空间两直线的位置关系

合集下载

212空间中直线与直线之间的位置关系共31张PPT

212空间中直线与直线之间的位置关系共31张PPT
栏目 导引
第二章 点、直线、平面之间的位置关系
跟踪训练
3.如图,已知长方体ABCD-A1B1C1D1中,A1A=AB, E、F分别是BD1和AD中点,则异面直线CD1,EF所成的 角的大小为________.
栏目 导引
第二章 点、直线、平面之间的位置关系
解析:取 CD1 的中点 G,连接 EG,DG, ∵E 是 BD1 的中点,∴EG∥BC,EG=12BC.
栏目 导引
第二章 点、直线、平面之间的位置关系
做一做 3.若正方体ABCD-A1B1C1D1中∠BAE=25°, 则异面直线AE与B1C1所成的角的大小为________.
答案:65°
栏目 导引
第二章 点、直线、平面之间的位置关系
典题例证技法归纳
【题型探究】 题型一 直线位置关系的判定
例1 a,b,c是空间中的三条直线,下面给出的几 种说法:①若a∥b,b∥c,则a∥c; ②若a⊥b,b⊥c,则a∥c; ③若a与b相交,b与c相交,则a与c相交; ④若a,b与c成等角,则a∥b. 其中正确的是________(只填序号)
E,F
分别是另外两条对边
AD,BC
上的点,且AE=BF ED FC
=12,EF= 5,求 AB 和 CD 所成的角的大小.
栏目 导引
第二章 点、直线、平面之间的位置关系
解:如图,过 E 作 EO∥AB,交 BD 于点 O,连接 OF, ∴AEED=BOOD.又∵AEED=BFFC,∴BOOD=BFFC, ∴OF∥CD,∴∠EOF(或其补角)是 AB 和 CD 所成的角. 在△EOF 中,OE=23AB=2,OF=13CD=1. 又 EF= 5,∴EF2=OE2+OF2,∴∠EOF=90°, 即异面直线 AB 和 CD 所成的角为 90°.

