高中数学选修4-4:抛物线的参数方程

高中数学选修4-4:抛物线的参数方程
高中数学选修4-4:抛物线的参数方程

2.2.3 抛物线的参数方程

?知识梳理

1.抛物线y =2x 2的焦点坐标为________,准线方程是________; 抛物线x 2=2y 的焦点坐标为________,准线方程是________.

2.曲线C 的参数方程为?????x =2pt 2,y =2pt

(t 为参数,t ∈R)其中p 为正的常数.这是焦点在______________上的抛物线参数方程.

?预习思考:抛物线y 2=x 的一个参数方程为___________________., 一层练习

1.圆锥曲线?

????x =t 2,y =2t (t 为参数)的焦点坐标是________. 2.点P (1,0)到曲线?

????x =t 2,y =2t (t 为参数,t ∈R)上的点的最短距离为( ) A .0 B .1 C.2 D .2

3.若曲线?????x =2pt ,y =2pt

2(t 为参数)上异于原点的不同两点M 1、M 2所对应的参数分别是t 1、t 2,则弦M 1M 2所在直线的斜率是( )

A .t 1+t 2

B .t 1-t 2 C.1t 1+t 2 D.1t 1-t 2

4.在平面直角坐标系中,已知直线l 与曲线C 的参数方程分别为l :?????x =1+s ,y =1-s (s 为参数)和C :?????x =t +2,y =t

2(t 为参数),若l 与C 相交于A 、B

两点,则|AB |=________.

5.连接原点O 和抛物线x 2=2y 上的动点M ,延长OM 到点P ,使|OM |=|MP |,求点P 的轨迹方程,并说明它是何种曲线.

二层练习

6.参数方程?

????x =sin θ+cos θ,y =sin θcos θ(θ为参数)表示的曲线为( )

7.曲线?

????x =2pt 2,y =2pt (t 为参数)上两点A 、B 所对应的参数分别为t 1、t 2,且t 1+t 2=0,则|AB |为 ( )

A .|2p (t 1-t 2)|

B .2p (t 1-t 2)

C .2p (t 21+t 22)

D .2p (t 1-t 2)2

8.设曲线C 的参数方程为?

????x =t ,y =t 2(t 为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为________.

9.在平面直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线C 1的极坐标方程为ρ(cos θ+sin θ)=-2,曲线

C 2的参数方程为?

????x =t 2y =22t (t 为参数),则C 1与C 2交点的直角坐标为_______. 10.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建

立极坐标系.若极坐标方程为ρcos θ=4的直线与曲线?

????x =t 2,y =t 3(t 为参数)相交于A ,B 两点,则|AB |=________. 三层练习

11.在平面直角坐标系xOy 中,直线l 的参数方程为?

????x =t +1,y =2t (t 为参数),曲线C 的参数方程为?

????x =2tan 2θ,y =2tan θ(θ为参数),试求直线l 与曲线C 的普通方程,并求出它们的公共点的坐标.

12.已知抛物线y 2=2px (p >0)过顶点的两弦OA ⊥OB ,求分别以OA 、OB 为直径的两圆的另一交点Q 的轨迹.

13.过抛物线y2=2px(p>0)的顶点作两条互相垂直的弦OA、OB(如下图).

(1)设OA的斜率为k,试用k表示点A、B的坐标;

(2)求弦AB中点M的轨迹过程.

14.已知方程y2-2x-6y sin θ-9cos2θ+8cos θ+9=0.

(1)证明:不论θ为何值,该抛物线顶点的轨迹方程一定为椭圆;

(2)求抛物线在直线x=14上截得的弦长的取值范围,并求弦取得最值时相应的θ值.

2.2.3 抛物线的参数方程

?知识梳理

1.抛物线y =2x 2的焦点坐标为________,准线方程是________; 抛物线x 2=2y 的焦点坐标为________,准线方程是________.

2.曲线C 的参数方程为?

????x =2pt 2,y =2pt (t 为参数,t ∈R)其中p 为正的常数.这是焦点在______________上的抛物线参数方程.

?预习思考:抛物线y 2=x 的一个参数方程为___________________., 预习梳理

1.F ?

????0,18 y =-18 F ? ????0,12 y =-12 2.x 轴正半轴

预习思考

?

????x =t 2,y =t (t 为参数) 一层练习

1.圆锥曲线?????x =t 2,y =2t

(t 为参数)的焦点坐标是________. 1.(1,0)

2.点P (1,0)到曲线?

