无线通信系统频率干扰原理及其解决之道

合集下载

无线通信系统频率干扰原理及其解决之道

无线通信系统频率干扰原理及其解决之道

无线通信系统频率干扰原理及其解决之道随着计算机和通信技术的迅猛发展,全球信息网络正在快速向以ip为基础的下一代网络(ngn)演进。

未来全球个人多媒体通信的宽带化、移动化的技术趋势,加之灵活性、便利性的市场要求,使得无缝覆盖、无线连接的目标正在日益变为现实。

当前,各种无线技术呈现出百花齐放、百技争鸣的局面,这在加速无线应用普及的同时,也因无线技术所固有的频率干扰而面临不可忽视的问题。

1、频率干扰原理分析无线干扰的产生是多种多样的,原有的专用无线电系统占用现有频率资源、不同运营商网络配置不当、发信机自身设置问题、小区重叠、环境、电磁兼容(emc)等,都是无线通信网络射频干扰产生的原因。

工作于不同频率的系统间的共存干扰,本质上都是由于发射机和接收机的非完美性造成的。

通常,有源设备在发射有用信号的同时,由于器件本身的原因和滤波器带外抑制的限制,在它的工作频带外还会产生杂散、谐波、互调等无用信号,这些信号落到其他无线系统的工作频带内,就会对其形成干扰。

对于无线系统而言,发射机在发射有用信号时会产生带外辐射,它包括由于调制引起的邻频辐射和带外杂散辐射。

接收机在接收有用信号的同时,落入信道内的干扰信号可能会引起接收机灵敏度的损失,落入接收带宽内的干扰信号可能会引起带内阻塞;同时接收机也存在非线性带来的非完美性,带外信号(发射机有用信号)会引起接收机的带外阻塞。

有源设备产生的带外杂散、谐波、互调等无用信号的强度除了与设备本身的质量有关以外,还与两个因素有关:自身的输出功率越大,无用信号的输出越大;偏离工作带宽的程度,离工作带宽越远,无用信号越小。

系统对外来干扰的承受能力也与两个因素有关:本身信号的强度,信号越强受干扰的机会越少;干扰信号的大小,干扰信号电平越小,信号受干扰程度越低。

此外,发射机和接收机间的干扰还取决于两个系统工作频段的间隔和收发信机空间隔离等因素。

无线和移动通信系统的干扰主要有同频干扰、邻频干扰、带外干扰、互调干扰和阻塞干扰。

无线电通讯干扰问题及其处理策略

无线电通讯干扰问题及其处理策略

无线电通讯干扰问题及其处理策略随着现代无线通信技术的快速发展,无线电通信已经成为人类日常生活中不可或缺的一部分。

无线电通信面临的主要问题之一就是干扰。

干扰可以由多种因素引起,如电磁波辐射、频率重叠、信号爆炸等。

干扰会导致信号弱化、变形或完全中断,严重影响通信质量和稳定性。

无线电通信干扰问题的处理需要采取一系列策略和措施,以确保通信的正常进行。

以下是一些常见的处理策略:1. 频率规划和协调:通过合理规划和协调无线电通信系统的频率使用,可以避免频率重叠和冲突,从而减少干扰的发生。

各个通信系统应按照国际、国内的频谱规定进行频段划分和协调。

2. 电磁隔离和屏蔽:对于特定的无线电通信系统,可以采用电磁屏蔽和隔离的方法来减少外部的电磁干扰。

在通信设备周围设置屏蔽罩或使用电磁屏蔽材料来阻挡外界电磁波的干扰。

3. 功率控制和调整:调整发射功率和接收灵敏度是处理干扰问题的重要手段。

通过改变设备的发射功率和接收灵敏度,可以降低相邻设备之间的干扰水平,并提高通信质量和稳定性。

4. 信号处理和调制技术:采用适当的信号处理和调制技术可以提高无线通信系统的抗干扰能力。

使用正交频分复用(OFDM)等调制技术可以有效抑制多径干扰,提高通信质量。

5. 引入防干扰措施:对于重要的无线通信系统,可以引入专门的防干扰设备和措施来应对干扰问题。

利用干扰监测和定位技术,及时发现和定位干扰源,采取相应措施进行干扰抑制。

6. 法律法规和管理措施:无线电通信干扰问题需要通过法律法规和管理措施加以规范和解决。

各国需要建立健全的频谱管理制度和监督机制,加强对无线电通信设备和系统的管理,限制干扰源的产生和传播。

无线电通信干扰问题是一个复杂而严峻的问题,需要综合采取多种策略和措施进行处理。

通过合理的频率规划和协调、电磁隔离和屏蔽、功率控制和调整、信号处理和调制技术、引入防干扰措施以及法律法规和管理措施,可以有效减少无线电通信干扰,提高通信质量和稳定性。

