基于单片机的超声波测距系统的毕业设计
基于单片机超声波测距系统的设计和实现

基于单片机超声波测距系统的设计和实现超声波测距系统是利用超声波传播速度较快的特性,通过发射超声波并接收其回波来测量距离的一种常见的测距方式。
在本文中,我们将介绍基于单片机的超声波测距系统的设计和实现。
一、系统设计原理超声波测距系统主要由超声波发射器、超声波接收器、单片机和显示器组成。
其工作原理如下:1.发送超声波信号:超声波发射器通过单片机控制,向外发射超声波信号。
超声波的发射频率通常在40kHz左右,适合在空气中传播。
2.接收回波信号:超声波接收器接收到回波信号后,将信号经过放大和滤波处理后送入单片机。
3.距离计算:单片机通过测量超声波发射和接收的时间差来计算距离。
以声速343m/s为例,超声波的往返时间与距离之间的关系为:距离=时间差×声速/2、通过单片机上的计时器和计数器来测量时间差。
4.数据显示:单片机将计算得到的距离数据通过显示器显示出来,实时展示被测物体与超声波传感器之间的距离。
二、系统设计步骤1.系统硬件设计:选择合适的超声波模块,其具有超声波发射器和接收器功能,并可通过接口与单片机连接。
设计好电源电路以及超声波传感器与单片机之间的连接方式。
2.系统软件设计:根据单片机的型号和编程语言,编写相应的程序。
包括超声波信号的发射和接收控制,计时和计数功能的编程,距离计算和数据显示的实现。
3.硬件连接和调试:将硬件连接好后,对系统进行调试。
包括超声波模块与单片机的连接是否正确,超声波信号的发射和接收是否正常,计时和计数功能是否准确等。
5.优化和改进:根据实际测试结果,对系统进行优化和改进。
如增加滤波和放大电路以提高信号质量,调整超声波模块的发射频率,改进显示方式等。
三、系统实现效果完成以上设计和实施后,我们可以得到一个基于单片机的超声波测距系统。
该系统使用简单,测距精度高,响应速度快,适用于各种距离测量的应用场景。
同时,该系统还可根据具体需求进行各种改进和扩展,如与其他传感器结合使用,增加报警功能等。
基于STM32单片机的高精度超声波测距系统的设计

基于STM32单片机的高精度超声波测距系统的设计一、本文概述超声波测距技术因其非接触、高精度、实时性强等特点,在机器人导航、车辆避障、工业测量等领域得到了广泛应用。
STM32单片机作为一种高性能、低功耗的嵌入式系统核心,为超声波测距系统的设计提供了强大的硬件支持。
本文旨在设计一种基于STM32单片机的高精度超声波测距系统,以满足不同应用场景的需求。
二、超声波测距原理本部分将介绍超声波测距的基本原理,包括超声波的产生、传播、接收以及距离的计算方法。
同时,分析影响超声波测距精度的主要因素,为后续系统设计提供理论基础。
三、系统硬件设计3、1在设计基于STM32单片机的高精度超声波测距系统时,我们遵循了“精确测量、稳定传输、易于扩展”的总体设计思路。
我们选用了STM32系列单片机作为系统的核心控制器,利用其强大的处理能力和丰富的外设接口,实现了对超声波发射和接收的精确控制。
在具体设计中,我们采用了回波测距法,即发射超声波并检测其回波,通过测量发射与接收之间的时间差来计算距离。
这种方法对硬件的精度和稳定性要求很高,因此我们选用了高精度的超声波传感器和计时器,以确保测量结果的准确性。
我们还考虑到了系统的可扩展性。
通过STM32的串口通信功能,我们可以将测量数据上传至计算机或其他设备进行分析和处理,为后续的应用开发提供了便利。
我们还预留了多个IO接口,以便在需要时添加更多的传感器或功能模块。
本系统的设计思路是在保证精度的前提下,实现稳定、可靠的超声波测距功能,并兼顾系统的可扩展性和易用性。
31、1.1随着物联网、机器人技术和自动化控制的快速发展,精确的距离测量技术在各个领域的应用越来越广泛。
超声波测距技术作为一种非接触式的距离测量方式,因其具有测量精度高、稳定性好、成本相对较低等优点,在工业自动化、智能家居、机器人导航、安防监控等领域得到了广泛应用。
STM32单片机作为一款高性价比、低功耗、高性能的嵌入式微控制器,在智能设备开发中占据重要地位。
基于单片机的超声测距系统设计-毕业设计