????x =t 2,y =2t (t 为参数,t ∈R)上的点的最短距离为( ) A .0 B .1 C.2 D .2

2.B

人教版高中数学选修44坐标系与参数方程全套教案

人教版高中数学选修4-4坐标系与参数方程全套教案 课型: 复习课 课时数: 1 讲学时间: 2010年1月18号 班级: 学号: 姓名: 一、【学习目标】: 1、了解在平面直角坐标系伸缩变换作用下平面图形的变化情况。 2、能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化。 3、能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程。通过比较这些图形在极坐标系和平面直角坐标系中的方程,体会在用方程刻画平面图形时选择适当坐标系的意义。 4、分析直线、圆和圆锥曲线的几何性质,选择适当的参数写出它们的参数方程,能进行参数方程与普通方程的互化。 二、【回归教材】: 1、阅读选修4-4《坐标系与参数方程》152P P -,试了解以下内容: (1)设点),(y x P 是平面直角坐标系中的任意一点,在伸缩变换公式???>?='>?=') 0()0(:μμλλ?y y x x 的作用下,如何找到点P 的对应点),(y x P '''?试找出x y sin =变换为x y 2sin 3=的伸缩变换公式 . (2)极坐标系是如何建立的?试类比平面直角坐标系的建立过程画一个,并写出点M 的极径与极角来 表示它的极坐标,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,写出极坐标和直角坐标的互化公式 . (3)在平面直角坐标系中,曲线C 可以用方程0),(=y x f 来表示,在极坐标系中,我们用什么方程来 表示这段曲线呢?例如圆222r y x =+,直线x y =,你是如何用极坐标方程表示它们的? 2、阅读选修4-4《坐标系与参数方程》3721P P -,了解以下内容: (1)直接给出这条曲线上点的坐标间的关系的方程叫做普通方程,那如果变数t 都是点坐标x ,y 的函 数,我们如何建立这条曲线的参数方程呢? (2)将曲线的参数方程化为普通方程,有利于识别曲线的类型,我们是如何做到的?在互化的过程中, 必须注意什么问题?试探究一下圆锥曲线的参数方程与普通方程的互化。

高三数学-抛物线专题复习

抛物线 平面内与一个定点F 和一条定直线l(F ?l)的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线. 2.抛物线的标准方程与几何性质 标准方程 y 2=2px (p>0) y 2=-2px(p>0) x 2=2py(p>0) x 2=-2py(p>0) p 的几何意义:焦点F 到准线l 的距离 & 图形 顶点 O(0,0) 对称轴 y =0 x =0 $ 焦点 F ????p 2,0 F ??? ?-p 2,0 F ? ???0,p 2 F ??? ?0,-p 2 离心率 e =1 准线方程 x =-p 2 x =p 2 。 y =-p 2 y =p 2 范围 x ≥0,y ∈R x ≤0,y ∈R y ≥0,x ∈R y ≤0,x ∈R 开口方向 向右 向左 - 向上 向下 题型一 抛物线的定义及应用 例1 已知抛物线y 2=2x 的焦点是F ,点P 是抛物线上的动点,又有点A(3,2),求|PA|+|PF|的最小值,并求出取最小值时点P 的坐标. 》

变式练习 1.已知点P是抛物线y2=2x上的一个动点,则点P到点(0,2)的距离与点P到该抛物线准线的距离之和的最小值为() 题型二抛物线的标准方程和几何性质 例2抛物线的顶点在原点,对称轴为y轴,它与圆x2+y2=9相交,公共弦MN的长为25,求该抛物线的方程,并写出它的焦点坐标与准线方程. * 变式练习 2.设斜率为2的直线l过抛物线y2=ax(a≠0)的焦点F,且和y轴交于点A.若△OAF(O为坐标原点)的面积为4,则抛物线方程为() =±4x =±8x =4x =8x 变式练习 3.已知点A(2,0),抛物线C:x2=4y的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,则|FM|∶|MN|等于() ∶ 5 ∶2 ∶ 5 ∶3 题型三抛物线焦点弦的性质 … 例3设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线于A、B两点,点C在抛物线的准线上,且BC∥x轴.证明:直线AC经过原点O. :

最新高中数学参数方程大题(带答案)精选

参数方程极坐标系 解答题 1.已知曲线C:+=1,直线l:(t为参数) (Ⅰ)写出曲线C的参数方程,直线l的普通方程. (Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值. +=1 , , 的距离为 则 取得最小值,最小值为 2.已知极坐标系的极点在直角坐标系的原点处,极轴与x轴的正半轴重合,直线l的极坐标方程为: ,曲线C的参数方程为:(α为参数). (I)写出直线l的直角坐标方程; (Ⅱ)求曲线C上的点到直线l的距离的最大值. 的极坐标方程为: cos= ∴

y+1=0 ( d= 的距离的最大值. 3.已知曲线C1:(t为参数),C2:(θ为参数). (1)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线; (2)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:(t为参数)距离的最小值. :(化为普通方程得:+ t=代入到曲线 sin =,),﹣

4.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立直角坐标系,圆C的极坐标方程为 ,直线l的参数方程为(t为参数),直线l和圆C交于A,B两点,P是圆C 上不同于A,B的任意一点. (Ⅰ)求圆心的极坐标; (Ⅱ)求△PAB面积的最大值. 的极坐标方程为,把 ,利用三角形的面积计算公式即可得出. 的极坐标方程为,化为= 把 ∴圆心极坐标为; (t , = 距离的最大值为 5.在平面直角坐标系xoy中,椭圆的参数方程为为参数).以o为极点,x轴正半轴为极轴建立极坐标系,直线的极坐标方程为.求椭圆上点到直线距离的最大值和最小值. 由题意椭圆的参数方程为为参数)直线的极坐标方程为

双曲线与抛物线的参数方程(教学设计)