无线电通讯干扰问题及其处理策略

无线电通讯干扰问题及其处理策略

无线电通讯干扰问题及其处理策略无线电通讯干扰是指在无线电频段上,由于各种原因而影响到无线电通信设备正常工作的现象。

无线电通讯干扰的原因可能包括人为因素,如无线电设备故障、误操作等,也可能是自然因素,如雷电、电磁波等。

无线电通讯干扰会对正常的通信活动造成一定的影响,所以对无线电通讯干扰问题必须给予足够的重视,并采取相应的处理策略。

无线电通讯干扰对通信设备的影响是多方面的。

干扰会导致通信设备接收信号的质量下降,从而影响通信质量。

干扰还可能造成通信设备无法正常进行接收和发送信号,从而导致通信中断。

干扰还可能引起通信设备的故障,甚至对设备的正常工作造成损坏。

加强管理和监督是解决无线电通讯干扰问题的基础。

相关部门应建立健全无线电通讯干扰监测和处理机制,及时发现和处理干扰情况。

对无线电通讯设备的使用进行严格管理,确保设备符合相关标准,减少设备故障和误操作对通信的影响。

改善通信设备的抗干扰能力是解决干扰问题的重要手段。

通信设备制造商应加强研发,提高设备的抗干扰能力,使其能够更好地应对各种干扰情况。

可以采用多频段、多路并行通信等技术手段,提高通信系统的干扰容忍度,从而减少干扰对通信的影响。

加强国际合作和标准制定是处理干扰问题的重要途径。

无线电通信具有跨国界的特点,很多干扰问题需要通过国际合作来解决。

各国应加强信息交流和合作,共同制定和落实无线电通信的标准,减少跨国干扰问题的发生。

提高公众的无线电通讯素质也是解决干扰问题的关键。

公众应加强对无线电通讯的了解,掌握正确的使用和操作方法,避免因误操作或不当使用而造成干扰。

应增强公众对无线电通讯干扰问题的意识,积极配合和支持相关部门的工作,共同维护良好的无线电通讯环境。

无线电通讯干扰问题是一个复杂的问题,需要各方共同努力来解决。

通过加强管理和监督、改善通信设备抗干扰能力、加强国际合作和标准制定以及提高公众无线电通讯素质,可以有效减少干扰对通信的影响,维护良好的通信环境。

无线电通讯干扰问题及其处理策略

无线电通讯干扰问题及其处理策略

无线电通讯干扰问题及其处理策略无线电通讯干扰是指在电磁谱中其他设备或信源产生的噪声或干扰信号影响到无线电通讯设备正常工作的现象。

这种干扰可能会导致数据传输中断,信号质量下降,通话质量变差等问题。

为了解决无线电通讯干扰问题,我们需要采取一些处理策略。

要找到干扰源并加以消除。

可以使用无线频谱分析仪来检测和定位干扰源。

一旦干扰源被确定,可以采取各种方法来排除干扰。

比如改变设备的位置,增加屏蔽措施,更换或优化设备的抗干扰性能等。

可以采取调制技术的改进来提高抗干扰性能。

比如采用频率的跳变调制技术,使干扰信号的影响范围减小。

同时可以使用差分编码和错误检验码等技术来提高数据的可靠性和抗干扰能力。

可以采用频谱管理的方法来减少干扰。

通过对频谱资源的合理规划和分配,可以避免频段的重叠和冲突,减少干扰的发生。

同时可以使用频率分配算法来避免设备之间的相互干扰。

加强监测和管理也是解决干扰问题的重要策略。

通过建立监测系统,可以及时发现干扰事件,并采取相应的措施。

建立相关的管理制度和法规,加强对无线电通讯设备的监管,提高抗干扰性能。

还需要开展相关的研究和技术创新,不断提升无线电通讯设备的抗干扰性能。

比如研发新的调制解调技术,优化设备的信号处理算法,改进功率控制和灵敏度控制等,以应对不断变化的干扰环境。

无线电通讯干扰是一个复杂的问题,需要多方面的综合措施来解决。

通过找到干扰源并采取相应的消除措施,提高设备的抗干扰能力,采用频谱管理和监测控制等手段,不断开展研究和技术创新,可以有效地解决无线电通讯干扰问题,保障通信的稳定和可靠。