高二-06-直线与直线的位置关系

高二-06-直线与直线的位置关系

知识点一、公理4 平行于同一条直线的两条直线平行(传递性);符号表示:a ∥b ,b ∥c ⇒a ∥c .作用:判断或证明空间中两条直线平行.知识点二、 等角定理 如果一个角的两边和另一个角的两边分别平行且方向相同,那么这两个角相等.注:等角定理实质上是由如下两个结论组合成的:①若一个角的两边与另一个角的两边分别平行且方向都相同(或方向都相反),则这两个角相等;②若一个角的两边与另一个角的两边分别平行,有一组对应边方向相同,另一组对应边方向相反,则这两个角互补.推论:1. 如果一个角的两边和另一个角的两边分别平行,那么这两个角相等或者互补.2. 如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角) 相等.知识点三、空间中两条直线的位置关系⎩⎪⎨⎪⎧共面直线⎩⎪⎨⎪⎧相交直线:在同一平面内,有且只有一个公共点;平行直线:在同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点.题型一、平行线的传递性【例1】如图,△ABC 的各边对应平行于△111A B C 的各边,点E ,F 分别在边AB ,AC 上,且1,3AE AB AF ==13AC ,则EF 与11B C 的位置关系是________. 第6讲 直线与直线的位置关系 知识梳理例题分析模块一:空间直线的位置关系 ~~~~~~~~~~~~~~~~~~~~~~~~~【难度】★题型二、等角定理【例1】已知AB ∥PQ ,BC ∥QR ,若∠ABC =30°,则∠PQR 等于( )A .30°B .30°或150°C .150°D .以上结论都不对【难度】★【例2】给出下列命题:①如果一个角的两边与另一个角的两边分别平行,那么这两个角相等;②如果两条相交直线和另两条直线分别平行,那么这两组直线所成的锐角(或直角)相等; ③如果一个角的两边和另一个角的两边分别垂直,那么这两个角相等或互补.其中正确的命题有( )A .0个B .1个C .2个D .3个 【难度】★【例3】若111AOB A O B ∠=∠,且11OA O A ∥,OA 与11O A 方向相同,则下列结论正确的有( )A .11OB O B ∥且方向相同B .11OB O B ∥,方向可能不同C .OB 与11O B 不平行D .OB 与11O B 不一定平行 【难度】★题型三、空间直线的位置关系【例1】已知三条直线1l ,2l ,3l 满足12l l ∥且23l l ⊥,则1l 与3l ( )A .平行B .垂直C .共面D .异面【难度】★【例2】若直线//a b ,直线c a A =,则直线b 、c 的位置关系为______.(用文字表述)【难度】★【例3】若直线a 与直线b ,c 所成的角相等,则b ,c 的位置关系为( )A .相交B .平行C .异面D .以上答案都有可能【难度】★★【例4】如图,点P ,Q ,R ,S 分别在正方体的四条棱上,且是所在棱的中点,则直线PQ 与RS 是平行直线的图是________(填序号).【难度】★★【例5】如图,在正方体ABCD -A 1B 1C 1D 1中,M 、N 分别为棱C 1D 1、C 1C 的中点,有以下四个结论:①直线AM 与CC 1是相交直线;②直线AM 与BN 是平行直线;③直线BN 与MB 1是异面直线;④直线AM 与DD 1是异面直线.其中正确的结论为( )A .③④B .①②C .①③D .②④【难度】★★【例6】如图是正方体的平面展开图,在原来的正方体中(1)BM 与ED 平行; (2)CN 与BE 是异面直线; (3)CN 与BM 成60︒; (4)DN 与BM 垂直其中正确的序号是_____________.【难度】★★知识点一、异面直线的定义把不同在任何一个平面内的两条直线叫做异面直线;画法:(通常用平面衬托)知识点二、异面直线的判定1. 判定定理:过平面外一点与平面上一点的直线,和此平面上不经过该点的任何一条直线都是异面直线.符号表示:A α∉, B α∈,B a ∉,a AB α⊂⇒与l 是异面直线(如图).2. 异面直线的判定方法①定义法:由定义判断两直线不可能在同一平面内;②反证法:证明两线不可能平行、相交或证明两线不可能共面;③判定定理法知识点三、异面直线所成的角1. 定义:两条异面直线平移到相交位置时所得到的锐角或直角,称为这两条异面直线所成的角.2. 范围:两条异面直线所成角的范围是0,2πθ⎛⎤∈ ⎥⎝⎦(090θ︒<≤︒). 3. 异面垂直:如果两条异面直线所成的角是直角,那么我们就说这两条直线互相垂直.记作a ⊥b .模块二:异面直线 ~~~~~~~~~~~~~~~~~~~~~~~~~ 知识梳理4. 平移法求异面直线所成角①平移:平移异面直线中的一条或两条,作出异面直线所成的角;②证明:证明作出的角就是所求异面直线所成的角;③计算:求该角的值,常利用解三角形;④取舍:由异面直线所成的角的取值范围是0,2π⎛⎤ ⎥⎝⎦,当所作的角为钝角时,取它的补角.题型一、异面直线的判定【例1】正方体1111ABCD A B C D −中,M 、N 分别是棱BC ,CC 1的中点,则直线MN 与D 1C 的位置关系是_________.【难度】★【例2】若a ,b 是异面直线,b ,c 是异面直线,则( )A .a ∥cB .a ,c 是异面直线C .a ,c 相交D .a ,c 平行或相交或异面【难度】★★【例3】如图所示,在正方体1111ABCD A B C D −中,E F 、分别是1AB AA 、的中点.求证: (1)1CE D F DA 、、三线共点;(2)直线BC 和直线1D F 是异面直线.【难度】★★例题分析【例4】已知:平面α平面a β=,b α⊂,b a A ⋂=,c β⊂且c ∥a ,求证:b 、c 是异面直线.【难度】★★题型二、异面直线所成的角【例1】如图,在正方体1111ABCD A B C D −中,E 、F 分别是1DD 、DC 上靠近点D 的三等分点,则异面直线EF 与11A C 所成角的大小是_________.【难度】★【例2】在正方体1111ABCD A B C D −中,AC 与BD 相交于点O ,则异面直线1B O 与1A D 所成的角的大小为( )A .30°B .45°C .60°D .90°【难度】★★【例3】已知,点A 是BCD △所在平面外一点,且AB AD AC BC BD CD =====,点E 是边BC 的中点,则异面直线AE 与BD 所成角的余弦值为___________.【难度】★★【例4】在正方体1111ABCD A B C D −中,与1AD 成60°角的面对角线的条数是________【难度】★★【例5】已知点M 是正方体1111ABCD A B C D −的与1BB 上的中点,求异面直线1MD 与1A B 所成的角.【难度】★★题型三、空间四边形【例1】如图所示,已知空间四边形ABCD 中,M ,N 分别为AB ,CD 的中点,则MN 12(AC +BD ).【难度】★【例2】已知空间四边形ABCD ,连接AC 和BD ,且1AB AC AD BC CD BD ======,点N 是线段AD 的中点,则异面直线BD 和CN 所成的角的余弦值是______.【难度】★★【例3】如图,在空间四边形ABCD 中,E ,G 分别为,AB CD 的中点且6,8===EG AC BD ,则异面直线AC 和BD 所成角是_________.【难度】★★题型四、综合问题【例1】如图所示,在正方体ABCD -A 1B 1C 1D 1中.(1)求A 1C 1与B 1C 所成角的大小;(2)若E ,F 分别为AB ,AD 的中点,求A 1C 1与EF 所成角的大小;【难度】★★【例2】如图,已知正方体ABCD A B C D −''''的棱长为1.(1)正方体ABCD A B C D −''''中哪些棱所在的直线与直线A B '是异面直线?(2)若,M N 分别是A B ',BC '的中点,求异面直线MN 与BC 所成角的大小.【难度】★★【例3】如图所示,点A 是△BCD 所在平面外一点,AD =BC ,E ,F 分别是AB ,CD 的中点,当EF =22AD 时,求异面直线AD 和BC 所成的角. 【难度】★★师生总结1. 空间中有两个角α、β,且角α、β的两边分别平行.若60α=,则β=________.【难度】★2. 如图,在正方体中,A 、B 、C 、D 分别是顶点或所在棱的中点,则A 、B 、C 、D 四点共面的图形______(填上所有正确答案的序号).【难度】★3. 如图是正方体的表面展开图,E ,F ,G ,H 分别是棱的中点,则EF 与GH 在原正方体中的位置关系为______.【难度】★4. 若a ,b 为两条异面直线,α,β为两个平面,a α⊂,b β⊂,l αβ=,则下列结论中正确的序号是 .①l 至少与a ,b 中一条相交②l 至多与a ,b 中一条相交③l 至少与a ,b 中一条平行④l 必与a ,b 中一条相交,与另一条平行【难度】★5. 在正方体ABCD -A 1B 1C 1D 1中,E 为棱CC 1的中点,则异面直线AE 与CD 所成角的正切值为 .【难度】★★巩固练习6. 如图,空间四边形ABCD 的对角线AC =8,BD =6,M ,N 分别为AB ,CD 的中点,并且异面直线AC 与BD 所成的角为90°,则MN =________.【难度】★★7. 在空间中,直线AB 平行于直线EF ,直线BC EF 、为异面直线,若120ABC ∠=︒,则异面直线BC EF 、所成角的大小为______.【难度】★★8. 如图所示,在正方体1111ABCD A B C D −中,E 、F 分别是AB 、AD 的中点,则异面直线1B C 与EF 所成的角的大小为_________.【难度】★★9. 设A 、B 、C 、D 是某长方体四条棱的中点,则直线AB 和直线CD 的位置关系是( ).A .相交B .平行C .异面D .无法确定 【难度】★★10. 已知直线a、b是正方体上两条面对角线所在的直线,且a、b是异面直线,则直线a、b所成的角的大小为_____.【难度】★★11. 已知a,b是异面直线,直线//c a且c不与b相交,求证:b、c是异面直线.【难度】★★12. 如图,P是平行四边形ABCD所在平面外一点,E、F分别是PC、PD的中点,已知=.PD CDPD CD⊥,且2(1)求证:A、B、E、F在同一平面上;(2)求异面直线PC与AB所成角的大小.【难度】★★13. 已知A 是△BCD 所在平面外的一点,E ,F 分别是BC ,AD 的中点, (1)求证:直线EF 与BD 是异面直线;(2)若AC ⊥BD ,AC =BD ,求EF 与BD 所成的角.【难度】★★14. 如图,在正方体1111ABCD A B C D −中,E 为AB 中点,F 为1AA 中点,(1)求证:E 、C 、D 1、F 四点共面;(2)求异面直线1C E 与1CD 所成的角.【难度】★★1. 正方形ABCD中,E、F分别是AB、CD的中点,G为BF的中点,将正方形沿EF折成120 的二面角,则异面直线EF与AG所成角的正切值为()A.32B.34C.72D.74【难度】★★★能力提升。

