德州仪器(器件介绍)

合集下载

德州仪器(TI) BQ34Z100宽量程电量监测计说明书

德州仪器(TI) BQ34Z100宽量程电量监测计说明书

BQ34Z100 采用 Impedance Track™ 技术的宽量程电量监测计1 特性•支持锂离子和磷酸铁锂化学物质•对电压为 3V 至 65V 的电池使用已获得专利的 Impedance Track™技术估算容量–老化补偿–自放电补偿•支持超过 65Ah 的电池容量•支持高于 32A 的充放电电流•外部负温度系数 (NTC) 热敏电阻支持•支持与主机系统的两线制 I2C 和 HDQ 单线制通信接口•SHA-1/HMAC 认证•一个或者四个 LED 直接显示控制•五个 LED 和通过端口扩展器的更多显示•节能模式(典型电池组运行范围条件)–正常工作:< 140µA 平均电流–睡眠:< 64µA 平均电流–全睡眠:< 19µA 平均电流•封装:14 引脚 TSSOP 2 应用•轻型电动车辆•医疗仪器•移动无线电•电动工具•不间断电源 (UPS)3 说明德州仪器 (TI) BQ34Z100 是独立于电池串联配置工作的电量监测计解决方案,支持各种锂离子和磷酸铁锂电池化学物质。