无线通信中的干扰与抗干扰方法

无线通信中的干扰与抗干扰方法

无线通信中的干扰与抗干扰方法随着无线通信技术的不断发展,人们的生活离不开各种无线通信设备,如手机、无线网络、蓝牙耳机等。

然而,无线通信中的干扰问题也逐渐显现出来。

本文将详细介绍无线通信中的干扰问题以及抗干扰方法,分步骤进行说明。

一、无线通信中的干扰问题:1.1 外部干扰:外部干扰是指无线通信设备受到其他无关设备或信号的干扰,包括电磁辐射、其他频率段的无线信号等。

1.2 内部干扰:内部干扰是指无线通信设备自身产生的干扰,如不同通信设备之间的相互干扰、不同频段的信号相互干扰等。

二、无线通信中的干扰类型:2.1 同频干扰:同频干扰是指在相同频段上的两个信号互相干扰,导致通信质量下降。

例如,在同一频段上通话的两部手机会相互干扰。

2.2 邻频干扰:邻频干扰是指在相邻频段上的两个信号互相干扰,也会导致通信质量下降。

例如,使用相邻频段的两个无线网络之间可能会相互干扰。

2.3 共存干扰:共存干扰是指不同通信系统或设备共同使用同一频段,导致互相干扰,进而影响通信质量。

例如,无线网络在2.4GHz频段上与蓝牙设备共存时会相互干扰。

三、无线通信中的抗干扰方法:3.1 技术手段:3.1.1 协议设计:通过优化协议的设计,降低通信系统之间的干扰。

例如,在邻频干扰情况下,通过合理规划频段的间隔,来降低相邻频段信号之间的干扰。

3.1.2 功率控制:通过合理的功率控制策略,减少同频干扰。

例如,无线通信设备可以根据距离远近、信号强度等因素自动调整发送功率,降低同频干扰的可能性。

3.1.3 频谱分配:通过合理的频谱分配策略,减少共存干扰。

例如,通信系统可以按需分配频段,避免频繁的频谱冲突和共存干扰。

3.1.4 编码技术:采用差分编码、编码违序、交织技术等方式,提高信号的抗干扰能力。

例如,利用纠错编码算法可以在传输过程中对数据进行检测和纠正,提高通信质量。

3.2 设备设计:3.2.1 滤波器设计:通过在无线通信设备中加入滤波器来屏蔽外部干扰。

无线电通讯干扰问题及其处理策略

无线电通讯干扰问题及其处理策略

无线电通讯干扰问题及其处理策略无线电通讯是一种十分便捷且普遍的通讯方式,其在各种领域都有着广泛的应用。

在使用无线电通讯的过程中,会经常遇到一些干扰问题,这不仅影响了通讯的效果,也给通讯双方带来了诸多困扰。

如何有效地解决无线电通讯干扰问题成为了一个迫切需要解决的问题。

一、无线电通讯干扰问题的表现及原因分析1. 无线电通讯干扰问题的表现(1)语音通讯中出现声音杂音;(2)数据传输中出现错误码;(3)无线信号中出现断断续续的信号;(4)通信距离减短。

2. 无线电通讯干扰问题的原因分析(1)电磁干扰:如电器、电磁场等;(2)频谱叠加:当多个频率在同一频段上使用时,会相互干扰;(3)技术问题:设备自身故障或设计不当引起的干扰。

1. 强化干扰源监管(1)增加对无线电通信设备的监管力度,确保设备的合法合规;(2)严格管理电磁干扰源,保证其合理使用;(3)采取技术手段减少电磁干扰源对无线电通讯的干扰。

2. 加强频率规划管理(1)合理规划无线电频段,避免频谱叠加引起的干扰;(2)统一管理频率资源,合理分配无线电频段;(3)加强对频率使用的监管,保证各频段的合理使用。