同一空间内两条直线的位置关系

同一空间内两条直线的位置关系

同一空间内两条直线的位置关系
在同一空间内,两条直线的位置关系主要有三种:
1.平行:如果两条直线在同一平面内不相交,那么这两条直线就是平行的。

平行线在三维空间中不会相交,无论它们延伸到多远。

2.相交:如果两条直线在同一平面内有且仅有一个交点,那么这两条直线就
是相交的。

这意味着它们在某一点处相交,但在那一点之外,它们将继续沿各自的方向延伸。

3.异面:如果两条直线不在同一个平面内,那么它们就被称为异面直线。


面直线既不相交也不平行,它们处于不同的平面内,永远不会相交。

总结来说,两条直线的位置关系在三维空间中可以是平行的、相交的或异面的。

这些关系取决于它们是否在同一平面内以及是否有交点。

空间中直线与直线之间的位置关系

空间中直线与直线之间的位置关系

二、空间两直线的位置关系:
(1)从公共点的数目来看,可分为:
①有且只有一个公共点——两直线相交
记作:l1 l2 A
l1
A
l2
l1
两直线平行
l2
②没有公共点
记作:l1 /为:
①在同一平面内
两直线相交 两直线平行
②不在同一平面内——两直线为异面直线
注:概念应理解为:
“经过这两条直线无法作出一个平面” .
或 :“ 不 可 能 找 到 一 个 平 面 同 时 经 过 这 两 条 直 注线意”: .分别在某两个平面内的两条直线不一定 是异面直线, 它们可能是相交,也可能是平行.
想一想:在空间中两条直线 的位置关系?
(1)相交直线——有且只有一个公共点 (2)平行直线——在同一平面内,没有公 共点 (3)异面直线——不同在任何一个平面内, 没有公共点
答 :三对分别是AB与CD;AB与 GH;EF与GH。
我们知道,在同一平面内, 如果两条直线都和第三条 直线平行,那么这两条直线互相平行.在空间这一规律是 否还成立呢?
观察 : 将一张纸如图进行折叠 , 则各折痕及边 a, b, c, d, e, … 之间有何关系?
abcde
a∥b ∥c ∥d ∥e ∥ …
公理4:在空间平行于同一条直线的两条直线互相平
行.
———空间平行线的传递性
推广:在空间平行于一条已知直线的所有直线都互相平 行.
例1:已知ABCD是四个顶点不在同一个平面内 的空间四边形,E,F,G,H分别是AB,BC, CD,DA的中点,连结EF,FG,GH,HE, 求证EFGH是一个平行四边形。
同一平面内的两条直线有几种位置关系?
1、相交直线