2.2.2双曲线与抛物线的参数方程(教学设计) 教学目标: 知识与技能目标:掌握双曲线与抛物线的参数方程,理解参数的几何意义。会用曲线的参数方程解决一些实际问题。 过程与方法:通过双曲线与抛物线参数方程的推导,进一步掌握求曲线方程的方法。 情感态度价值观:数学问题解法的多样性,思维多样性。 教学重点:双曲线与抛物线参数方程的应用。 教学难点:双曲线与抛物线参数方程的推导。 教学过程: 一、复习回顾: 1、椭圆的参数方程: 椭圆122 22=+b y a x (a>b>0)参数方程 ???==θ θsin cos b y a x (θ为参数); 椭圆2 2221(0)y x a b b a +=>>的参数方程是cos sin x b y a θθ=??=?(θ为参数) 二、师生互动,新课讲解: 1、双曲线的参数方程的推导: 1)双曲线122 22=-b y a x 参数方程 ? ??==θθtan sec b y a x (θ为参数) 双曲线 ???==θ θtan sec b y a x (θ为参数) 2、判断双曲线两种参数方程的焦点的位置的方法. 如果x 对应的参数形式是sec φ,则焦点在x 轴上. 如果y 对应的参数形式是sec φ,则焦点在y 轴上. 例1:如图,设M 为双曲线122 22=-b y a x (a>0,b>0)任意一点,O 为原点,过点M 作双曲线两渐近线的平行线,分别与两渐近线交于A ,B 两点,探求平行四边形MAOB 的面积,由此可以发现什么结论? 2a 222y x -=1(a>0,b>0)的参数方程为:b

变式训练1:化下列参数方程为普通方程,并说明它们表示什么曲线?由此你有什么想法? 小结:参数方程的表示不唯一,如何判断是哪种曲线,必须化为普通方程。 4、抛物线的参数方程的推导: 1)抛物线方程y 2=2px(p>0)的参数方程为????? x =2pt 2y =2pt (t 为参数). 2)抛物线方程x 2 =2py(p>0)的参数方程为222x pt y pt =??=? (t 为参数) 3)抛物线方程y 2 =-2px (p>0)的参数方程为2 22x pt y pt ?=-?=-?(t 为参数) 4)抛物线方程x 2 = -2py (p>0)的参数方程为222x pt y pt =-??=-? 例2:如图O 是直角坐标原点,A ,B 是抛物线y 2=2px (p>0)上异于顶点的两动点,且OA ⊥OB ,OM ⊥AB 并 于AB 相交于点M ,求点M 的轨迹方程。 变式训练2(探究)在本例中,点A 、B 在什么位置时,?AOB 的面积最小?最小值是多少? 课堂练习: a 1(2()1()2x t t t b y t t ?=+????=-?? )为参数,a>0,b>0()2(b )()2t t t t a x e e t b y e e --?=-????=+??为参数,a>0,>02 1212121212121221(),,211x pt t M M t t M M y pt A t t B t t C D t t t t ?=?=?+-+-、若曲线为参数上异于原点的不同两点,所对应的参数分别是则弦所在直线的斜率是( )、,、,、,、20022(1,0)M y x M P M M P =-、设为抛物线上的动点,给定点,点为线段的中点,求点的轨迹方程。

高中数学 《参数方程的概念》教案 新人教A版选修4-4

参数方程 目标点击: 1.理解参数方程的概念,了解某些参数的几何意义和物理意义; 2.熟悉参数方程与普通方程之间的联系和区别,掌握他们的互化法则; 3.会选择最常见的参数,建立最简单的参数方程,能够根据条件求出直线、圆锥曲线等常用曲线的一些参数方程并了解其参数的几何意义; 4.灵活运用常见曲线的参数方程解决有关的问题. 基础知识点击: 1、曲线的参数方程 在取定的坐标系中,如果曲线上任意一点的坐标x,y 都是某个变数t 的函数,?? ?==)()(t g y t f x (1) 并且对于t 的每一个允许值,由方程组(1)所确定的点M(x,y)都在这条曲线上,那么方程组(1)叫做这条曲线的参数方程. 联系x 、y 之间关系的变数叫做参变数,简称参数. 2、求曲线的参数方程 求曲线参数方程一般程序: (1) 设点:建立适当的直角坐标系,用(x,y)表示曲线上任意一点M 的坐标; (2) 选参:选择合适的参数; (3) 表示:依据题设、参数的几何或物理意义,建立参数与x ,y 的关系 式,并由此分别解出用参数表示的x 、y 的表达式. (4) 结论:用参数方程的形式表示曲线的方程 3、曲线的普通方程 相对与参数方程来说,把直接确定曲线C 上任一点的坐标(x,y )的方程F (x,y )=0叫做曲线C 的普通方程. 4、参数方程的几个基本问题 (1) 消去参数,把参数方程化为普通方程. (2) 由普通方程化为参数方程. (3) 利用参数求点的轨迹方程. (4) 常见曲线的参数方程. 5、几种常见曲线的参数方程 (1) 直线的参数方程 (ⅰ)过点P 0(00,y x ),倾斜角为α的直线的参数方程是 ? ??+=+=αα s i n c o s 00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,) 为直线上任意一点. (ⅱ)过点P 0(00,y x ),斜率为a b k =的直线的参数方程是 ???+=+=bt y y at x x 00 (t 为参数) (2)圆的参数方程