通过外部电压转换电路可支持 3V 至 65V 的电池,此电路可通过自动控制来降低系统功耗。

BQ34Z100 器件提供多个接口选项,其中包括一个 I2C 从接口、一个 HDQ 从接口、一个或四个直接 LED 接口以及一个警报输出引脚。

此外,BQ34Z100 还支持外部端口扩展器,连接四个以上的 LED。

(1)如需了解所有可用封装,请参阅数据表末尾的可订购产品附录。

简化版原理图Table of Contents1 特性...................................................................................12 应用...................................................................................13 说明...................................................................................14 Revision History ..............................................................25 Pin Configuration and Functions ...................................36 Specifications ..................................................................46.1 Absolute Maximum Ratings........................................46.2 ESD Ratings...............................................................46.3 Recommended Operating Conditions.........................46.4 Thermal Information....................................................56.5 Electrical Characteristics: Power-On Reset................56.6 Electrical Characteristics: LDO Regulator...................56.7 Electrical Characteristics: Internal TemperatureSensor Characteristics..................................................56.8 Electrical Characteristics: Low-FrequencyOscillator.......................................................................66.9 Electrical Characteristics: High-FrequencyOscillator.......................................................................66.10 Electrical Characteristics: Integrating ADC(Coulomb Counter) Characteristics...............................66.11 Electrical Characteristics: ADC (Temperatureand Cell Measurement) Characteristics........................66.12 Electrical Characteristics: Data Flash MemoryCharacteristics (7)6.13 Timing Requirements: HDQ Communication............76.14 Timing Requirements: I 2C-Compatible Interface......86.15 Typical Characteristics..............................................97 Detailed Description ......................................................107.1 Overview...................................................................107.2 Feature Description...................................................117.3 Device Functional Modes..........................................398 Application and Implementation ..................................408.1 Typical Applications..................................................409 Power Supply Recommendations ................................4910 Layout ...........................................................................5010.1 Layout Guidelines...................................................5010.2 Layout Example......................................................5011 Device and Documentation Support ..........................5311.1 Documentation Support..........................................5311.2 接收文档更新通知...................................................5311.3 支持资源..................................................................5311.4 Trademarks.............................................................5311.5 Electrostatic Discharge Caution..............................5311.6 术语表.....................................................................5312 Mechanical, Packaging, and OrderableInformation (53)4 Revision History注:以前版本的页码可能与当前版本的页码不同Changes from Revision B (December 2012) to Revision C (May 2021)Page•根据更新的德州仪器 (TI) 标准更改了文档格式并通篇更新了 SRP 和 SRN 引脚................................................1•Changed Ground System ................................................................................................................................50•Changed Board Offset Considerations ............................................................................................................51Changes from Revision A (September 2012) to Revision B (December 2012)Page•Changed Absolute Maximum Ratings ...............................................................................................................4•Changed 节 6.3 ..................................................................................................................................................4•Changed 节 7.2.15.3 ........................................................................................................................................39•Changed SLEEP Mode ....................................................................................................................................39•Changed FULL SLEEP Mode ..........................................................................................................................39•Changed STEP 3 (44)BQ34Z100ZHCS926C – MAY 2012 – REVISED MAY 20215 Pin Configuration and FunctionsP2P3/SDA VEN P4/SCL P1P5/HDQ BAT P6/TS CE SRN REGIN SRP REG25VSSBQ34Z100ZHCS926C – MAY 2012 – REVISED MAY 2021BQ34Z100ZHCS926C – MAY 2012 – REVISED MAY 6 Specifications6.1 Absolute Maximum Ratings(1)(1)Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratingsonly, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability.6.2 ESD Ratings(1)JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.(2)JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.6.3 Recommended Operating Conditions6.3 Recommended Operating Conditions (continued)6.4 Thermal Information(1)For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics Application Report , SPRA953.6.5 Electrical Characteristics: Power-On Reset6.6 Electrical Characteristics: LDO Regulator(1)(1)LDO output current, I OUT , is the sum of internal and external load currents.(2)Specified by design. Not production tested.6.7 Electrical Characteristics: Internal Temperature Sensor CharacteristicsBQ34Z100ZHCS926C – MAY 2012 – REVISED MAY 2021BQ34Z100ZHCS926C – MAY 2012 – REVISED MAY 6.8 Electrical Characteristics: Low-Frequency Oscillator(1)The frequency drift is included and measured from the trimmed frequency at VCC = 2.5 V, T A = 25°C.