人教A版数学必修第二册8_4_2空间点、直线、平面之间的位置关系课件

人教A版数学必修第二册8_4_2空间点、直线、平面之间的位置关系课件

3.若M∈平面α,M∈平面β,则α与β的位置关系是( B )
A.平行
B.相交
C.异面
D.不确定
α与β相交于过 点M的一条直线
4.平面α∥平面β,直线a⊂α,则a与β的位置关系是___平__行____. β
α a
考点精讲
1.异面直线
(1)定义:不同在___任__何__一__个__平__面__内____的两条直线. (2)异面直线的画法:
空间点、直线、平面之间的位置关系
本节目标
学习目标
核心素养
1.了解空间中两条直线的三种位置关系,理解
两异面直线的定义,会用平面衬托来画异面直 1.通过空间中两条直线的位置关
线.(重点、难点)
系的学习,培养直观想象的核
2.了解直线与平面的三种位置关系,并会用图 心素养.
形语言和符号语言表示.(重点、易错点)
本课小结
判断直线与平面及平面与平面位置关系的常用方法
(1)定义法:借助线面、面面位置关系的定义判断; (2)模型法:借助长方体等熟悉的几何图形进行判断,有时起到事半功倍的效果; (3)反证法:反设结论进行推导,得出矛盾,到达准确的判断位置关系的目的.
[提示] 因为一个平面内任意一条直线都与另一个 平面平行,所以该平面与另一平面没有公共点,根 据两平面平行的定义知,这两个平面平行.
2.平面α内有无数条直线与平面β平行,那么 α∥β是否正确?
[提示] 不正确.如图,平面α内与平面β平行的 直线有无数条a1,a2,…,an,但此时α不平行于 β,而α∩β=l.
2.圆柱的两个底面的位置关系是( B )
A.相交
B.平行
C.平行或异面
D.相交或异面
3.下列命题:

高一年级数学知识重点:空间两直线的位置关系

高一年级数学知识重点:空间两直线的位置关系

2019年高一年级数学学问重点:空间两直线的位置关系学习是一个边学新学问边巩固的过程,对学学问肯定要多加安排,这样才能进步。

因此,为大家整理了2019年高一年级数学学问重点,供大家参考。

空间两直线的位置关系:空间两条直线只有三种位置关系:平行、相交、异面1、按是否共面可分为两类:(1)共面:平行、相交(2)异面:异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。

异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。

两异面直线所成的角:范围为(0°,90°)esp.空间向量法两异面直线间距离:公垂线段(有且只有一条)esp.空间向量法2、若从有无公共点的角度看可分为两类:(1)有且仅有一个公共点——相交直线;(2)没有公共点——平行或异面重视复习和总结:1、刚好做好复习. 听完课的当天,必需做好当天的复习。

复习的有效方法不是一遍遍地看书或笔记,而是实行回忆式的复习:先把书、笔记合起来,回忆上课时老师讲的内容,分析问题的思路、方法等(也可边想边在草稿本上写一写),尽量想得完整些。

然后打开笔记与书本,比照一下还有哪些没记清的,把它补起来,就能使当天上课内容巩固下来,同时也检查了当天课堂听课的效果如何,也为改进听课方法及提高听课效果提出必要的改进措施。

2、做好单元复习。

学习一个单元后应进行阶段复习,复习方法同刚好复习一样,实行回忆式复习,而后与书、笔记相比照,使其内容完善,而后应做好单元小节。

3、做好单元小结。

单元小结内容应包括以下部分:(1)本单元(章)的学问网络;(2)本章的基本思想与方法(应以典型例题形式将其表达出来);(3)自我体会:对本章内,自己做错的典型问题应有记载,分析其缘由及正确答案,应记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。