基于单片机的超声测距系统设计摘要超声波测距法迅速,方便,计算简单,易于做到实时控制,提过基于单片机的超声测距系统的设计能更加深入地了解单片机的实际应用。
本课题完成整个超声波测距系统设计,包括单片机控制电路,发射电路,接收电路,LCD显示电路和温度补偿电路。
本课题硬件部分设计采用最小系统板和所需的超声波收发电路。
程序由计算机仿真并烧入单片机实际调试,最终实物是一个能在5至200cm范围内准确测量距离的便携式系统,经实际测量误差控制在5%以内。
该系统的设计过程加深了对单片机的理解。
本设计的产品也能在实际生活中有很广泛的应用。
关键词:超声波,测距,补偿,模块DESIGN OF ULTRASONIC RANGINGBASED ON SINGLECHIPABSTRACTUltrasonic ranging is so quick and useful,it can be easy to translationed and be controled on time.We can learn much about singlechip during the design of Ultrasonic ranging base on singlechip.The system is made up by singlechip part,send and receive part,LCD part and temperature detective part.With the helping of smallest system and computer,the product which can detective the distance from 5cm to 200cm comes out.The error is only 0.5%. The system can help you take a good learning about singlechip.On the other hand,the system can be used in many environment by its practicality.Key Words: Ultrasonic,Ranging, temperature detective目录摘要 (I)ABSTRACT (II)目录 .................................................................................................................................................. I II 第1章绪论 (1)1.1课题的背景和意义 (1)1.1.1 课题的背景 (1)1.1.2 课题的意义 (1)1.2超声波测距的发展现状趋势 (2)1.3本课题任务 (2)第2章单片机 (3)2.1单片机原理及应用 (3)2.1.1 单片机原理 (3)2.1.2 单片机的应用 (3)2.2单片机发展前景 (4)2.3单片机程序编译环境 (5)2.3.1 KEIL C51 (5)2.3.2 uVision2集成开发环境 (5)2.3.3 编辑器和调试器 (6)2.3.4 C51编译器 (6)2.3.5 部分代码优化 (7)2.3.6 RTX51实时核模块 (8)2.3.7 测试程序 (8)2.3.8 C51 V7版增强功能介绍 (9)第3章超声波测距原理 (10)3.1超声波原理及应用 (10)3.1.1 超声波原理 (10)3.1.2 超声波应用 (10)3.2超声波测距原理 (11)第4章测距系统构成与误差分析 (13)4.1单片机控制器 (13)4.2传感器 (13)4.2.1 超声波传感器原理与选型 (13)4.2.2 温度传感器选型 (14)4.3LCD显示屏 (15)4.4系统误差 (15)4.4.1 系统误差分析 (15)4.4.2 系统误差补偿 (16)第5章系统设计 (17)5.1系统框图 (17)5.2硬件 (17)5.2.1 发射电路 (17)5.2.2 接收电路 (18)5.3程序流程图 (20)5.4系统实物图 (21)5.5测试及数据分析 (21)第6章总结 (25)参考文献 (26)附录1部分程序 (28)致谢 (39)第1章绪论1.1课题的背景和意义1.1.1课题的背景随着科技的迅猛发展越来越多科技成果被广泛的运用到人们的日常生活当中,给我们的生活带来了诸多方便。