3. 提高通讯设备抗干扰性能(1)加强通讯设备的技术研发,提高其抗干扰能力;(2)对新设备进行严格测试,确保其在真实环境中的稳定性和可靠性;(3)更新老旧设备,采用抗干扰性能更好的设备替代。

4. 完善通讯规范标准(1)建立完善的无线电通讯规范标准,规范无线电通信的使用;(2)加强对通讯设备的检测和认证,确保其符合规范标准;(3)对使用无线电通讯的个人和单位进行培训,提高其对通讯规范的认知和遵守。

5. 加强干扰问题的监测与应急响应(1)建立无线电通讯干扰监测系统,及时掌握干扰情况;(2)建立应急响应机制,对重大干扰事件及时处置;(3)加强与相关部门的协作,共同解决无线电通讯干扰问题。

1. 电磁干扰处理案例在一次军事演习中,某指挥部所用的通信设备受到了严重的电磁干扰影响,导致无法正常进行指挥和通讯。

无线电通讯干扰问题及其处理策略

无线电通讯干扰问题及其处理策略

无线电通讯干扰问题及其处理策略无线电通讯的快速发展在一定程度上便利了人们的生活和工作,但与此无线电通讯干扰问题也随之而来。

无线电通讯干扰是指由于电波传播方式、频率分配、天线高度及方向、功率大小等原因引起的相互之间干扰。

这种干扰不仅会影响通讯质量,还可能对无线通讯系统造成损害。

为了解决无线电通讯干扰问题,我们需要采取相应的处理策略。

一、无线电通讯干扰的原因1.频率干扰:由于无线电通讯频率的设置存在一定的随机性,不同频率的电波可能会相互干扰,导致通讯质量下降。

2.天线干扰:天线高度、方向和架设方式等因素会影响无线通讯的传输质量,如果天线设置不当,可能会引起干扰。

3.功率干扰:无线电设备的发射功率大小不一,如果功率设置不当,可能会造成干扰。

4.外部干扰:电力设施、雷电、太阳耀斑等外部因素也可能会对无线电通讯造成干扰。

以上这些原因都可能导致无线电通讯干扰,因此我们需要采取相应的处理策略来解决这一问题。

1.合理设置频率合理设置通讯频率是避免干扰的重要手段。

在无线电通讯系统中,应尽量避免相近频率的电波相互干扰,可以通过频率规划和频率管理来规避不同频率的电波干扰。

2.优化天线设置合理设置天线高度和方向,选择合适的架设方式,可以有效减少天线的干扰影响。

天线的定期检测和维护也是减少干扰的重要手段。

3.控制发射功率合理控制无线设备的发射功率可以减少无线电通讯干扰的可能性。

在使用无线电设备时,要根据实际需要设置合适的发射功率,并确保设备的合理使用。

4.减少外部干扰外部因素对无线电通讯造成的干扰也是需要引起重视的。

对于电力设施、雷电等外部因素,我们可以通过加强设备的防护性能来减少外部干扰对无线通讯的影响。

5.使用干扰抑制技术目前,有许多先进的干扰抑制技术可以用于处理无线电通讯干扰。

使用数字信号处理技术可以有效抑制干扰信号,提高通讯质量。

6.加强监测与维护加强对无线电通讯系统的监测和维护可以及时发现可能存在的干扰问题,并采取相应的措施进行处理。

无线电通讯干扰问题及其处理策略

无线电通讯干扰问题及其处理策略

无线电通讯干扰问题及其处理策略无线电通讯干扰是指无线电信号遭受到来自其他无线电设备的干扰,导致通讯品质下降或无法正常通信的现象。

无线电通讯干扰问题无疑对无线电通信技术的应用和发展产生了一定的限制和困扰。

下面将分析无线电通讯干扰问题可能的原因以及处理策略。

造成无线电通讯干扰的原因可以归结为以下几点:1. 频率重叠:不同的无线电设备在同一频率上进行通信,由于频率相同,容易引起干扰。

2. 不合适的调制方式:在调制方式不匹配的情况下,接收设备无法正确解析发送设备的信号,造成干扰。

3. 功率过大:无线电设备的发射功率超过合理范围,使得其信号扩散到其他频率,造成干扰。

4. 不合适的天线安装位置或方向:天线的安装位置和方向选择不当,导致信号的传播方向与预期不符,引发干扰。

5. 电磁环境干扰:由非无线电设备引起的电磁干扰,如电力设备、大功率设备等,可能产生频谱上的干扰。