做适量的有不少同学把提高数学成果的希望寄予在大量做题上,这是不妥当的。

空间中直线与直线之间的位置关系

空间中直线与直线之间的位置关系

2.1.2空间中直线与直线之间的位置关系一、空间两直线的位置关系 1.异面直线(1)异面直线的定义:我们把不同在 的两条直线叫做异面直线. 即若a ,b 是异面直线,则不存在平面α,使a ⊂α且b ⊂α.(2)异面直线的画法:为了表示异面直线不共面的特点,通常用一个或两个平面衬托,如图:2.空间两直线的位置关系空间两条直线的位置关系有且只有三种:相交、平行和异面. (1) ——同一平面内,有且只有一个公共点; (2) ——同一平面内,没有公共点;学!科网 (3) ——不同在任何一个平面内,没有公共点. 3. 空间中两直线位置关系的分类空间中两条直线的位置关系有以下两种分类方式: (1)从有无公共点的角度分类:⎧⎪⎨⎪⎩⎩⎧⎨两条直线有且仅有一个公共点:相交直线平行直线两条直线无公共点:异面直线直线 (2)从是否共面的角度分类:⎧⎧⎪⎨⎨⎩⎪⎩相交直线共面直线直线平行直线不共面直线:异面直线二、公理4与等角定理 1.公理4(1)自然语言:平行于同一条直线的两条直线互相 .(2)符号语言:a ,b ,c 是三条不同的直线, a ∥b ,b ∥c . (3)作用:判断或证明空间中两条直线平行. 公理4表述的性质也通常叫做空间平行线的传递性.用公理4证明空间两条直线,a c 平行的步骤(1)找到直线b ; (2)证明∥a b ,∥b c ; (3)得到∥a c .2.等角定理(1)自然语言:空间中如果两个角的两边分别对应平行,那么这两个角 . (2)符号语言:如图(1)(2)所示,在∠AOB 与∠A ′O ′B ′中,OA ∥O ′A ′,OB ∥O ′ B ′,则∠AOB =∠A ′O ′B ′或∠AOB +∠A ′O ′B ′=180°.图(1) 图(2)三、异面直线所成的角1.两条异面直线所成的角的定义如图,已知两异面直线a ,b ,经过空间任一点O ,分别作直线a ′∥a ,b ′∥b ,相交直线a ′,b ′所成的 叫做异面直线a 与b 所成的角(或夹角).(1)在定义中,空间一点O 是任取的,根据等角定理,可以判定a ′,b ′所成的角的大小与点O 的位置无关.为了简便,点O 常取在两条异面直线中的一条上.(2)研究异面直线所成的角,就是通过平移把异面直线转化为相交直线,即把求空间角问题转化为求平面角问题,这是研究空间图形的一种基本思路.2.异面直线所成的角的范围异面直线所成的角必须是锐角或直角,则这个角α的取值范围为 . 3.两条异面直线垂直的定义如果两条异面直线所成的角是 ,那么我们就说这两条直线互相垂直.两条互相垂直的异面直线a ,b ,记作a ⊥b .4.构造异面直线所成角的方法(1)过其中一条直线上的已知点(往往是特殊点)作另一条直线的平行线;(2)当异面直线依附于某几何体,且直接平移异面直线有困难时,可利用该几何体的特殊点,将两条异面直线分别平移相交于该点;(3)构造辅助平面、辅助几何体来平移直线.注意,若求得的角为钝角,则两异面直线所成的角应为其补角.学科*网5.求两条异面直线所成的角的步骤(1)平移:选择适当的点,平移异面直线中的一条或两条,使其成为相交直线; (2)证明:证明作出的角就是要求的角; (3)计算:求角度(常利用三角形的有关知识);(4)结论:若求出的角是锐角或直角,则它就是所求异面直线所成的角;若求出的角是钝角,则它的补角就是所求异面直线所成的角.K 知识参考答案:一、1.(1)任何一个平面内2.(1)相交直线 (2)平行直线 (3)异面直线 二、1.(1)平行 (2)a ∥c 2.(1)相等或互补 三、1.锐角(或直角) 2.090α<≤ 3.直角K—重点掌握公理4及等角定理,异面直线及其所成的角K—难点理解两异面直线所成角的定义,并会求两异面直线所成的角K—易错忽略异面直线所成的角的范围致误1.空间两直线的位置关系的判断空间两直线的位置关系有平行、相交、异面三种情形,因此对于空间两直线位置关系的判断,应由题意认真分析,进而确定它们的位置关系.【例1】如图,在正方体ABCD-A1B1C1D1中,M、N分别为棱C1D1、C1C的中点,有以下四个结论:①直线AM与CC1是相交直线;②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线AM 与DD1是异面直线.其中正确的结论为A.③④B.①②C.①③D.②④【答案】A【解析】∵A、M、C、C1四点不共面,∴直线AM与CC1是异面直线,故①错误;同理,直线AM与BN也是异面直线,故②错误.同理,直线BN与MB1是异面直线,故③正确;同理,直线AM与DD1是异面直线,故④正确.故选A.【方法技巧】判定或证明两直线异面的常用方法:1.定义法:不同在任何一个平面内的两条直线.2.定理法:过平面外一点与平面内一点的直线,和平面内不经过该点的直线是异面直线.3.推论法:一条直线上两点与另一条与它异面的直线上两点所连成的两条直线为异面直线.4.反证法:证明立体几何问题的一种重要方法. 证明步骤有三步:第一步是提出与结论相反的假设;第二步是由此假设推出与已知条件或某一公理、定理或某一已被证明是正确的命题相矛盾的结果;第三步是推翻假设,从而原命题成立. 2.公理4的应用证明两条直线平行的方法: (1)平行线的定义;(2)利用平面几何的知识,如三角形与梯形的中位线、平行四边形的性质、平行线分线段成比例定理等; (3)利用公理4.【例2】如图,△ABC 的各边对应平行于111△A B C 的各边,点E ,F 分别在边AB ,AC 上,且1,3AE AB AF ==13AC ,试判断EF 与的位置关系,并说明理由.【解析】平行.理由如下: ∵11,33AE AB AF AC ==,∴∥EF BC . 又11∥B C BC ,∴11∥B C EF . 3.等角定理利用等角定理解题的关键是不要漏掉两个角互补的这种情况. 【例3】空间两个角α,β的两边分别对应平行,且α=60°,则β为 A .60° B .120° C .30°D .60°或120°【答案】D【解析】∵空间两个角α,β的两边对应平行,∴这两个角相等或互补,∵α=60°,∴β=60°或120°.故选D . 【名师点睛】根据公理4知道当空间两个角α与β的两边对应平行时,得到这两个角相等或互补,根据所给的角的度数,即可得到β的度数.【例4】如图所示,已知棱长为a 的正方体中,M ,N 分别是棱的中点.(1)求证:四边形是梯形; (2)求证:(2)由(1)知MN ∥A 1C 1,又∵ND ∥A 1D 1,∴∠DNM 与∠D 1A 1C 1相等或互补,而∠DNM 与∠D 1A 1C 1均是直角三角形的锐角,∴∠DNM =∠D 1A 1C 1. 4.两异面直线所成的角通过平移直线至相交位置求两条异面直线所成的角,是数学中转化思想的运用,也是立体几何问题的一个难点.【例5】如图,四棱锥P ABCD -中,90ABC BAD ∠=∠=,2BC AD =,PAB △和PAD △都是等边三角形,则异面直线CD 和PB 所成角的大小为A.90B.75C.60D.45【答案】A【方法点睛】本题主要考查了空间几何体的结构特征及空间中异面直线所成角的求解,其中根据空间几,放置在三角形中,利用何体的结构特征,把空间中异面直线CD和PB所成的角转化为平面角AEF解三角形的知识求解是解答本题的关键,着重考查了转化与化归思想和学生的推理、运算能力,试题属于基础题.5.