高中数学专题:抛物线

抛物线专题复习 通径:过焦点且垂直于对称轴的相交弦 通径:d 2= AB 为抛物线px y 22 =的焦点弦,则=B A x x 4 2p ,=B A y y 2 p -,||AB =p x x B A ++ 考点1 抛物线的定义 [例1 ]已知点P 在抛物线x y 42 =上,则点P 到点)1,2(-Q 的距离与点P 到抛物线焦点距离之和的最小值为 考点2 抛物线的标准方程 [例2 ] 求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程: (1)过点)2,3(-; (2)焦点在直线240x y --=上 考点3 抛物线的几何性质 [例3 ]设B A ,为抛物线px y 22 =上的点,且O AOB (2 π = ∠为原点),则直线AB 必过的定点坐标为_______ [例4 ]设F 是抛物线2 :4G x y =的焦点.(I )过点(04)P -, 作抛物线G 的切线,求切线方程; (II )设A B ,为抛物线G 上异于原点的两点,且满足,0=?→ → FB FA 延长AF ,BF 分别交抛物线G 于点C D ,,求四边形ABCD 面积的最小值. 二.基本题型 1.过抛物线x y 42 =的焦点作直线交抛物线于1122(,),(,)A x y B x y 两点,如果621=+x x ,那么||AB =( )

(A )10 (B )8 (C )6 (D )4 2.已知抛物线22(0)y px p =>的焦点为F ,点111222()() P x y P x y ,,,,33 3()P x y ,在抛物线上,且||1F P 、||2F P 、||3F P 成等差数列, 则有 ( ) A .321x x x =+ B . 3 21y y y =+ C .2312x x x =+ D. 2312y y y =+ 3.已知M 为抛物线x y 42=上一动点,F 为抛物线的焦点,定点()1,3P ,则||||MF MP +的最小值为( ) (A )3 (B )4 (C )5 (D )6 4.过抛物线()02>=a ax y 的焦点F 作直线交抛物线于P 、Q 两点,则=+| |1 ||1QF PF ( ) (A )a 2 (B ) a 21 (C )a 4 (D )a 4 5.已知抛物线C :24y x =的焦点为,F 准线为,l 过抛物线C 上的点A 作准线l 的垂线,垂足为M ,若△AMF 与△ AOF (其中O 为坐标原点)的面积之比为3:1,则点A 的坐标为( ) A .(2,22) B .(2,-22) C .(2,±2) D .(2,±22) 6.过抛物线焦点F 的直线与抛物线交于两点A 、B,若A 、B 在抛物线准线上的射影为11,B A ,则=∠11FB A ( ) A. 45 B. 60 C. 90 D. 120 7.两个正数a 、b 的等差中项是 9 2 ,一个等比中项是,b a >则抛物线2()y b a x =-的焦点坐标为( ) A .1 (0,)4- B .1(0,)4 C .1(,0)2- D .1(,0)4 - 8.抛物线,42 F x y 的焦点为=准线为l l ,与x 轴相交于点,E 过F 且倾斜角等于3 π 的直线与抛物线在x 轴上方的部分相交于点,,l AB A ⊥垂足为,B 则四边形ABEF 的面积等于( ) A .33 B .34 C .36 D .38 9.已知抛物线C :2 1 2 x y = ,过点(0,4)A -和点(,0)B t 的直线与抛物线C 没有公共点,则实数t 的取值范围是( ) A .(,1)(1,)-∞-+∞ B. (,()22 -∞+∞ C .(,)-∞-+∞ D .(,)-∞-+∞ 10.如果1P ,2P ,…,8P 是抛物线2 4y x =上的点,它们的横坐标依次为1x ,2x ,…,8x ,F 是抛物线的焦点,若)(,,,21* ∈N n x x x n 成等差数列且45921=+++x x x ,则||5F P =( ). A .5 B .6 C . 7 D .9 11.设O 是坐标原点,F 是抛物线2 4y x =的焦点,A 是抛物线上的一点,FA 与x 轴正向的夹角为60 ,则OA 为 . 12.若直线10ax y -+=经过抛物线2 4y x =的焦点,则实数a =

最新高考数学解题技巧-极坐标与参数方程

2018高考数学解题技巧 解答题模板3:极坐标与参数方程 1、 题型与考点(1){极坐标与普通方程的互相转化 极坐标与直角坐标的互相转化 (2) {参数方程与普通方程互化参数方程与直角坐标方程互化 (3) {利用参数方程求值域参数方程的几何意义 2、【知识汇编】 参数方程:直线参数方程:00cos ()sin x x t t y y t θθ=+??=+?为参数 00(,)x y 为直线上的定点, t 为直线上任一点(,)x y 到定 点00(,)x y 的数量; 圆锥曲线参数方程:圆的参数方程:cos ()sin x a r y b r θθθ=+?? =+?为参数(a,b)为圆心,r 为半径; 椭圆22221x y a b +=的参数方程是cos ()sin x a y b θθθ=??=? 为参数; 双曲线2222-1x y a b =的参数方程是sec ()tan x a y b φθφ=??=? 为参数; 抛物线22y px =的参数方程是2 2()2x pt t y pt ?=?=?为参数 极坐标与直角坐标互化公式: 若以直角坐标系的原点为极点,x 轴正半轴为极轴建立坐标系,点P 的极坐标为(,)ρθ,直角坐标为(,)x y , 则cos x ρθ=, sin y ρθ=, 222x y ρ=+, tan y x θ=。 解题方法及步骤 (1)、参数方程与普通方程的互化 化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法;化普通方程为参数方程的基本思路是引入参数,即选定合适的参数t ,先确定一个关系()x f t =(或()y g t =,再代入普通方程(),0F x y =,求得另一关系()y g t =(或()x f t =).一般地,常选择的参数有角、有向线段的数量、斜率,某一点的横坐标(或纵坐标) 例1、方程?????+=-=--t t t t y x 2 222(t 为参数)表示的曲线是( ) A. 双曲线 B.双曲线的上支 C.双曲线的下支 D.圆 解析:注意到2t t 与2t -互为倒数,故将参数方程的两个等式两边分别平方,再相减,即可消去含t 的项,4)22()22(2222-=+--=---t t t t y x ,即有422=+y x ,又注意到 02>t ,222222=?≥+--t t t t ,即

