查了正方形的性质,勾股定理以及等边三角形的判定和性质,利用勾股定理得出正方形的边长是关键.三、解答题(本大题共有10小题,共86分.请在答题卡指定区域作答,解答时应写出文字说明、证明过程或演算步骤)19.(1)计算: +()0+|﹣1|;(2)先化简,再求值:(x+2)2+x(2﹣x),其中x=.【考点】实数的运算;整式的混合运算—化简求值;零指数幂.【分析】(1)本题涉及零指数幂、绝对值、二次根式化简三个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;(2)根据完全平方公式、单项式成多项式,可化简整式,根据代数式求值,可得答案.【解答】解:(1)原式=3+1+1=5;(2)原式=x2+4x+4+2x﹣x2=6x+4,当x=时,原式=6×+4=2+4=6.【点评】本题考查了实数的运算,熟练掌握零指数幂、绝对值、二次根式的运算.20.(1)解方程:2x2+4x﹣1=0;(2)解不等式:5x﹣2≤3x,并在数轴上表示解集.【考点】解一元二次方程-公式法;在数轴上表示不等式的解集;解一元一次不等式.【专题】计算题.【分析】(1)方程利用公式法求出解即可;(2)不等式移项合并,把x系数化为1,求出解集,表示在数轴上即可.【解答】解:(1)这里a=2,b=4,c=﹣1,∵△=16+8=24,∴x==;(2)不等式移项合并得:2x≤2,解得:x≤1,【点评】此题考查了解一元二次方程﹣公式法,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.21.如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.【考点】全等三角形的判定与性质.【专题】证明题.【分析】可通过证△ABF≌△DCE,来得出∠A=∠D的结论.【解答】证明:∵BE=FC,∴BE+EF=CF+EF,即BF=CE;又∵AB=DC,∠B=∠C,∴△ABF≌△DCE;(SAS)∴∠A=∠D.【点评】此题考查简单的角相等,可以通过全等三角形来证明,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.22.如图,在边长为1个单位长度的小正方形所组成的网格中,△ABC的顶点均在格点上.①sinB的值是;②画出△ABC关于直线l对称的△A1B1C1(A与A1,B与B1,C与C1相对应).连接AA1,BB1,并计算梯形AA1B1B的面积.【考点】作图-轴对称变换;勾股定理;锐角三角函数的定义.【分析】①利用勾股定理得出AB的长,再利用锐角三角函数关系得出答案;②利用关于直线对称的性质得出对应点进而利用梯形面积求法得出答案.【解答】解:①∵AC=3,AB==5,∴sinB的值是: =.故答案为:;②如图所示:△A1B1C1,即为所求,梯形AA1B1B的面积为:×(2+8)×4=20.【点评】此题主要考查了轴对称变换和勾股定理以及锐角三角函数关系,正确掌握梯形面积公式是解题关键.23.设中学生体质健康综合评定成绩为x分,满分为100分,规定:85≤x≤100为A级,75≤x≤85为B级,60≤x≤75为C级,x<60为D级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了50名学生,α=24%;(2)补全条形统计图;(3)扇形统计图中C级对应的圆心角为72度;(4)若该校共有2000名学生,请你估计该校D级学生有多少名?【考点】条形统计图;用样本估计总体;扇形统计图.【专题】图表型.【分析】(1)根据B级的人数和所占的百分比求出抽取的总人数,再用A级的人数除以总数即可求出a;(2)用抽取的总人数减去A、B、D的人数,求出C级的人数,从而补全统计图;(3)用360度乘以C级所占的百分比即可求出扇形统计图中C级对应的圆心角的度数;(4)用D级所占的百分比乘以该校的总人数,即可得出该校D级的学生数.【解答】解:(1)在这次调查中,一共抽取的学生数是: =50(人),a=×100%=24%;故答案为:50,24;(2)等级为C的人数是:50﹣12﹣24﹣4=10(人),补图如下:(3)扇形统计图中C级对应的圆心角为×360°=72°;故答案为:72;(4)根据题意得:2000×=160(人),答:该校D级学生有160人.