基于单片机的超声波测距毕业答辩

超声系统测距方案论证
由单片机AT89C52编程产生40kHz的方波, 由P2.7口输出, 再经过放大电路, 驱动超声波发射探头发射超声波。发射出去的超声波经障碍物反射回来后, 由超声波接收头接收到信号, 通过接收电路的检波放大、积分整形及一系列处理,送至单片机。单片机利用声波的传播速度和发射脉冲到接收反射脉冲的时间间隔计算出障碍物的距离,并由单片机控制显示出来。
单片机最小系统
其作用主要是为了保证单片机系统能正常工作。单片机最小系统主要由时钟电路和复位电路组成。
软件设计
只要计算出从发出超声波信号到接收到返回信号所用的时间, 就可算出超声波发生器与反射物体的距离。
总结
由于时间和其它客观上的原因, 此次设计没有成功做出实物。但是对设计有一个很好的理论基础。设计的最终结果是使超声波测距仪能够产生超声波, 实现超声波的发送与接收, 从而实现利用超声波方法测量物体间的距离
本设计的核心-AT89C52
AT89C52 是一个低电压, 高性能CMOS 8 位单片机, 片内含8k bytes 的可反复擦写的Flash只读程序存储器和256 bytes 的随机存取数据存储器(RAM), 器件采用ATMEL 公司的高密度、非易失性存储技术生产, 兼容标准MCS-51 指令系统, 片内置通用8 位中央处理器和Flash 存储单元, AT89C52 单片机在电子行业中有着广泛的应用。
超声波发射电路
发射电路主要由反相器74LS04 和超声波发射换能 器LS1 构成
超声波接收电路
考虑到红外遥控常用的载波频率38kHz 与测距的超声波频率40kHz 较为接近, 可以利用它制作超声波检测接收电路。
显示电路
四位LED组成动态扫描电路, 由AT89C52的P0口输出。动态扫描时, 由P2口控制LED的当前显示位。当距离测量结束并调用显示程序, 就会显示距离大小。
基于单片机的超声波测距系统的设计

基于单片机的超声波测距系统的设计引言超声波测距技术是一种常用的非接触式测距方法,广泛应用于工业自动化、无人驾驶、智能家居等领域。
本文将介绍基于单片机的超声波测距系统的设计原理和实现方法,以及其在实际应用中的优势和局限性。
一、设计原理基于单片机的超声波测距系统主要由超声波发射器、接收器、单片机和显示装置组成。
其工作原理如下:1.1 超声波发射器发射超声波信号,信号经过空气传播后,被目标物体反射返回。
1.2 超声波接收器接收到反射的超声波信号,并将信号转化为电信号。
1.3 单片机通过IO口控制超声波发射器的工作频率和接收器的工作模式,实现信号的发射和接收。
1.4 单片机通过计算超声波信号的往返时间,即可得到目标物体与传感器之间的距离。
1.5 显示装置将测得的距离信息显示出来,供用户参考和使用。
二、系统设计与实现2.1 硬件设计超声波发射器和接收器的选型是系统设计的关键。
通常情况下,超声波发射器和接收器的工作频率应匹配,常用的频率有40kHz和50kHz。
此外,还需选择合适的单片机和显示装置。
2.2 软件设计软件设计主要包括超声波信号的发射和接收控制以及距离计算等功能。
通过编程,可以实现以下功能:2.2.1 控制超声波发射器的工作频率和接收器的工作模式。
2.2.2 通过IO口读取接收器接收到的信号,并将其转化为数字信号。
2.2.3 使用定时器测量超声波信号的往返时间。
2.2.4 根据往返时间计算目标物体与传感器之间的距离。
2.2.5 将测得的距离信息显示在显示装置上。
三、系统优势基于单片机的超声波测距系统具有以下优势:3.1 非接触式测距:超声波测距系统可以实现对目标物体的非接触式测距,无需直接接触目标物体,避免了传感器与目标物体之间的摩擦和磨损。
3.2 高精度:超声波测距系统通过测量超声波信号的往返时间,可以实现较高的测距精度,通常可达到毫米级别。
3.3 快速响应:超声波测距系统的测量速度快,响应时间短,适用于需要快速测量的应用场景。
基于51单片机的超声波测距系统的毕业设计