还可以采取以下几种方法来处理无线电通讯干扰问题:1. 频谱分析:利用专业的频谱分析仪对无线电环境进行分析,找出干扰源的位置和频率特征,有针对性地进行处理。

2. 滤波处理:通过滤波器对接收设备进行处理,滤除不需要的信号以减少干扰。

3. 信道选择:对于频率冲突较为严重的地区,可以通过选择不同的信道进行通信,以减少干扰。

4. 技术升级:不断引进新的通信技术,如频谱扩展技术、调频跳频技术等,以增加系统的抗干扰能力。

无线电通讯干扰问题是一个复杂的问题,需要多种手段和策略的综合应用来解决。

合理的频率规划、调制方式匹配、功率控制、天线优化和电磁屏蔽等方法可以有效减少干扰源,提高通信质量。

结合频谱分析、滤波处理、信道选择和技术升级等策略,可以进一步提升系统的抗干扰能力,使无线电通信更加可靠和稳定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

无线通信系统频率干扰原理及其解决之道
技术分类:通信 | 2007-08-06
来源:数据通信 | 陈卓余重秀徐大雄
随着计算机和通信技术的迅猛发展,全球信息网络正在快速向以ip为基础的下一代网络(ngn)演进。

未来全球个人多媒体通信的宽带化、移动化的技术趋势,加之灵活性、便利性的市场要求,使得无缝覆盖、无线连接的目标正在日益变为现实。

当前,各种无线技术呈现出百花齐放、百技争鸣的局面,这在加速无线应用普及的同时,也因无线技术所固有的频率干扰而面临不可忽视的问题。

1、频率干扰原理分析
无线干扰的产生是多种多样的,原有的专用无线电系统占用现有频率资源、不同运营商网络配置不当、发信机自身设置问题、小区重叠、环境、电磁兼容(emc)等,都是无线通信网络射频干扰产生的原因。

工作于不同频率的系统间的共存干扰,本质上都是由于发射机和接收机的非完美性造成的。

通常,有源设备在发射有用信号的同时,由于器件本身的原因和滤波器带外抑制的限制,在它的工作频带外还会产生杂散、谐波、互调等无用信号,这些信号落到其他无线系统的工作频带内,就会对其形成干扰。

对于无线系统而言,发射机在发射有用信号时会产生带外辐射,它包括由于调制引起的邻频辐射和带外杂散辐射。

接收机在接收有用信号的同时,落入信道内的干扰信
号可能会引起接收机灵敏度的损失,落入接收带宽内的干扰信号可能会引起带内阻塞;同时接收机也存在非线性带来的非完美性,带外信号(发射机有用信号)会引起接收机的带外阻塞。

有源设备产生的带外杂散、谐波、互调等无用信号的强度除了与设备本身的质量有关以外,还与两个因素有关:自身的输出功率越大,无用信号的输出越大;偏离工作带宽的程度,离工作带宽越远,无用信号越小。

系统对外来干扰的承受能力也与两个因素有关:本身信号的强度,信号越强受干扰的机会越少;干扰信号的大小,干扰信号电平越小,信号受干扰程度越低。

此外,发射机和接收机间的干扰还取决于两个系统工作频段的间隔和收发信机空间隔离等因素。

无线和移动通信系统的干扰主要有同频干扰、邻频干扰、带外干扰、互调干扰和阻塞干扰。

2、无线通信系统频率干扰情形
从我国的实际情况看,主要的无线通信技术将有:属于第二代蜂窝移动通信技术的gsm和窄带cdma、定位为固定电话补充的phs(小灵通)和scdma (大灵通)、同属第三代蜂窝移动通信体系的tdd系统td-scdma 和fdd系统wcdma/dma2000、应用于宽带无线接入的 wlan/wimax、立足于短距离通信的uwb以及将应用于无线识别的frid等。

这些技术的应用领域虽然有所重合,但其特定的市场需求,将在较长时期内共存,因而必须考虑其干扰情形。

2.1 现有无线通信频谱方案
我国现有的无线与移动通信频谱具体分配情况如图1所示,此外,wlan使用无需许可的ism频段,uwb 使用3.5/5.8g频段,而wimax和RFid尚未最终确定频段,其中wimax有可能分配在2.5g、3.5g或5.8g 频段。