【点评】此题考查了是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.现有A,B两种商品,买2件A商品和1件B商品用了90元,买3件A商品和2件B商品用了160元.(1)求A,B两种商品每件各是多少元?(2)如果小亮准备购买A,B两种商品共10件,总费用不超过350元,但不低于300元,问有几种购买方案,哪种方案费用最低?【考点】一元一次不等式组的应用;二元一次方程组的应用.【专题】优选方案问题.【分析】(1)设A商品每件x元,B商品每件y元,根据关系式列出二元一次方程组.(2)设小亮准备购买A商品a件,则购买B商品(10﹣a)件,根据关系式列出二元一次不等式方程组.求解再比较两种方案.【解答】解:(1)设A商品每件x元,B商品每件y元,依题意,得,解得.答:A商品每件20元,B商品每件50元.(2)设小亮准备购买A商品a件,则购买B商品(10﹣a)件解得5≤a≤6根据题意,a的值应为整数,所以a=5或a=6.方案一:当a=5时,购买费用为20×5+50×(10﹣5)=350元;方案二:当a=6时,购买费用为20×6+50×(10﹣6)=320元;∵350>320∴购买A商品6件,B商品4件的费用最低.答:有两种购买方案,方案一:购买A商品5件,B商品5件;方案二:购买A商品6件,B商品4件,其中方案二费用最低.【点评】此题主要考查二元一次方程组及二元一次不等式方程组的应用,根据题意得出关系式是解题关键.25.如图,轮船从点A处出发,先航行至位于点A的南偏西15°且与点A相距100km的点B处,再航行至位于点B的北偏东75°且与点B相距200km的点C处.(1)求点C与点A的距离(精确到1km);(2)确定点C相对于点A的方向.(参考数据:≈1.414,≈1.732)【考点】解直角三角形的应用-方向角问题.【专题】几何图形问题.【分析】(1)作辅助线,构造直角三角形,解直角三角形即可;(2)利用勾股定理的逆定理,判定△ABC为直角三角形;然后根据方向角的定义,即可确定点C 相对于点A的方向.【解答】解:(1)如右图,过点A作AD⊥BC于点D,∠ABE=∠BAF=15°,由图得,∠ABC=∠EBC﹣∠ABE=∠EBC﹣∠BAF=75°﹣15°=60°,在Rt△ABD中,∵∠ABC=60°,AB=100,∴BD=50,AD=50,∴CD=BC﹣BD=200﹣50=150,在Rt△ACD中,由勾股定理得:AC==100≈173(km).答:点C与点A的距离约为173km.(2)在△ABC中,∵AB2+AC2=1002+(100)2=40000,BC2=2002=40000,∴AB2+AC2=BC2,∴∠BAC=90°,∴∠CAF=∠BAC﹣∠BAF=90°﹣15°=75°.答:点C位于点A的南偏东75°方向.【点评】考查了解直角三角形的应用﹣方向角问题,关键是熟练掌握勾股定理,体现了数学应用于实际生活的思想.26.如图,在△ABC中,∠B=45°,∠ACB=60°,AB=3,点D为BA延长线上的一点,且∠D=∠ACB,⊙O为△ACD的外接圆.(1)求BC的长;(2)求⊙O的半径.【考点】三角形的外接圆与外心;圆周角定理;解直角三角形.【分析】(1)根据题意得出AE的长,进而得出BE=AE,再利用tan∠ACB=,求出EC的长即可;(2)首先得出AC的长,再利用圆周角定理得出∠D=∠M=60°,进而求出AM的长,即可得出答案.【解答】解:(1)过点A作AE⊥BC,垂足为E,∴∠AEB=∠AEC=90°,在Rt△ABE中,∵sinB=,∴AE=ABsinB=3sin45°=3×=3,∵∠B=45°,∴∠BAE=45°,∴BE=AE=3,在Rt△ACE中,∵tan∠ACB=,∴EC====,∴BC=BE+EC=3+;(2)连接AO并延长到⊙O上一点M,连接CM,由(1)得,在Rt△ACE中,∵∠EAC=30°,EC=,∴AC=2,∵∠D=∠M=60°,∴sin60°===,解得:AM=4,∴⊙O的半径为2.【点评】此题主要考查了解直角三角形以及锐角三角函数关系应用,根据题意正确构造直角三角形是解题关键.27.如图1,点O在线段AB上,AO=2,OB=1,OC为射线,且∠BOC=60°,动点P以每秒2个单位长度的速度从点O出发,沿射线OC做匀速运动,设运动时间为t秒.