基于51单片机的超声波测距系统的毕业设计超声波测距系统是一种常见的非接触式测距技术,通过发送超声波信号并测量信号的回波时间来计算距离。
本文将介绍基于51单片机的超声波测距系统的毕业设计。
首先,我们需要明确设计的目标。
本设计旨在通过51单片机实现一个精确、稳定的超声波测距系统。
具体而言,我们需要实现以下功能:1.发送超声波信号:通过51单片机的IO口控制超声波发射器,发送一定频率和波形的超声波信号。
2.接收回波信号:通过51单片机的IO口连接超声波接收器,接收并放大返回的超声波信号。
3.信号处理:根据回波信号的时间延迟计算出距离,并在显示器上显示出来。
4.稳定性和精确性:设计系统时需考虑测量过程中误差的影响,并通过合适的算法和校准方法提高系统的稳定性和精确性。
接下来,我们需要选择合适的硬件和软件配合51单片机实现上述功能。
硬件方面:1.51单片机:选择一款性能稳定、易于编程的51单片机,如STC89C522.超声波模块:选择一款合适的超声波传感器模块,常见的有HC-SR04、JSN-SR04T等。
模块一般包括发射器和接收器,具有较好的测距性能。
3.显示设备:选择合适的显示设备,如7段LED数码管或LCD显示屏,用于显示测距结果。
软件方面:1.C语言编程:使用C语言编写51单片机的程序,实现超声波测距系统的各项功能。
2.串口通信:通过串口与上位机进行通信,可以对系统进行监控和远程控制。
3.算法设计:选择合适的算法计算超声波回波时间延迟,并根据时间延迟计算距离值。
在设计过程中,我们需要进行以下步骤:1.硬件连接:按照超声波模块的说明书,将模块的发射器和接收器通过杜邦线与51单片机的IO口连接。
2.软件编程:使用C语言编写51单片机的程序,实现超声波模块的控制、信号接收和处理、距离计算等功能。
3.系统测试:进行系统的功能测试和性能测试,验证系统的可靠性和准确性,同时调试系统中出现的问题。
4.系统优化:根据测试结果,对系统进行优化,提高系统的稳定性和精确性。
(完整版)基于单片机的超声波测距仪毕业设计

目录摘要 (1)Abstract (2)第1章绪论 (3)1.1 课题研究的目的与意义 (3)1.2 国内外研究动态 (3)1.3 论文主要内容 (4)第2章系统的总体设计 (5)2.1 设计方案 (5)2.2 系统的硬件选型 (5)2.2.1 单片机选型 (5)2.2.2 超声波传感器选型 (6)2.2.3 超声波接收芯片选型 (6)2.2.4 显示器选型 (7)第3章系统的硬件设计 (8)3.1 基本系统构成 (8)3.1.1 系统电源电路 (9)3.1.2 超声波发射电路 (9)3.1.3 超声波接收电路 (10)3.1.4 晶振电路 (11)3.1.5 复位电路 (11)3.1.6 显示电路 (12)3.1.7 报警电路 (13)3.2 电路原理图 (13)3.3 PCB图 (14)第4章系统的软件设计 (15)4.1 软件keil的简介 (15)4.2 主程序流程 (16)4.3 超声波收发模块程序设计 (16)4.3.1 超声波收发中断子程序 (17)4.3.2 距离测算子程序 (19)4.4 显示模块程序设计 (20)4.4.1 初始化程序 (22)4.4.2 显示程序 (22)4.4.3 延时程序 (23)4.5 现场实测距离显示 (25)第5章结论 (26)5.1 总结 (26)5.2 系统实物图形 (27)5.3 展望 (27)致谢 (28)参考文献 (29)附录 (30)摘要本文阐述了基于51单片机的超声波测距仪的设计过程和运行结果。
AT89C51单片机控制定时器产生方波脉冲,同时计时器T1开始计时。
发出的超声波在空气中传播,而后遇到障碍物体的表面时超声波折返,超声波接收模块接收返回的超声波信号并且把超声波信号转化为电信号。
计时器记录超声波往返所用的时间,从而由51单片机计算得到实测距离。
再使用四位数码管显示距离。
硬件电路由超声波发射电路、超声波接收电路、电源电路、四位数码管显示电路、电铃报警电路、12MHz晶振电路等组成。
《2024年基于STM32单片机的高精度超声波测距系统的设计》范文

《基于STM32单片机的高精度超声波测距系统的设计》篇一一、引言在现代电子技术的迅猛发展中,精确测量距离的设备扮演着重要的角色。