忽略异面直线所成的角的范围致误【例6】如图,已知空间四边形ABCD中,AD=BC,M,N分别为AB,CD的中点,且直线BC与MN所成的角为30°,求BC与AD所成的角.【错因分析】在未判断出∠MEN 是锐角或直角还是钝角之前,不能断定它就是两异面直线所成的角,因为异面直线所成的角α的取值范围是090α<≤,如果∠MEN 为钝角,那么它的补角才是异面直线所成的角. 学#科网【正解】以上同错解,求得∠MEN =120°,即BC 与AD 所成的角为60°.【误区警示】求异面直线所成的角的时候,要注意异面直线所成的角α的取值范围是090α<≤.1.若,a b 为异面直线,直线c a ∥,则c 与b 的位置关系是 A .相交 B .异面 C .平行 D .异面或相交 2.已知∥AB PQ ,∥BC QR ,∠ABC =30°,则∠PQR 等于 A .30° B .30°或150° C .150° D .以上结论都不对 3.已知异面直线,a b 分别在平面,αβ内,且c αβ=,那么直线c 一定A .与a b ,都相交B .只能与a b ,中的一条相交C .至少与a b ,中的一条相交D .与a b ,都平行 4.如图所示,在三棱锥P ABC -的六条棱所在的直线中,异面直线共有A .2对B .3对C .4对D .6对5.如图,四面体ABCD 中,AD BC =,且AD BC ⊥,E F 、分别是AB CD 、的中点,则EF 与BC 所成的角为A .30B .45C .60D .906.如果OA //O A '',OB //O B '',那么AOB ∠和A O B '''∠的关系为 . 7.下列命题中不正确的是________.(填序号)①没有公共点的两条直线是异面直线; ②分别和两条异面直线都相交的两直线异面;③一条直线和两条异面直线中的一条平行,则它和另一条直线不可能平行; ④一条直线和两条异面直线都相交,则它们可以确定两个平面.8.如图所示,两个三角形ABC 和A'B'C'的对应顶点的连线AA',BB',CC'交于同一点O , 且AO BO COOA OB OC =='''.求证:△∽△ABC A B C '''.9.空间四边形ABCD中,AB=CD且AB与CD所成的角为60°,E、F分别是BC、AD的中点,求EF与AB所成角的大小.10.分别和两条异面直线相交的两条不同直线的位置关系是A.相交B.异面C.异面或相交D.平行11.如图是一个正方体的平面展开图,则在正方体中,AB与CD的位置关系为A.相交B.平行C .异面而且垂直D .异面但不垂直12.如图,正四棱锥ABCD P 的所有棱长均相等,E 是PC 的中点,那么异面直线BE 与PA 所成的角的余弦值等于_________.ECDPAB13.如图,若P 是△ABC 所在平面外一点,PA ≠PB ,PN ⊥AB ,N 为垂足,M 为AB 的中点,求证:PN 与MC 为异面直线.14.(2016上海)如图,在正方体ABCD −A 1B 1C 1D 1中,E 、F 分别为BC 、BB 1的中点,则下列直线中与直线EF 相交的是BC D E F A B 11D 1A .直线AA 1B .直线A 1B 1C .直线A 1D 1 D .直线B 1C 115.(2015广东)若直线l 1与l 2是异面直线,l 1在平面α内,l 2在平面β内,l 是平面α与平面β的交线,则下列命题正确的是 A .l 与l 1,l 2都不相交B .l 与l 1,l 2都相交C .l 至多与l 1,l 2中的一条相交D .l 至少与l 1,l 2中的一条相交16.(2015浙江)如图,直三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥平面ABC .若AB =AC =AA 1=1,BC =2,则异面直线A 1C 与B 1C 1所成的角为A .30°B .45°C .60°D .90°17.(2014广东)若空间中四条两两不同的直线1234,,,l l l l ,满足12l l ⊥,23l l ∥,34l l ⊥,则下列结论一定正确的是A .14l l ⊥B .14l l ∥C .1l 与4l 既不垂直也不平行D .1l 与4l 的位置关系不确定1 2 3 4 5 10 11 14 15 16 17 DBCBBCDDDCD1.【答案】D【解析】c a ∥,a b ,为异面直线,所以c 与b 的位置关系是异面或相交.4.【答案】B【解析】根据异面直线的定义观察图形,可知有三对异面直线,分别是PB 与AC 、P A 与BC 、PC 与AB ,故选B. 5.【答案】B【解析】如图,设G 为AC 的中点,连接,EG FG .由中位线可知,∥∥EG BC GF AD ,所以GEF ∠就是EF 与BC 所成的角,且三角形GEF 为等腰直角三角形,所以45GEF ∠=.6.【答案】相等或互补【解析】根据等角定理的概念可知AOB ∠和A O B '''∠的关系为相等或互补. 7.【答案】①②8.【解析】∵AA'与BB'交于点O ,且AO BOOA OB='',∴AB ∥A'B'.同理,AC ∥A'C'.又∠BAC 与∠B'A'C'两边的方向相反,∴∠BAC =∠B'A'C'. 同理,∠ABC =∠A'B'C'. 因此,△∽△ABC A B C '''.9.【解析】如图,取AC 的中点G ,连接EG 、FG ,则EG ∥AB ,GF ∥CD ,且由AB =CD 知EG =FG ,∴∠GEF (或它的补角)为EF 与AB 所成的角,∠EGF (或它的补角)为AB 与CD 所成的角. ∵AB 与CD 所成的角为60°,∴∠EGF =60°或120°. 由EG =FG 知△EFG 为等腰三角形, 当∠EGF =60°时,∠GEF =60°;当∠EGF =120°时,∠GEF =30°.学@科网 故EF 与AB 所成的角为60°或30°.10.【答案】C【解析】(1)若两条直线与两异面直线的交点有4个,如图(1),两条直线异面;(2)若两条直线与两异面直线的交点有3个,如图(2),两条直线相交.故选C.(1) (2)【误区警示】在判断两直线的位置关系时,要全面思考问题,可通过画出相关图形帮助分析,从而防止遗漏.本题中,没有明确指出直线交点的个数,两条直线分别与两异面直线相交,交点可能有4个,此时两条直线异面,也可能有3个,此时两条直线相交.11.【答案】D【解析】将展开图还原为正方体,如图所示.AB与CD所成的角为60°,故选D.13.【解析】假设PN与MC不是异面直线,则存在一个平面α,使得PN⊂α,MC⊂α,于是P∈α,C∈α,N∈α,M∈α.∵PA≠PB,PN⊥AB,N为垂足,M是AB的中点,∴M,N不重合.∵M∈α,N∈α,∴直线MN⊂α.∵A∈MN,B∈MN,∴A∈α,B∈α.即A,B,C,P四点均在平面α内,这与点P在平面ABC外相矛盾.∴假设不成立,则PN与MC是异面直线.16.【答案】C【解析】根据题意,得BC∥B1C1,故异面直线A1C与B1C1所成的角即BC与A1C所成的角.如图,连接A 1B ,在△A 1BC 中,BC =A 1C =A 1B =2,故∠A 1CB =60°,即异面直线A 1C 与B 1C 1所成的角为60°.故选C.17.【答案】D【解析】如下图所示,在正方体1111ABCD A B C D -中,取1AA 为2l ,1BB 为3l ,取AD 为1l ,BC 为4l ,则14l l ∥;取AD 为1l ,AB 为4l ,则14l l ⊥;取AD 为1l ,11A B 为4l ,则1l 与4l 异面,因此14,l l 的位置关系不确定,故选D.D 1C 1B 1A 1DCBA。