(1)当t=秒时,则OP=1,S△ABP=;(2)当△ABP是直角三角形时,求t的值;(3)如图2,当AP=AB时,过点A作AQ∥BP,并使得∠QOP=∠B,求证:AQ•BP=3.【考点】相似形综合题.【专题】几何动点问题;压轴题.【分析】(1)如答图1所示,作辅助线,利用三角函数或勾股定理求解;(2)当△ABP是直角三角形时,有三种情形,需要分类讨论;(3)如答图4所示,作辅助线,构造一对相似三角形△OAQ∽△PBO,利用相似关系证明结论.【解答】(1)解:当t=秒时,OP=2t=2×=1.如答图1,过点P作PD⊥AB于点D.在Rt△POD中,PD=OP•sin60°=1×=,∴S△ABP=AB•PD=×(2+1)×=.(2)解:当△ABP是直角三角形时,①若∠A=90°.∵∠BOC=60°且∠BOC>∠A,∴∠A≠90°,故此种情形不存在;②若∠B=90°,如答图2所示:∵∠BOC=60°,∴∠BPO=30°,∴OP=2OB=2,又OP=2t,∴t=1;③若∠APB=90°,如答图3所示:过点P作PD⊥AB于点D,则OD=OP•sin30°=t,PD=OP•sin60°=t,∴AD=OA+OD=2+t,BD=OB﹣OD=1﹣t.在Rt△ABP中,由勾股定理得:PA2+PB2=AB2∴(AD2+PD2)+(BD2+PD2)=AB2,即[(2+t)2+(t)2]+[(1﹣t)2+(t)2]=32解方程得:t=或t=(负值舍去),∴t=.综上所述,当△ABP是直角三角形时,t=1或t=.(3)证明:如答图4,过点O作OE∥AP,交PB于点E,则有,∴PE=PB.∵AP=AB,∴∠APB=∠B,∵OE∥AP,∴∠OEB=∠APB,∴∠OEB=∠B,∴OE=OB=1,∠3+∠B=180°.∵AQ∥PB,∴∠OAQ+∠B=180°,∴∠OAQ=∠3;∵∠AOP=∠1+∠QOP=∠2+∠B,∠QOP=∠B,∴∠1=∠2;∴△OAQ∽△PEO,∴,即,化简得:AQ•PB=3.【点评】本题是运动型综合题,考查了相似三角形的判定与性质、解直角三角形、勾股定理、一元二次方程等多个知识点.第(2)问中,解题关键在于分类讨论思想的运用;第(3)问中,解题关键是构造相似三角形,本问有多种解法,可探究尝试.28.如图,抛物线y=(x﹣3)2﹣1与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D.(1)求点A,B,D的坐标;(2)连接CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连接AE,AD,求证:∠AEO=∠ADC;(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作⊙E 的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出点Q的坐标.【考点】二次函数综合题.【专题】代数几何综合题;压轴题.【分析】(1)根据二次函数性质,求出点A、B、D的坐标;(2)如何证明∠AEO=∠ADC?如答图1所示,我们观察到在△EFH与△ADF中:∠EHF=90°,有一对对顶角相等;因此只需证明∠EAD=90°即可,即△ADE为直角三角形,由此我们联想到勾股定理的逆定理.分别求出△ADE三边的长度,再利用勾股定理的逆定理证明它是直角三角形,由此问题解决;(3)依题意画出图形,如答图2所示.由⊙E的半径为1,根据切线性质及勾股定理,得PQ2=EP2﹣1,要使切线长PQ最小,只需EP长最小,即EP2最小.利用二次函数性质求出EP2最小时点P 的坐标,并进而求出点Q的坐标.【解答】方法一:(1)解:顶点D的坐标为(3,﹣1).令y=0,得(x﹣3)2﹣1=0,解得:x1=3+,x2=3﹣,∵点A在点B的左侧,∴A(3﹣,0),B(3+,0).(2)证明:如答图1,过顶点D作DG⊥y轴于点G,则G(0,﹣1),GD=3.令x=0,得y=,∴C(0,).∴CG=OC+OG=+1=,∴tan∠DCG=.设对称轴交x轴于点M,则OM=3,DM=1,AM=3﹣(3﹣)=.由OE⊥CD,易知∠EOM=∠DCG.∴tan∠EOM=tan∠DCG==,解得EM=2,∴DE=EM+DM=3.在Rt△AEM中,AM=,EM=2,由勾股定理得:AE=;在Rt△ADM中,AM=,DM=1,由勾股定理得:AD=.。

相关文档
最新文档