随着人类对于生活环境安全性的关注提升,对于各种设备的精度要求也在逐渐加强。
超声波测距技术以其非接触性、高精度、低成本等优点,在众多领域得到了广泛的应用。
本文将详细介绍基于STM32单片机的高精度超声波测距系统的设计。
二、系统概述本系统以STM32单片机为核心控制器,结合超声波测距模块,实现对目标物体的精确测距。
系统主要由STM32单片机、超声波测距模块、电源模块、信号处理模块和显示模块等组成。
通过单片机对超声波模块的控制,实现对目标的精确测距,并通过显示模块实时显示测距结果。
三、硬件设计1. STM32单片机:作为系统的核心控制器,负责整个系统的控制与数据处理。
STM32系列单片机具有高性能、低功耗的特点,能够满足系统对于精确度和稳定性的要求。
2. 超声波测距模块:采用高精度的超声波测距传感器,实现对目标物体的距离测量。
通过超声波的发送与接收,实现对目标的距离计算。
3. 电源模块:为系统提供稳定的电源支持,确保系统的正常工作。
电源模块需考虑到功耗问题,以实现系统的长时间运行。
4. 信号处理模块:对超声波测距模块的信号进行滤波、放大等处理,以提高测距的准确性。
5. 显示模块:实时显示测距结果,方便用户观察与操作。
四、软件设计1. 主程序:负责整个系统的控制与数据处理。
主程序通过控制超声波测距模块的发送与接收,获取目标物体的距离信息,并通过显示模块实时显示。
2. 超声波测距模块控制程序:控制超声波的发送与接收,实现对目标物体的距离测量。
通过计算超声波的发送与接收时间差,计算出目标物体的距离。
3. 数据处理程序:对获取的测距数据进行处理,包括滤波、计算等操作,以提高测距的准确性。
4. 显示程序:将处理后的测距结果显示在显示模块上,方便用户观察与操作。
五、系统实现1. 通过STM32单片机的GPIO口控制超声波测距模块的发送与接收,实现超声波的发送与接收功能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于单片机的超声波测距系统的毕业设计第1章绪论1.1 研究背景与课题来源单片机技术作为计算机技术的一个分支,广泛应用于各个领域。
单片机可以构成各种工业控制系统、数据采集系统,如数控机床、自动生产线控制、电机控制、温度控制等。
一些仪器仪表如智能仪器、医疗器械、数字示波器等也用到单片机。
计算机外部设备与智能接口如图形终端机、传真机、复印机、打印机、绘图仪、磁盘/磁带机、智能终端机,商用产品如自动售货机,电子收款机,电子称,家用电器如微波炉、电视机、空调、洗衣机、录像机、音响设备等都离不开单片机。
单片机在控制领域中,具有很多优点,它体积小,成本低,运用灵活,易于产品化,它能方便的组成各种智能化的控制设备;面向控制,能针对性的解决从简单到复杂的各种控制任务。
因而能获得最佳的性能价格比;它抗干扰能力器,适用围宽,在各种恶劣的环境下都能可靠地工作,这是其他类型的计算机无法比拟的;此外,可以方便的实现多机和分布式控制,使整个控制系统的效率和可靠性大为提。
在国,单片机以其及其优越的优点受到人们的高度重视,并取得了一系列科研成果,成为传统工业技术改造和新产品更新换代的理想机种,具有光控的发展前景。
近几年来,超大规模集成电路的出现,促成计算机朝三个方向发展:单片机、高性能微型计算机及专用微型计算机。
单片机在微型计算机领域占据着十分重要的地位。
如今,单片机的发展越来越迅速,国外先进技术不断涌现。
目前,嵌入式数字信号处理器发展度很快,和控制器MCU 结合在一起的最近期的点偏激发展的一个方向。
嵌入式系统一般指把单片机嵌入有某种功能并有独立形态的系统中作为智能控制核心。
它是计算,通信与消费结合的产品,主要用于信号处理和控制,应用最多的是智能家用电器,是智能家电产品的核心。
利用超声波作为定位技术是蝙蝠等一些无目视能力的生物作为防御及捕捉猎物生存的手段,也就是由生物体发射不被人们听到的超声波,借助空气媒介质传播,由待捕捉的猎物或障碍物反射回来的时间间隔长短与反射的超声波的强弱判断猎物的性质或障碍位置的方法。
距离是在不同的场合和控制中需要检测的一个参数,所以测距就成为数据采集中要解决的一个问题。