第63课 空间两条直线

第63课 空间两条直线
A. EMBED Equation.3 B. EMBED Equation.3 C. EMBED Equation.3 D. EMBED Equation.3
9.在四面体ABCD中,AB=8,CD=6,M、N分别是BC、AD的中点,且MN=5,则AB
A.1 B.2 C.3 D.4
6.空间四边形两条对角线互相垂直,则顺次连结各边中点的四边形是 ( )
A.空间四边形 B.矩形 C.菱形 D.正方形
7.如图所示,在正方体ABCD—A1B1C1D1中,M、N分别为棱AA1和BB1的中点,则异面直线CM与D1N所成的角的正弦值为 ( )
第2课 空间两条直线习题解答
1.D 解这种题简单、省时的方法是在草稿纸上作如下记录,然后对照选项判断①√②×③×④×⑤√.
2.D 若射影为两个点,则两条直线与平面垂直,可知两直线平行,与异面相矛盾.
3.B 在a,b所确定的平面外作与a,b都成60°角的直线有两条.
4.D 12×2=24.
∴∠A1BC1(或它的补角)是异面直线A1B与AD1所成的角.
设AA1=a,∵∠ABA1=45°,∠A1AD1=60°
∴在△AA1D1与△A1AB中,AB=AA1=a,A1B= EMBED Equation.3 a,AD1=BC1=2a,A1D1= EMBED Equation.3 a,
【解前点津】 判定两条直线平行,首先考虑把两直线放在同一
平面内,利用平面图形的性质实施证明,若图形中这样的平面不好找,
可以考虑实施转化,利用平行公理(或后继将要学习的直线与平面平行
的性质定理、向量知识等)实施证明.
【规范解答】 证明:连结BC1、AD1,因为ABCD-A1B1C1D1是正
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

其中 l 和 m 是不全为零的实数,且
A1 B1 C1 m (否则左端恒为零)
A2 B2 C2
l
(2)由平面 : Ax By Cz d 0
所决定的平面束的方程是 Ax By Cz 0
其中 为任意实数。(这是常用的形式)
空间“有轴平面束”和“平行平面束”这两个概念,退 化到平面上,有“中心直线束”和“平行直线束”的概 念中:心直线束: 如果给定了平面上的两条直线,
因此,所求直线的方程为:
32 6
x9

y

2 9

z
39
8
7
1
P。133
9。(2)解:
L1
:
x

y

2t 3t

3 5,
L2
:
x

y

5t 4t
10 7
z t
z t
设所求直线L与 L1 的交点为P,它所对应的参数为 t1
L与 L2 的交点为Q,它所对应的参数为 t2
由 1 1 1 0 1 2
1 2 3 0, 2 1 4 0
XYZ X Y Z

X X
2Y 2Y

Z Z

0 0
可得:X:Y:Z=0:1:2 所求直线的方程为:
x 1 y 1 z 1 012
例2。已知两直线
L1 :
x 1

y 1
z 1 0 , L2
解: 过直线L的平面束方程为:
l(2x y 2z 1) m(x 2y z 2) 0
即: (2l m)x (l 2m) y (2l m)z (l 2m) 0 (1)
由于所求平面与已知平面垂直,因此
(2l m) (l 2m) (2l m) 0 即 l 2m 0 取 l 2, m 1 代入(1),得 3x 3z 4 0
3.6
空间两直线的相关位置
空间两直线的相关位置:
设直线 L1 过点 M1(x1, y1, z1) ,其方向矢量为 v1 {X1,Y1, Z1}
直线 L2 过点 M 2 (x2 , y2 , z2 ),其方向矢量为 v2 {X 2,Y2, Z2}
L1 和 L2 两直线共面的充要条件是: v1, v2 和 M1M 2 三个矢量共
P.133 10 作业:P.132 2.(1); 3.(1),(3); 4; 5.(2);
过P(2,1,0)作平面垂直已知直线,其方程为:
3(x 2) 2( y 1) 2(z 0) 0
即: 3x 2y 2z 8 0
3x 2y 2z 8 0
直线和平面的交点M可由联立方程:x 5 y z 25 t
X2
1 1 0 0
Y1 Z1
002
Y2 Z 2
y y1 Y1
Z1 X1 Z2 X2
y y2 Y2
Z1 X1 Z2 X2
z z1 Z1 0
X1 Y1 X 2 Y2
z z2 Z2 0
X1 Y1 X 2 Y2
x y 0
即 x y 0
它也可表示为:
这条公垂线的方程就是z轴。
d M1M 2 (v1 v2 )