(2)The frequency error is measured from 32.768 kHz.(3)The startup time is defined as the time it takes for the oscillator output frequency to be ±3%.6.9 Electrical Characteristics: High-Frequency Oscillator(1)The frequency error is measured from 2.097 MHz.(2)The startup time is defined as the time it takes for the oscillator output frequency to be ±3%.6.10 Electrical Characteristics: Integrating ADC (Coulomb Counter) Characteristics(1)Specified by design. Not tested in production.(2)Full-scale reference6.11 Electrical Characteristics: ADC (Temperature and Cell Measurement) Characteristics6.11 Electrical Characteristics: ADC (Temperature and Cell Measurement) Characteristics (continued)(1)Specified by design. Not tested in production.6.12 Electrical Characteristics: Data Flash Memory Characteristics(1)Specified by design. Not tested in production.6.13 Timing Requirements: HDQ CommunicationT A = –40°C to 85°C, C REG = 1.0 μF, 2.45 V < V REGIN = V BAT < 5.5 V; typical values at T A = 25°C and V REGIN = V BAT = 3.6 VBQ34Z100ZHCS926C – MAY 2012 – REVISED MAY 2021(a)Break and Break Recovery(c)Host Transmitted Bit(d)Gauge Transmitted Bit(b)HDQ line rise time图 6-1. Timing Diagrams6.14 Timing Requirements: I2C-Compatible InterfaceT A = –40°C to 85°C, C REG = 0.47 μF, 2.45 V < V REGIN = V BAT < 5.5 V; typical values at T A = 25°C and V REGIN = V BAT = 3.6t SU(STA)SCLSDAt w(H)tw(L)t f tr t(BUF)t rt d(STA)REPEATEDSTARTt h(DAT)t su(DAT)t f t su(STOP)STOP START图 6-2. I2C-Compatible Interface Timing DiagramsBQ34Z100ZHCS926C – MAY 2012 – REVISED MAY 6.15 Typical CharacteristicsBQ34Z100ZHCS926C – MAY 2012 – REVISED MAY 2021BQ34Z100ZHCS926C – MAY 2012 – REVISED MAY 7 Detailed Description7.1 OverviewThe BQ34Z100 device accurately predicts the battery capacity and other operational characteristics of a single cell or multiple rechargeable cell blocks, which are voltage balanced when resting. The device supports various Li-ion and LiFePO4 chemistries, and can be interrogated by a host processor to provide cell information, such as remaining capacity, full charge capacity, and average current.Information is accessed through a series of commands called Standard Data Commands (see 节7.2.1.1). Further capabilities are provided by the additional Extended Data Commands set (see 节 7.2.2). Both sets of commands, indicated by the general format Command(), are used to read and write information contained within the BQ34Z100 device’s control and status registers, as well as its data flash locations. Commands are sent from host to gauge using the BQ34Z100 serial communications engines, HDQ and I2C, and can be executed during application development, pack manufacture, or end-equipment operation.Cell information is stored in the BQ34Z100 in non-volatile flash memory. Many of these data flash locations are accessible during application development and pack manufacture. They cannot, generally, be accessed directly during end-equipment operation. Access to these locations is achieved by using the BQ34Z100 device’s companion evaluation software, through individual commands, or through a sequence of data-flash-access commands. To access a desired data flash location, the correct data flash subclass and offset must be known. The BQ34Z100 provides 32 bytes of user-programmable data flash memory. This data space is accessed through a data flash interface. For specifics on accessing the data flash, refer to 节 7.2.3.The key to the BQ34Z100 device’s high-accuracy gas gauging prediction is Texas Instrument’s proprietary Impedance Track algorithm. This algorithm uses voltage measurements, characteristics, and properties to create state-of-charge predictions that can achieve accuracy with as little as 1% error across a wide variety of operating conditions.The BQ34Z100 measures charge/discharge activity by monitoring the voltage across a small-value series sense resistor connected in the low side of the battery circuit. When an application’s load is applied, cell impedance is measured by comparing its Open Circuit Voltage (OCV) with its measured voltage under loading conditions.The BQ34Z100 can use an NTC thermistor (default is Semitec 103AT or Mitsubishi BN35-3H103FB-50) for temperature measurement, or can also be configured to use its internal temperature sensor. The BQ34Z100 uses temperature to monitor the battery-pack environment, which is used for fuel gauging and cell protection functionality.To minimize power consumption, the BQ34Z100 has three power modes: NORMAL, SLEEP, and FULL SLEEP. The BQ34Z100 passes automatically between these modes, depending upon the occurrence of specific events. Multiple modes are available for configuring from one to 16 LEDs as an indicator of remaining state of charge. More than four LEDs require the use of one or two inexpensive SN74HC164 shift register expanders.A SHA-1/HMAC-based battery pack authentication feature is also implemented on the BQ34Z100. When the IC is in UNSEALED mode, authentication keys can be (re)assigned. A scratch pad area is used to receive challenge information from a host and to export SHA-1/HMAC encrypted responses. See 节 7.2.14.1 for further details.