原子发射光谱实验报告doc

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

原子发射光谱实验报告

篇一:电感耦合等离子体发射光谱实验报告

电感耦合等离子体发射光谱法

1.基本原理

1.1概述

原子发射光谱分析(atomic emission spectrometry,AES)是一种已有一个世纪以上悠久历史的分析方法,原子发射光谱分析的进展,在很大程度上依赖于激发光源的改进。

到了60年代中期,Fassel和Greenfield分别报道了各自取得的重要研究成果,创立了电感耦合等离子体(inductively coupled plasma,ICP)原子发射光谱(ICP-AES)新技术,这在光谱化学分析上是一次重大的突破,从此,原子发射光谱分析技术又进入一个崭新的发展时期。 1.2方法原理

原子发射光谱是价电子受到激发跃迁到激发态,再由高能态回到较低的能态或基态时,以辐射形式放出其激发能而产生的光谱。

原子发射光谱法的量子力学基本原理如下:

(1)原子或离子可处于不连续的能量状态,该状态可以光谱项来描述;(2)当处于基态的气态原子或离子吸收了一定的外界能量时,其核外电子就从一种能量状态(基态)

跃迁到另一能量状态(激发态),设高能级的能量为E2,低能级的能量为E1,发射光谱的波长为λ(或频率ν),则电子能级跃迁释放出的能量△E与发射光谱的波长关系为△E= E2- E1=hν=hc/λ

(3)处于激发态的原子或离子很不稳定,经约10-8秒便跃迁返回到基态,并将激发所吸收的能量以一定的电磁波辐射出来;

(4)将这些电磁波按一定波长顺序排列即为原子光谱(线状光谱);(5)由于原子或离子的能级很多并且不同元素的结构是不同的,因此,对特定元素的原子或离子可产生一系列不同波长的特征光谱,通过识别待测元素的特征谱线存在与否进行定性分析。

半定量是对样品中一些元素的浓度进行大致估算。

一种半定量的方法是对许多元素进行一次曲线校正,并将标准曲线储存起来。然后在需要进行半定量时,直接采用原来的曲线对样品进行测试。结果会因仪器的飘移而产生误差或因样品基体的不同而产生误差,但对于半定量来说,可以接受。

ICP定量分析的依据是Lomakin-Scherbe公式:

I=aCb

式中

I:谱线强度 C:待测元素的浓度 a:常数

b: 分析线的自吸收系数,一般情况下b≤1,b与光源特性、待测元素含量、

元素性质及谱线性质等因素有关,在ICP光源中,多数情况下 b≈1

发射光谱通常用化学火焰、电火花、电弧、激光和各种等离子体光源激发而获得。等离子体光源有ICP (inductively coupled plasma)、DCP(direct-current plasma)、MWP (microwave plasma)。

原子发射光谱分析的波段范围与原子能级有关,一般在200—850nm,近几年由于分光测光系统的改进,仪器的波长范围已扩展到120—1050nm。常见的光源如表1。

表1 几种常见光源

当高频发生器接通电源后,高频电流I通过感应线圈产生交变磁场(绿色)。开始时,管内为Ar气,不导电,需要用高压电火花触发,使气体电离后,在高频交流电场的作用下,带电粒子高速运动,碰撞,形成“雪崩”式放电,产生等离子体气流。在垂直于磁场方向将产生感应电流(涡电流,粉色),其电阻很小,电流很大(数百安),产生高温。又将

气体加热、电离,在管口形成稳定的等离子体焰炬。如图1。

图1 ICP形成原理

ICP焰明显地分为三个区域:

(1)焰心区,不透明,是高频电流形成的涡流区,等离子体主要通过这一区域与高频感应线圈耦合而获得能量,该区温度高达10000K;

(2)内焰区位于焰心区右方,一般在感应圈右边10-20mm 左右,呈半透明状态,温度约为6000-8000K,是分析物原子化、激发、电离与辐射的主要区域;

(3)尾焰区在内焰区右方,无色透明,温度较低,在6000K以下,只能激

发低能级的谱线。

ICP具有以下特点:

(1)温度高,惰性气氛,原子化条件好,有利于难熔化合物的分解和元素激发,有很高的灵敏度和稳定性;

(2)“趋肤效应”,涡电流在外表面处密度大,使表面温度高,轴心温度低,中心通道进样对等离子的稳定性影响小。能有效消除自吸现象,线性范围宽(4~5个数量级);

(3)ICP中电子密度大,碱金属电离造成的影响小;(4)Ar气体产生的背景干扰小;(5)无电极放电,无电极污染;

(6)ICP焰炬外型像火焰,但不是化学燃烧火焰,气体放电;

(7)对非金属测定的灵敏度低,仪器昂贵,操作费用高,这是ICP的缺点。

2.仪器构成

2.1基本组成

ICP-AES分析仪器主要由样品导入系统、检测器、多色器和RF发生器构成,如图2。

图2 ICP-AES分析仪器的基本组成

2.2样品导入系统

样品导入系统由蠕动泵、雾化器、雾化室和炬管组成。

进入雾化器的液体流,由蠕动泵控制。泵的主要作用是为雾化器提供恒定样品流,并将雾化室中多余废液排出。除通常进样和排废液通道外,三通道蠕动泵为用户提供一个额外通道,用该通道可在分析过程中导入内标等。

雾化器将液态样品转化成细雾状喷入雾化室,较大雾滴被滤出,细雾状样品到达等离子炬。图3为同心玻璃雾化器图。

图3 同心玻璃雾化器

由雾化器、蠕动泵和载气所产生的雾状样品进到雾化室。雾化室的功能相当于一个样品过滤器,较小的细雾通过雾化室到达炬管,较大的样品滴被滤除流到

篇二:实验31 原子发射光谱观测分析(实验报告) 实验31(A)原子发射光谱观测分析

【实验目的】

1.学会使用光学多通道分析器的方法

2.通过对钠原子光谱的研究了解碱金属原子光谱的一般规律

3.加深对碱金属原子中外层电子与原子核相互作用以及自旋与轨道运动相互作用的了解

【实验仪器】

光学多通道分析器、光学平台、汞灯、钠灯、计算机【原理概述】

钠属碱金属原子类,碱金属原子和氢原子一样,都只有一个价电子。但在碱金属原子中除了一个价电子外,还有内封闭壳层的电子,这些内封壳层电子与原子核构成原子实。价电子是在原子核和内部电子共同组成的力场中运动。原子实作用于价电子的电场与点电荷的电场有显著的不同。特别是当价电子轨道贯穿原子实时(称贯穿轨道),这种差别就更为突出。因此,碱金属原子光谱线公式为:

?11~??R???n*2n*2

1?2?RR????n????2n??2 ?l?l

~为光谱线的波数;R为里德堡常数。其中?

n?与n分别为始态和终态的主量子数?

**n2与n1分别为始态和终态的有效量子数

l?与l分别为该量子数决定之能级的轨道量子数

相关文档
最新文档