2.2 无线干扰基本情形
由图1可以看出,gsm1800、phs、scdma、td-scdma、cdma2000、wcdma等无线系统的频段直接相邻或重合,难以避免之间的相互干扰,而uwb的超宽带的特点也会造成干扰,如图2所示。

图1 我国无线通信技术现有频谱分配
图2 无线干扰示意图
2.3 移动通信系统干扰
移动通信系统中的各种干扰一般可以分为小区内的干扰、小区间的干扰、不同通信制式之间的干扰、不同运营商之间的干扰、系统设备造成的干扰等。

小区内的干扰主要有多径干扰、远近效应和多址干扰等。

这些干扰的产生是由无线信道的时变性和电磁波传播过程中的时延与衰落等特点决定的,当相邻小区采用同一频率时产生的干扰,对于tdd系统来说尤为严重。

tdd系统与fdd系统之间的干扰,主要是tdd信道(包括上行信道和下行信道)与fdd上行信道之间的干扰。

除了上面的干扰之外,不同运营商之间的干扰、系统设备造成的干扰等也是需要加以考虑的问题。

3、干扰解决方案
无线通信系统中的干扰虽然普遍存在,但根据干扰的产生根源和干扰情况的分析,结合计算机仿真和大范围的现场试验,也找到了一些降低和消除干扰的有效办法。

这些方法主要分为两大类:基本技术类和工程建设类。

3.1 基本技术类方法
从具体技术角度分析,小区内干扰可以采用设计正交性好的多址码、上下行链路同步、纠错编码、功率控制、分集接收/发送、联合检测、智能天线、空时处理等信号处理技术加以改善或解决。

而小区间的干扰以及tdd与fdd系统间的干扰,可以从物理层技术方面考虑,也可以从高层的无线资源管理技术着手。

从物理层来看,同步技术和智能天线技术是很好的措施,从无线资源管理角度分析,动态信道分配是十分有效的方案。

此外,还需要考虑不同运营商统一协调网络规划等。

3.2 工程建设类方法
工程建设方案是在移动网络规划和建设的过程中,从工程的角度采用一些优化办法改善无线干扰。

这些方法主要有:增加频率保护带、提高滤波精度、增加站址间距、优化天线安装、限制设备参数等。

增加频率保护带解决方案是通过频率规划,使得干扰系统的发射频段和被干扰系统的接收频段在频域上得到一定的隔离。

随着隔离的增大,干扰系统发射机信号落入被干扰接收机接受带宽内的分量减小,同时接收机接受滤波器对干扰系统发射信号的衰落加大,由此系统间干扰减小。

适当地频率保护带可以有效缓解干扰问题。

同时,在考虑使用附加滤波器来限制干扰信号时,由于理想线性的滤波器难以实现,因此也需要留有一定的保护带为滤波器提供过渡带。

但另一方面,由于频率资源的稀缺,以及发射、接收滤波器频率响应特性的不同,使用保护带时也应综合考虑其他干扰解决方案,尽量减少保护带宽的大小。

提高滤波精度解决方案是在原有设备的无线收发系统基础上,通过使用高精度滤波器或附加滤波器来进一步提高发射机或接收机的滤波特性,达到系统间共存所需的隔离度。

提高
滤波精度是有效解决干扰的途径之一,但也意味着成本的增加。

增加站址间距方法可以有效降低干扰,但此方法受到站址资源匮乏和多运营商共存情况等的限制,具体工程实施难度较大。

优化天线安装包括天线倾角、方位角、垂直和水平隔离等,通过采取一些优化措施,提高天线间的耦合损失,降低干扰。

限制设备参数是规定足够的设备指标来保证收发频率相邻的共存问题,主要有严格限制发射功率等。

4、结论
分析不同的无线干扰情形,有针对性的采取相关解决措施,进而在技术演进、设备研发、网络规划、系统建设、运营和优化中,减弱乃至消除干扰是一个重要的研究领域。

在3g建设前夜,尤其需要我国的科研和工程技术人员为打造精品网络、构造和谐通信作出更多的努力。

相关文档
最新文档