尽管测距有多种方式,比如:激光测距、微波测距、红外线测距和超声波测距等。
但是,超声波测距不失为一种简单可行的方法。
超声波测距仪有造价底,省力,操作方便的优点。
虽然超声波测距电路多种多样,甚至已有专用超声波测距集成电路。
但是,有的电路复杂,技术难度大,有的调试困难,有的元件不易购买。
本文介绍的电路,成本低廉,性能可靠,所用元件易购,并且利用测距原理,结合单片机的数据处理,使测量精度提高,电路实现容易,无须调试,工作稳定可靠。
1.2 课题研究的意义和目的MCS-51 系列单片机是INTEL 公司继MCS-48 系列后推出的8 位高档微型计算机系列,其性能,指令功能,运行速度远远超出一般的通用处理器。
国外计算机应用部门竞相用这种单片机构成各种智能仪表,智能控制器,智能接口,通用测控单元,医疗器械等,标志着单片机正式登上了计算机世界的舞台。
单片机的应用为越来越多的科技人员所注目。
在工业生产中,电流,电压,温度,压力,流量,流速,流速和开关量是常用的主要被控参数。
目前利用MCS-51 单片机控制超声波测距系统的设计越来越多了,该系统也得到广泛的应用,如智能化汽车倒车系统,机器人的障碍行走,物位测量,医疗,通讯,家电及其他方面都有广泛的应用。
因此有必要研究出性能更能好精确度更高的应用性超声波测距系统。
在现实生活中,在一些传统的距离测量方式在某些特殊场合存在不可克服的缺陷,例如,液面测量就是一个距离测量,传统的电极法采用差位分布电极,通过给电或脉冲检测液面,电极长期浸泡在水中或其它液体中,极易被腐蚀、电解,从而失去灵敏性。
而利用超声波测量距离可以很好地解决这一问题。
目前市面上常见的超声波测距系统因价格昂贵,体积过大而且精度不高等种种因素,使得在一些中小规模领域中难以得到广泛的应用。
为解决这一系列难题,本文设计了一款基于STC89C52 单片机的低成本、高精度、微型化的超声波测距系统。
1.3 课题研究的可行性采用超声波测量大气中的地面距离,是近代电子技术发展才获得正式应用的技术,由于超声测距是一种非接触检测技术,不受光线、被测对象颜色等的影响,在较恶劣的环境(如含粉尘)具有一定的适应能力。
因此,用途极度广泛。
例如:测绘地形图,建造房屋、桥梁、道路、开挖矿山、油井等,利用超声波测量地面距离的方法,是利用光电技术实现的,超声测距仪的优点是:仪器造价比光波测距仪低,省力、操作方便。
超声测距仪在先进的机器人技术上也有应用,把超声波源安装在机器人身上,由它不断向周围发射超声波并且同时接收由障碍物反射回波来确定机器人的自身位置,用它作为传感器控制机器人的电脑等等。
由于超声波易于定向发射,方向性好,强度好控制,它的应用价值己被普遍重视。
如此广泛的应用使得提高人们对机器人的了解显得尤为重要。
机器人通过其感知系统察觉前方障碍物距离和周围环境来实现绕障、自动寻线、测距等功能。
超声波测距相对其他测距技术而言成本低廉,测量精度较高,不受环境的限制,应用方便,将它与红外、灰度传感器等结合共同实现机器人寻线和绕障功能。
超声波由于指向性强、能量消耗缓慢且在介质中传播的距离较远,因而经常用于距离的测量。
它主要应用于倒车雷达、测距仪、物位测量仪、移动机器人的研制、建筑施工工地以及一些工业现场等,例如:距离、液位、井深、管道长度、流速等场合。
利用超声波检测往往比较迅速、方便,且计算简单、易于做到实时控制,在测量精度方面也能达到工业实用的要求,因此得到了广泛的应用。
本课题的研究是非常有实用和有商业价值的。
从设计要求可知,本课题研究的是利用超声波传感器来测量距离。
要考虑其是否可行,首先必须了解超声波具有哪些特性。
所谓超声波就是指频率高于20kHz 的机械波,一般由压电效应或磁致伸缩效应产生;沿直线传播,当频率越高,绕射能力越弱,但反射能力越强;强度大、方向性好等特点。
因此,利用超声波的这些特性就可制成超声波传感器。
又由于超声波在空气中的传播速度较慢,一般为340m/s 左右,这使得超声波传感器的应用变得非常简单,因此利用超声波传感器测量距离就不再困难了,由此可见,基于STC89C52 的超声波测距系统的研究设计是可行的。
总之,由以上分析可看出:利用超声波测距,在许多方面有很多优势。
因此,本课题的研究是非常有实用和商业价值。