高中数学抛物线知识点归纳总结与经典习题

抛物线经典结论和例题

焦 点弦 长 AB 12()x x p ++ 12()x x p -++ 12()y y p ++ 12()y y p -++ 焦点弦 AB 的几条性质 11(,) A x y 22(,) B x y 以AB 为直径的圆必与准线l 相切 若AB 的倾斜角为α,则22sin p AB α= 若AB 的倾斜角为α ,则22cos p AB α = 2 124 p x x = 212y y p =- 112AF BF AB AF BF AF BF AF BF p ++===?? 切线 方程 00()y y p x x =+ 00()y y p x x =-+ 00()x x p y y =+ 00()x x p y y =-+ 1. 直线与抛物线的位置关系 直线 ,抛物线 , ,消y 得: (1)当k=0时,直线l 与抛物线的对称轴平行,有一个交点; (2)当k ≠0时, Δ>0,直线l 与抛物线相交,两个不同交点; Δ=0, 直线l 与抛物线相切,一个切点; Δ<0,直线l 与抛物线相离,无公共点。 (3)若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定) o x ()22,B x y F y ()11,A x y

2. 关于直线与抛物线的位置关系问题常用处理方法 直线l :b kx y += 抛物线 ,)0(φp ① 联立方程法: ???=+=px y b kx y 22 ?0)(2222=+-+b x p kb x k 设交点坐标为),(11y x A ,),(22y x B ,则有0φ?,以及2121,x x x x +,还可进一步求出 b x x k b kx b kx y y 2)(212121++=+++=+, 2212122121)())((b x x kb x x k b kx b kx y y +++=++= 在涉及弦长,中点,对称,面积等问题时,常用此法,比如 a. 相交弦AB 的弦长 2122122124)(11x x x x k x x k AB -++=-+=a k ?+=2 1 或 2122122124)(1111y y y y k y y k AB -++=-+ =a k ?+=2 1 b. 中点),(00y x M , 2210x x x += , 2 2 10y y y += ② 点差法: 设交点坐标为),(11y x A ,),(22y x B ,代入抛物线方程,得 1212px y = 22 22px y = 将两式相减,可得 )(2))((212121x x p y y y y -=+-所以 2 121212y y p x x y y += -- a. 在涉及斜率问题时,2 12y y p k AB += b. 在涉及中点轨迹问题时,设线段AB 的中点为),(00y x M , 021*******y p y p y y p x x y y ==+=--,即0y p k AB =, 同理,对于抛物线)0(22≠=p py x ,若直线l 与抛物线相交于B A 、两点,点 ),(00y x M 是弦AB 的中点,则有p x p x p x x k AB 0 021222==+=

高中数学全参数方程知识点大全

高考复习之参数方程 一、考纲要求 1.理解参数方程的概念,了解某些常用参数方程中参数的几何意义或物理意义,掌握参数方 程与普通方程的互化方法.会根据所给出的参数,依据条件建立参数方程. 2.理解极坐标的概念.会正确进行点的极坐标与直角坐标的互化.会正确将极坐标方程化为 直角坐标方程,会根据所给条件建立直线、圆锥曲线的极坐标方程.不要求利用曲线的参数 方程或极坐标方程求两条曲线的交点. 二、知识结构 1.直线的参数方程 (1)标准式 过点Po(x 0,y 0),倾斜角为α的直线l(如图)的参数方程是 ? ? ?+=+=a t y y a t x x sin cos 00 (t 为参数) (2)一般式 过定点P 0(x 0,y 0)斜率k=tg α= a b 的直线的参数方程是 ?? ?+=+=bt y y at x x 00(t 不参数) ② 在一般式②中,参数t 不具备标准式中t 的几何意义,若a 2 +b 2 =1,②即为标准式,此 时, | t |表示直线上动点P 到定点P 0的距离;若a 2+b 2 ≠1,则动点P 到定点P 0的距离是 22b a +|t |. 直线参数方程的应用 设过点P 0(x 0,y 0),倾斜角为α的直线l 的参数方程是 ? ??+=+=a t y y a t x x sin cos 00 (t 为参数) 若P 1、P 2是l 上的两点,它们所对应的参数分别为t 1,t 2,则 (1)P 1、P 2两点的坐标分别是 (x 0+t 1cos α,y 0+t 1sin α) (x 0+t 2cos α,y 0+t 2sin α); (2)|P 1P 2|=|t 1-t 2|; (3)线段P 1P 2的中点P 所对应的参数为t ,则 t= 2 2 1t t + 中点P 到定点P 0的距离|PP 0|=|t |=|2 2 1t t +| (4)若P 0为线段P 1P 2的中点,则 t 1+t 2=0.