4 2
v1 v2
02 02 22 2

(3)将数据代入公垂线方程,


x x1 X1
x 0 y 0 z (1)

Y1
Z1

1
1
0 0 Y2 Z2

0
0
2
x x2
x 1 y 1 z 1
aa bb cc 1 dd
OM与OM 共线 即 直线 MM 通过原点O。
P。133 9。(1)解:
z
直线1:
z z

5x 4x

6 3

x z

9 39
直线2:z z
2x 4
3y 5
x 3

y3 2

z4 6
M
L0 L0
公垂线 可以看作由过点 M1 ,以 v1, v1 v2 为方位矢量 的平面及过点 M 2 ,以 v2 , v1 v2 为方位矢量的平面的交
线。 因此,公垂线 的方程为:


x x1 X1

Y1
Z1
y y1
Y1 Z1 X1
z z1
Z1 0 X1 Y1
v1
Y2 Z2 Z2 X 2 X 2 Y2
N1
L1
M1
N2 v2 M2
x x2 X2
y y2 Y2
z z2 Z2 0
L0
L2
Y1 Z1 Z1 X1 X1 Y1
Y2 Z 2 Z 2 X 2 X 2 Y2
例1。求通过点P(1,1,1)且与两直线
L1
:
x 1

y 2

z 3 , L2
:
即:
cos
(L1,
L2
)


v1 v2 v1 v2
因此,在直角坐标糸中,
cos(L1, L2 )
X1X 2 Y1Y2 Z1Z2
X
2 1

Y12

Z12
X
2 2
Y22

Z22
两直线垂直的充要条件是:
X1X 2 Y1Y2 Z1Z2 0
两异面直线的距离
空间两直线上点的最短距离叫做两条直线之间的距离。
平行平面束
空间中平行于同一平面的所有平面的集合叫做平 行平面束。
(1)如果两个平面 1 : A1x B1 y C1z D1 0 2 : A2x B2 y C2z D2 0
为平行平面,那么,平行平面束的方程是:
l( A1x B1 y C1z D1) m( A2x B2 y C2z D2 ) 0
v2
N
L1
vy
o
x
L0
L2
直线2过点N(0,-3,-4),其方向矢量 v2 {3,2,6}
设所求直线的方向矢量为v,因v// L0 ,所以v={8,7,1},它与直线1
的交点设为M(9,b,39),
9 0 b 3 39 4
注意到NM,v, v2 共面,因此 8
7
1 0
解之,得
b 2 9
L1 : A1x B1y C1 0
L2 : A2x B2 y C2 0
若两直线相交,那么过交点的所有直线的集合叫做中心直 线束,那个点叫做直线束的中心。
若两直线平行,所有与它们平行的直线的集合叫做平行直 线束,这些直线确定的方向叫做直线束的方向。
方程 l( A1x B1 y C1) m( A2 x B2 y C2 ) 0
3。重合: 0, X1 :Y1 : Z1 X 2 :Y2 : Z2 x2 x1 : y2 y1 : z2 z1
x2 x1 4。两直线异面的充要条件是: X1
X2
y2 y1 Y1 Y2
z2 z1
Z1 0
Z2
两直线的夹角: (L1, L2 ) (v1, v2 )或 (v1, v2 )
面 即:三矢量的混合积为0。
x2 x1 y2 y1 z2 z1
M2
L2
v2
X1
Y1
Z1 0
X2
Y2
Z2
v1
1。相交: 0, X1 :Y1 : Z1 X 2 :Y2 : Z2 M1
L1
2。平行: 0, X1 :Y1 : Z1 X 2 :Y2 : Z2 x2 x1 : y2 y1 : z2 z1
:
x 1:两直线为异面直线;
(2)求两直线间的距离;(3)求两直线的公垂线方程。
解:(1)
1 0 1 0 1 (1)
1 1 0 4 0,
两直线异面
11
0
(2) v1 v2 {1,1,0}{1,1,0} {0,0,2)
交于一条直线L, 那么,以L为轴的有轴平面束的方程是:
l( A1x B1 y C1z D1) m( A2x B2 y C2z D2 ) 0
其中 l 和 m 是不全为零的实数(证见P。135~136)。
在求解具体问题时,有轴平面束的方程常写成:
A1x B1y C1z D1 ( A2x B2 y C2z D2 ) 0 ( 1)
x 1 2

y2 1

z 3 4
都相交的直线的方程。
M1
L1
M2
v
p
解: L1 过 M1(0,0,0) ,L2 过 M 2 (1,2,3)
设所求直线的方向矢量为v=(X,Y,Z),
L2
则 M1P {1,1,1}, n1 {1,2,3}, v {X ,Y , Z}共面,
M 2P {0,1,2}, n2 {2,1,4}, v {X ,Y , Z}共面
解: D1 D2 0
作业:P。134 2。
3。8
平面束
定义:有轴平面束
空间中通过同一条直线的所有平面的集合叫做有轴 平面束,并称L那条直线为平面束的轴。
定理:如果两个平面 1 : A1x B1 y C1z D1 0 2 : A2x B2 y C2z D2 0
直线L: x x0 y y0 z z0
相关文档
最新文档