备注Formatting conventions in this document:Commands: italics with parentheses and no breaking spaces; for example, RemainingCapacity().Data Flash: italics, bold, and breaking spaces; for example, Design Capacity.Register Bits and Flags: brackets only; for example, [TDA] DataFlash Bits: italic and bold; for example, [LED1]Modes and states: ALL CAPITALS; for example, UNSEALED mode.7.2 Feature Description7.2.1 Data Commands7.2.1.1 Standard Data CommandsThe BQ34Z100 uses a series of 2-byte standard commands to enable host reading and writing of battery information. Each standard command has an associated command-code pair, as indicated in 表 7-1. Because each command consists of two bytes of data, two consecutive HDQ/I2C transmissions must be executed to initiate the command function and to read or write the corresponding two bytes of data. Standard commands are accessible in NORMAL operation. Also, two block commands are available to read Manufacturer Name and Device Chemistry. Read/Write permissions depend on the active access mode.7.2.1.2 Control(): 0x00/0x01Issuing a Control() command requires a subsequent two-byte subcommand. These additional bytes specify the particular control function desired. The Control()command allows the host to control specific features of the BQ34Z100 during normal operation, and additional features when the BQ34Z100 is in different access modes, as described in 表 7-2.7.2.1.2.1 CONTROL_STATUS: 0x0000Instructs the fuel gauge to return status information to Control addresses 0x00/0x01. The status word includes the following information.Legend: RSVD = ReservedFAS:Status bit that indicates the BQ34Z100 is in FULL ACCESS SEALED state. Active when set.SS:Status bit that indicates the BQ34Z100 is in the SEALED state. Active when set.CALMODE:Status bit that indicates the BQ34Z100 calibration function is active. True when set.Default is 0.CCA:Status bit that indicates the BQ34Z100 Coulomb Counter Calibration routine is active. Active when set.BCA:Status bit that indicates the BQ34Z100 Board Calibration routine is active. Active when set.CSV:Status bit that indicates a valid data flash checksum has been generated. Active when set.FULLSLEEP:Status bit that indicates the BQ34Z100 is in FULL SLEEP mode. True when set. The state can only be detected by monitoring the power used by the BQ34Z100 because any communication will automatically clear it.SLEEP:Status bit that indicates the BQ34Z100 is in SLEEP mode. True when set.LDMD:Status bit that indicates the BQ34Z100 Impedance Track algorithm using constant-power mode. True when set.Default is 0 (CONSTANT CURRENT mode).RUP_DIS:Status bit that indicates the BQ34Z100 Ra table updates are disabled. True when set.VOK:Status bit that indicates cell voltages are OK for Qmax updates. True when set.QEN:Status bit that indicates the BQ34Z100 Qmax updates are enabled. True when set.7.2.1.2.2 DEVICE TYPE: 0x0001Instructs the fuel gauge to return the device type to addresses 0x00/0x01.7.2.1.2.3 FW_VERSION: 0x0002Instructs the fuel gauge to return the firmware version to addresses 0x00/0x01.7.2.1.2.4 HW_VERSION: 0x0003Instructs the fuel gauge to return the hardware version to addresses 0x00/0x01.7.2.1.2.5 RESET_DATA: 0x0005Instructs the fuel gauge to return the number of resets performed to addresses 0x00/0x01.7.2.1.2.6 PREV_MACWRITE: 0x0007Instructs the fuel gauge to return the previous command written to addresses 0x00/0x01. The value returned is limited to less than 0x0020.7.2.1.2.7 CHEM ID: 0x0008Instructs the fuel gauge to return the chemical identifier for the Impedance Track configuration to addresses 0x00/0x01.7.2.1.2.8 BOARD_OFFSET: 0x0009Instructs the fuel gauge to calibrate board offset. During board offset calibration the [BCA] bit is set.7.2.1.2.9 CC_OFFSET: 0x000AInstructs the fuel gauge to calibrate the coulomb counter offset. During calibration the [CCA] bit is set.7.2.1.2.10 CC_OFFSET_SAVE: 0x000BInstructs the fuel gauge to save the coulomb counter offset after calibration.7.2.1.2.11 DF_VERSION: 0x000CInstructs the fuel gauge to return the data flash version to addresses 0x00/0x01.7.2.1.2.12 SET_FULLSLEEP: 0x0010Instructs the fuel gauge to set the FULLSLEEP bit in the Control Status register to 1. This allows the gauge to enter the FULL SLEEP power mode after the transition to SLEEP power state is detected. In FULL SLEEP mode, less power is consumed by disabling an oscillator circuit used by the communication engines. For HDQ communication, one host message will be dropped. For I2C communications, the first I2C message will incur a 6-ms–8-ms clock stretch while the oscillator is started and stabilized. A communication to the device in FULL SLEEP will force the part back to the SLEEP mode.7.2.1.2.13 STATIC_CHEM_DF_CHKSUM: 0x0017Instructs the fuel gauge to calculate chemistry checksum as a 16-bit unsigned integer sum of all static chemistry data. The most significant bit (MSB) of the checksum is masked yielding a 15-bit checksum. This checksum is compared with the value stored in the data flash Static Chem DF Checksum. If the value matches, the MSB will be cleared to indicate a pass. If it does not match, the MSB will be set to indicate a failure.7.2.1.2.14 SEALED: 0x0020Instructs the fuel gauge to transition from UNSEALED state to SEALED state. The fuel gauge should always be set to SEALED state for use in customer’s end equipment.7.2.1.2.15 IT ENABLE: 0x0021Forces the fuel gauge to begin the Impedance Track algorithm, sets Bit 2 of UpdateStatus and causes the [VOK] and [QEN] flags to be set in the CONTROL STATUS register. [VOK] is cleared if the voltages are not suitable for a Qmax update. Once set, [QEN] cannot be cleared. This command is only available when the fuel gauge is UNSEALED and is typically enabled at the last step of production after the system test is completed.7.2.1.2.16 RESET: 0x0041Instructs the fuel gauge to perform a full reset. This command is only available when the fuel gauge is UNSEALED.7.2.1.2.17 EXIT_CAL: 0x0080Instructs the fuel gauge to exit CALIBRATION mode.7.2.1.2.18 ENTER_CAL: 0x0081Instructs the fuel gauge to enter CALIBRATION mode.7.2.1.2.19 OFFSET_CAL: 0x0082Instructs the fuel gauge to perform offset calibration.7.2.1.3 StateOfCharge(): 0x02/0x03This read-only function returns an unsigned