高中数学选修4-4-极坐标与参数方程-知识点与题型

选做题部分 极坐标系与参数方程 一、极坐标系 1.极坐标系与点的极坐标 (1)极坐标系:如图4-4-1所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系. (2)极坐标:平面上任一点M 的位置可以由线段OM 的长度ρ和从Ox 到OM 的角度θ来刻画,这两个数组成的有序数对(ρ,θ)称为点M 的极坐标.其中ρ称为点M 的极径,θ称为点M 的极角. 2.极坐标与直角坐标的互化 点M 直角坐标(x ,y ) 极坐标(ρ,θ) 互化公式 题型一 极坐标与直角坐标的互化 1、已知点P 的极坐标为)4 ,2(π ,则点P 的直角坐标为 ( ) A.(1,1) B.(1,-1) C.(-1,1) D.(-1,-1) 2、设点P 的直角坐标为(3,3)-,以原点为极点,实轴正半轴为极轴建立极坐标系(02)θπ≤<,则点P 的极坐标为( ) A .3(32, )4π B .5(32,)4π- C .5(3,)4π D .3(3,)4 π- 3.若曲线的极坐标方程为ρ=2sin θ+4cos θ,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则该曲线的直角坐标方程为________. 4.在极坐标系中,过点(1,0)并且与极轴垂直的直线方程是( ) A .ρ=cos θ B .ρ=sin θ C .ρcos θ=1 D .ρsin θ=1 5.曲线C 的直角坐标方程为x 2+y 2-2x =0,以原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为________. 6. 在极坐标系中,求圆ρ=2cos θ与直线θ=π 4 (ρ>0)所表示的图形的交点的极坐标.

高中数学抛物线解题方法总结归纳

圆锥曲线抛物线 知识点归纳 1抛物线的定义:平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线 的准线. 2抛物线的图形和性质: ①顶点是焦点向准线所作垂线段中点。 ②焦准距:FK p = ③通径:过焦点垂直于轴的弦长为2p 。 ④顶点平分焦点到准线的垂线段:2 p OF OK ==。 3抛物线标准方程的四种形式: ,,px y px y 2222-==。,py x py x 2222-== 特点:焦点在一次项的轴上,开口与“±2p ”方向同向 4抛物线px y 22=的图像和性质: ①焦点坐标是:?? ? ??02, p ,②准线方程是:2p x -=。 ③焦半径公式: (称为焦半径)是:02 p PF x =+, ④焦点弦长公式:过焦点弦长121222 p p PQ x x x x p =+ ++=++ ⑤抛物线px y 22 =上的动点可设为P ),2(2 y p y 或2(2,2)P pt pt 5一般情况归纳:题型讲解 (1)过点(-3,2)的抛物线方程为 ;y 2=-3 4x 或x 2=2 9y , (2)焦点在直线x -2y -4=0 y 2=16x 或x 2=-8y ,

(3)抛物线 的焦点坐标为 ; (4)已知抛物线顶点在原点,焦点在坐标轴上,抛物线上的点 到焦点F 的距离为5,则抛物线方程为 ; 或 或 . (5)已知点),4,3(A F 是抛物线x y 82=的焦点,M 是抛物线上的动点,当 MF MA +最小时,M 点坐标是 )4,2( 例2.斜率为1的直线l 经过抛物线24y x =的焦点F ,且与抛物线相交于A B 、两点,求线段AB 的长. 解:法一 通法 法二 设直线方程为1y x =-, 1122(,)(,)A x y B x y 、, 则由抛物线定义得1212||||||||||22p p AB AF FB AC BD x x x x p =+=+=+++=++, 又1122(,)(,)A x y B x y 、是抛物线与直线的交点,由24, 1, y x y x ?=?=-?得2610x x -+=, 则126x x +=,所以||8AB =. 例3.求证:以通过抛物线焦点的弦为直径的圆必与抛物线的准线相切. 证明:(法一)设抛物线方程为22y px =,则焦点(,0)2p F ,准线2 p x =-.设以过焦点F 的弦AB 为直径的圆的圆心M ,A 、B 、M 在准线l 上的射影分别是1A 、1B 、1M , 则11||||||||||AA BB AF BF AB +=+=, 又111||||2||AA BB MM +=, ∴11 ||||2 MM AB =,即1||MM 为以AB 为直径的圆 的半径,且准线1l MM ⊥, ∴命题成立. (法二)设抛物线方程为22y px =,则焦点(,0)2 p F , 准线2 p x =-.过点F 的抛物线的弦的两个端点11(,)A x y ,22(,)B x y ,线段AB 的 中点00(,)M x y ,则1212||22 p p AB x x x x p =+++=++, ∴以通过抛物线焦点的弦为直径的圆的半径1211 ||()22 r AB x x p ==++. M 1M

高中数学选修4-4-极坐标与参数方程-知识点与题型

一、极坐标系 1.极坐标系与点的极坐标 (1)极坐标系:如图4-4-1所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系. (2)极坐标:平面上任一点M 的位置可以由线段OM 的长度ρ和从Ox 到OM 的角度θ来刻画,这两个数组成的有序数对(ρ,θ)称为点M 的极坐标.其中ρ称为点M 的极径,θ称为点M 的极角. 2 题型一 极坐标与直角坐标的互化 1、已知点P 的极坐标为,则点P 的直角坐标为 ( ) A.(1,1) B.(1,-1) C.(-1,1) D.(-1,-1) 2、设点的直角坐标为,以原点为极点,实轴正半轴为极轴建立极坐标系,则点的极坐标为( ) A . B . C . D . 3.若曲线的极坐标方程为ρ=2sin θ+4cos θ,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则该曲线的直角坐标方程为________. 4.在极坐标系中,过点(1,0)并且与极轴垂直的直线方程是( ) A .ρ=cos θ B .ρ=sin θ C .ρcos θ=1 D .ρsin θ=1 5.曲线C 的直角坐标方程为x 2+y 2-2x =0,以原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为________. 6. 在极坐标系中,求圆ρ=2cos θ与直线θ=π 4 (ρ>0)所表示的图形的交点的极坐标. 题型二 极坐标方程的应用 由极坐标方程求曲线交点、距离等几何问题时,如果不能直接用极坐标解决,可先转化为直角坐标方程,然后求解.