1.4 课题设计的功能简介该测距系统由+5V 稳压电源提供驱动,利用超声波在空气中传播遇障碍物反射的原理,以超声波探头为接口部件,应用单片机技术计算超声波在空气中传播的时间(超声波的速度为声速)并处理成相应的距离,然后再通过四位七段数码管显示实测距离的数字仪表。
其主要功能如下:1)测距围为< 6m;2)显示方式为数码管显示;3)具有较强的抗干扰能力,安装简单;4)体积小、功耗低,能嵌入其它系统。
第2章总体方案2.1 超声波测距的原理超声波是一门以物理、电子、机械、以及材料科学为基础的、各行各业都要使用的通用技术之一。
该技术在国民经济中,对提高产品质量,保障生产安全和设备安全运作,降低生产成本,提高生产效率特别具有潜在能力。
因此,我国对超声波的研究特别活跃。
超声技术是通过超声波的产生、传播以及接收的物理过程完成的。
超声波具有聚束、定向及反射、投射等特性。
按超声波振动辐射大小不同大致可以分为:用超声波使物体或物性变化的功率应用,称之为功率超声;超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时,如图2-1所示。
超声波在空气中的传播速度为v,根据计时器记录的时间t,就可以计算出发射点距障碍物的距离(s),即:2tv s ⨯=(2-1)图2-1 超声波测距原理图这就是所谓的时间差测距法[7],由于是利用超声波测距,要测量预期的距离,所以产生的超声波要有一定的功率和合理的频率才能达到预定的传播距离,同时这是得到足够的回波功率的必要条件,只有的得到足够的回波频率,接收电路才能检测到回波信号和防止外界干扰信号的干扰。
经分析和大量实验表明,频率为40KHz左右的超声波在空气中传播效果最佳,同时为了处理方便,发射的超声波被调制成具有一定间隔的调制脉冲波信号。
在精度要求较高的情况下,需要考虑温度对超声波传播速度的影响,按式(2-2)对超声波传播速度加以修正,以减小误差。
v=331.4+0.607T (2-2)式中,T 为实际温度单位为°C,v 为超声波在介质中的传播速度单位为m/s。
表2-1 温度对声速的影响2.2 总体方案确定本设计是在超声波原理的基础上,完成了基于时差测距原理的一种超声波测距系统设计。
测距仪以AT89S52芯片为核心,74LS04组成的超声波发射电路、并由超声波处理模块CX20106A、LED显示模块等器件组成,包括单片机系统、超声波发射电路、超声波接收电路、LED显示电路。
依据实际的测量精度要求添加温度补偿电路,避免了环境误差,能够清晰稳定的显示结果。
由单片机发出40kHz的方波信号进入超声波发射电路,经功率放大芯片放大后进入超声波发射头。
超声波发射头发射的超声波在空气中传播一段时间后经前方被检测物体反射回来,由超声波接收头接收,超声波电路中的接收芯片对信号放大整形,超声波接收电路接收回波后发出一个下拉电平使单片机进入中断程序,在中断程序中,单片机从温度检测电路读取数值并换算成当前温度下的声速,应用时差法计算所检测的距离,最后所有的数据都在LED显示电路上显示。
结构图如图2-2所示。
图2-2 系统结构图第3章硬件电路设计3.1 单片机及显示电路设计硬件电路的设计主要包括单片机系统及显示电路、超声波发射电路和超声波检测接收电路三部分。
单片机采用STC89C52 或其兼容系列。
采用12MHz 高精度的晶振,以获得较稳定时钟频率,减小测量误差。
单片机用P1.0 端口输出超声波换能器所需的40kHz 的方波信号,利用外中断0 口监测超声波接收电路输出的返回信号。
显示电路采用简单实用的4 位共阳LED 数码管,段码用74LS245 驱动,位码用PNP 三极管驱动。
LED数码管结构简单,价格便宜。
图3-1示出了八段LED数码显示管的结构和原理图。
图3-1(a)为八段共阴极数码显示管结构图,图3-1(b)是它的原理图,图3-1(c)为八段共阳LED显示管原理图。
八段LED显示管由八只发光二极管组成,编号是a、b、c、d、e、f、g和SP,分别与同名管脚相连。
图3-1 LED结构图3.2 超声波发射电路超声波发生器包括超声波产生电路和超声波发射控制电路两个部分,超声波探头的型号选用CSB40T(其中心频率为40KHz)。