抛物线的参数方程(教师版)

14. 抛物线的参数方程 主备: 审核: 学习目标:1. 了解椭圆的参数方程的推导过程及参数的意义; 2. 掌握椭圆的参数方程,并能解决一些简单的问题. 学习重点:椭圆参数方程的应用, 学习难点:椭圆参数方程中参数的意义. 学习过程: 一、课前准备: 阅读教材3334P P -的内容,理解抛物线的参数方程的推导过程,并复习以下问题: 1.将下列参数方程化为普通方程: (1)2 23 x t y t t =-?? =+-?(t 为参数),答:2 53x x y --=; (2)224x m y m ?=?=?(m 为参数),答:2 8x y =. 2.将下列普通方程化为参数方程: (1)2 2x y =,其中1x t t =-(t 为参数),答:221224 x t t y t t ?=-???=+-? ; (2)2 34y x =,其中x t =(0t ≥为参数) ,答:x t y =???=?? . 二、新课导学: (一)新知: 抛物线的参数方程的推导过程: 如图:设(,)M x y 为抛物线上除顶点外的任意一点,以射线OM 为终边的角记为α,当α在(,)22 ππ - 内变化时, 点M 在抛物线上运动,并且对于α的每一个值,在抛物线上都有唯一的M 点与对应.因此,可以取α为参数探求抛物线的参数方程. 根据三角函数的定义得,tan y x α=,即tan y x α=,联立2 2y px =,得 22tan 2tan p x p y α α?=??? ?=?? (α为参数),这为抛物线的不含顶点的参数方程,但方程的形式不够简洁, 设1 tan t α=,(,0)(0,)t ∈-∞+∞U ,则222x pt y pt ?=?=?(t 为参数 ), 当0t =时,由参数方程得,正好为顶点(0,0)O ,因此当(,)t ∈-∞+∞时,上式为 22y px =的参数方程. 注意:参数t 的几何意义为:表示抛物线上除顶点外的任意一点与原点连线的斜率的倒数. 动动手:(1)选择适当的参数t ,建立抛物线2 2x py =的参数方程 .

高中数学抛物线经典性质的总结

抛物线

焦点弦长 AB 12()x x p ++ 12()x x p -++ 12()y y p ++ 12()y y p -++ 焦点弦 AB 的几条性质 11(,) A x y 22(,) B x y 以AB 为直径的圆必与准线l 相切 若AB 的倾斜角为α,则22sin p AB α= 若AB 的倾斜角为α ,则22cos p AB α = 2 124 p x x = 212y y p =- 112AF BF AB AF BF AF BF AF BF p ++===?? 切线 方程 00()y y p x x =+ 00()y y p x x =-+ 00()x x p y y =+ 00()x x p y y =-+ 直线 ,抛物线 , ,消y 得: (1)当k=0时,直线l 与抛物线的对称轴平行,有一个交点; (2)当k ≠0时, Δ>0,直线l 与抛物线相交,两个不同交点; Δ=0, 直线l 与抛物线相切,一个切点; Δ<0,直线l 与抛物线相离,无公共点。 (3)若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定) (4) 2. 关于直线与抛物线的位置关系问题常用处理方法 直线l :b kx y += 抛物线 ,)0(φp ① 联立方程法: o x ()22,B x y F y ()11,A x y

???=+=px y b kx y 22 ?0)(2222=+-+b x p kb x k 设交点坐标为),(11y x A ,),(22y x B ,则有0φ?,以及2121,x x x x +,还可进一步求出 b x x k b kx b kx y y 2)(212121++=+++=+, 2212122121)())((b x x kb x x k b kx b kx y y +++=++= 在涉及弦长,中点,对称,面积等问题时,常用此法,比如 a. 相交弦AB 的弦长 2122122124)(11x x x x k x x k AB -++=-+=a k ?+=2 1 或 2122122124)(1111y y y y k y y k AB -++=-+ =a k ?+=2 1 b. 中点),(00y x M , 2210x x x += , 2 2 10y y y += ② 点差法: 设交点坐标为),(11y x A ,),(22y x B ,代入抛物线方程,得 12 12px y = 22 22px y = 将两式相减,可得 )(2))((212121x x p y y y y -=+- 2 121212y y p x x y y += -- a. 在涉及斜率问题时,2 12y y p k AB += b. 在涉及中点轨迹问题时,设线段AB 的中点为),(00y x M , 021*******y p y p y y p x x y y ==+=--, 即0 y p k AB = , 同理,对于抛物线)0(22≠=p py x ,若直线l 与抛物线相交于B A 、两点,点

高中数学选修4-4坐标系与参数方程-高考真题演练

高中数学选修4-4坐标系与参数方程------高考真题演练 1(1)(2018全国卷III ) 在平面直角坐标系xOy 中,O ⊙的参数方程为cos sin x y θθ=?? =? , (θ为参数), 过点(0,且倾斜角为α的直线l 与O ⊙交于A B ,两点. (1)求α的取值范围; (2)求AB 中点P 的轨迹的参数方程. 1(2)(2018全国卷II )在直角坐标系中,曲线的参数方程为(为参 数),直线的参数方程为(为参数). (1)求和的直角坐标方程; (2)若曲线截直线所得线段的中点坐标为,求的斜率. 1(3)(2018全国卷I )在直角坐标系 中,曲线的方程为,以坐标原点为 极点,轴正半轴为极轴建立极坐标系,曲线 的极坐标方程为 (1)求的直角坐标方程 (2)若 与有且仅有三个公共点,求 的方程 1(1)(2018全国卷III ) 在平面直角坐标系xOy 中,O ⊙的参数方程为cos sin x y θθ =?? =?, (θ为参数), 过点(0,且倾斜角为α的直线l 与O ⊙交于A B ,两点. (1)求α的取值范围; (2)求AB 中点P 的轨迹的参数方程. xOy C 2cos 4sin x θy θ=?? =? , θl 1cos 2sin x t αy t α=+??=+? , t C l C l (1,2) l

解:(1)O e 的参数方程为cos sin x y θθ =?? =?,∴O e 的普通方程为22 1x y +=,当90α=?时, 直线::0l x =与O e 有两个交点,当90α≠?时,设直线l 的方程为tan y x α=-直线l 与O e 1<,得2tan 1α>,∴tan 1α>或tan 1α<-,∴ 4590α?<

高中数学抛物线的常见结论

抛物线的常见结论 一、知识点总结 1. 抛物线的弦长公式 2122122124)(11x x x x k x x k l -+?+=-+=, 其中k 是弦所在直线的斜率,21,x x 是交点的横坐标,本表达式不包含斜率不存在的情况。 2122122124)(11y y y y m y y m l -+?+=-+=,其中弦长所在直线 方程为b my x +=,21,y y 是交点的纵坐标,本表达式包含斜率不存在的情况。 2. 抛物线的焦点弦 对于抛物线,022 >=p px y ,,倾斜角为α的直线过抛物线的焦点,与抛物线交于A ,B 两点,过A,B 做抛物线准线的垂线,垂足分别为C,D ,那么有: ①2212 21,4 p y y p x x -== A B F C D O α

由?????+==222p my x px y 得0222=--p pmy y (*) ,因此?? ???==-=44)(2222121221p p y y x x p y y ②焦点弦长 p x x AB ++=21,焦点弦长α 2 sin 2P AB = α αsin 4)(sin 212212 1y y y y y y AB -+= -=,结合(*)式与αtan 1 =m 得: α ααααααααα sin sin sin sin cos 2sin 1tan 12sin 4tan 4sin 442 22222 222 22+= +=+= += p p p p p m p AB α αα22sin 2sin sin 1 2p p == ③ P BF AF 211=+ 简单证明如下:p p p y y p y y P BF AF BF AF BF AF 222sin sin sin 211221212====+=+ααα ④焦点三角形面积α sin 22 P S = 简单证明如下:以 AB 为底,以O 到AB 的距离为高,该三角形面积课表示为: α αααsin 2sin 2sin 221sin 2122p p p OF AB S AOB =??== ⑤焦点弦相关的几何关系: a. 以AF/BF 为直径的圆与y 轴相切 b. 以AB 为直径的圆与准线相切,切点与焦点连线垂直于AB. c. 以CD 为直径的圆与AB 相切 d. A,B 在准线上的投影对F 的张角为90°,?=∠90CFD

高考数学参数方程所有经典类型

高考数学参数方程所有经典类型(必刷题) 1.极坐标系与直角坐标系xoy 有相同的长度单位,以原点O 为极点,以x 轴正半轴为 极轴.已知直线l 的参数方程为1222 x t y ?=+????=??(t 为参数),曲线C 的极坐标方程为 2sin 8cos ρθθ=. (Ⅰ)求C 的直角坐标方程; (Ⅱ)设直线l 与曲线C 交于,A B 两点,求弦长||AB . 2.已知直线l 经过点1 (,1)2P ,倾斜角α=6 π,圆C 的极坐标方程为)4πρθ=-. (1)写出直线l 的参数方程,并把圆C 的方程化为直角坐标方程; (2)设l 与圆C 相交于两点A 、B ,求点P 到A 、B 两点的距离之积. 3.在平面直角坐标系xOy 中,已知曲线1C :cos sin θθ=??=? x y (θ为参数),将1C 上的所有 和2倍后得到曲线2C .以平面直角坐标系xOy 的原点O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l :sin )4ρθθ+=. (1)试写出曲线1C 的极坐标方程与曲线2C 的参数方程; (2)在曲线2C 上求一点P ,使点P 到直线l 的距离最小,并求此最小值. 4.在直角坐标系xoy 中,直线l 的方程为40x y -+=,曲线C 的参数方程为

x 3cos y sin ααα ?=??=??(为参数). (1)已知在极坐标系(与直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为(4,)2π ,判断点P 与直线l 的位置关系; (2)设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值. 5.在平面直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐V 标方程为πcos =13ρθ? ?- ??? ,M ,N 分别为曲线C 与x 轴、y 轴的交点. (1)写出曲线C 的直角坐标方程,并求M ,N 的极坐标; (2)求直线OM 的极坐标方程. 6.(本小题满分10分)选修4-4:坐标系与参数方程 已知曲线 (为参数),(为参数). (1)化 的方程为普通方程; (2)若上的点P 对应的参数为为上的动点,求中点到直线 (为参数)距离的最小值.

相关文档
最新文档