integer value of the predicted remaining battery capacity expressed as a percentage of FullChargeCapacity() with a range of 0 to 100%.7.2.1.4 RemainingCapacity(): 0x04/0x05This read-only command pair returns the compensated battery capacity remaining. Unit is 1 mAh per bit.7.2.1.5 FullChargeCapacity(): 0x06/07This read-only command pair returns the compensated capacity of the battery when fully charged. Unit is 1 mAh per bit except if X10 mode is selected. In X10 mode, units are 10 mAh per bit. with units of 1 mAh per bit. . FullChargeCapacity() is updated at regular intervals, as specified by the Impedance Track algorithm.7.2.1.6 Voltage(): 0x08/0x09This read-word function returns an unsigned integer value of the measured cell-pack voltage in mV with a range of 0 V to 65535 mV.7.2.1.7 AverageCurrent(): 0x0A/0x0BThis read-only command pair returns a signed integer value that is the average current flowing through the sense resistor. It is updated every 1 second. Unit is 1 mA per bit except if X10 mode is selected. In X10 mode, units are 10 mA per bit. with units of 1 mA per bit.7.2.1.8 Temperature(): 0x0C/0x0DThis read-word function returns an unsigned integer value of the temperature, in units of 0.1 K, measured by the gas gauge and has a range of 0 to 6553.5 K. The source of the measured temperature is configured by the [TEMPS] bit in the Pack Configuration register (see 节 7.2.2).7.2.1.9 Flags(): 0x0E/0x0FThis read-word function returns the contents of the Gas Gauge Status register, depicting current operation status.Legend: RSVD = ReservedOTC:Overtemperature in Charge condition is detected. True when setOTD:Overtemperature in Discharge condition is detected. True when setBATHI:Battery High bit that indicates a high battery voltage condition. Refer to the data flash BATTERY HIGH parameters for threshold settings.BATLOW:Battery Low bit that indicates a low battery voltage condition. Refer to the data flash BATTERY LOW parameters for threshold settings.CHG_INH:Charge Inhibit: unable to begin charging. Refer to the data flash [Charge Inhibit Temp Low, Charge Inhibit Temp High] . True when setXCHG:Charging not allowedRSVD:ReservedFC:Full charge is detected. FC is set when charge termination is reached and FC Set% = –1 (see 节 7.2.10 for details) or StateOfCharge() is larger than FC Set% and FC Set% is not –1. True when setCHG:(Fast) charging allowed. True when setOCVTAKEN:Cleared on entry to RELAX mode and set to 1 when OCV measurement is performed in RELAX mode.ISD:Internal Short is detected. True when set. TDD = Tab Disconnect is detected. True when setSOC1:State-of-Charge Threshold 1 reached. True when setSOCF:State-of-Charge Threshold Final reached. True when setDSG:Discharging detected. True when set7.2.2 Extended Data CommandsExtended commands offer additional functionality beyond the standard set of commands. They are used in the same manner; however, unlike standard commands, extended commands are not limited to 2-byte words. The number of command bytes for a given extended command ranges in size from single to multiple bytes, as specified in 表 7-6. For details on the SEALED and UNSEALED states, refer to 节 7.2.3.3.(1)SEALED and UNSEALED states are entered via commands to CNTL 0x00/0x01.(2)In SEALED mode, data flash cannot be accessed through commands 0x3E and 0x3F.7.2.2.1 AtRate(): 0X10/0x11The AtRate() read-/write-word function is the first half of a two-function call-set used to set the AtRate value used in calculations made by the AtRateTimeToEmpty() function. The AtRate() units are in mA.The AtRate() value is a signed integer and both positive and negative values will be interpreted as a discharge current value. The AtRateTimeToEmpty()function returns the predicted operating time at the AtRate value of discharge. The default value for AtRate() is zero and will force AtRate() to return 65535.7.2.2.2 AtRateTimeToEmpty(): 0x12/0x13This read-word function returns an unsigned integer value of the predicted remaining operating time if the battery is discharged at the AtRate() value in minutes with a range of 0 to 65534. A value of 65535 indicatesAtRate() = 0.The gas gauge updates AtRateTimeToEmpty() within 1s after the host sets the AtRate() value. The gas gauge automatically updates AtRateTimeToEmpty() based on the AtRate() value every 1 s.7.2.2.3 Current(): 0x10/0x11This read-only command pair returns a signed integer value that is the current flow through the sense resistor. It is updated every 1 second. Units are 1 mA per bit except if X10 mode is selected. In X10 mode, units are 10 mA per bit.with units of 1mA. However, if PackConfiguration [SCALED]is set then the units have been scaled through the calibration process. The actual scale is not set in the device and SCALED is just an indicator flag.7.2.2.4 NominalAvailableCapacity(): 0x14/0x15This read-only command pair returns the uncompensated (no or light load) battery capacity remaining. Unit is 1 mAh per bit.7.2.2.5 FullAvailableCapacity(): 0x16/0x17This read-only command pair returns the uncompensated (no or light load) capacity of the battery when fully charged. Unit is 1 mAh per bit. FullAvailableCapacity()is updated at regular intervals, as specified by the Impedance Track algorithm.7.2.2.6 TimeToEmpty(): 0x18/0x19This read-only function returns an unsigned integer value of the predicted remaining battery life at the present rate of discharge , in minutes. A value of 65535 indicates that the battery is not being discharged.This read-only function returns an unsigned integer value of predicted remaining time until the battery reaches full charge, in minutes, based upon AverageCurrent(). The computation should account for the taper current time extension from the linear TTF computation based on a fixed AverageCurrent() rate of charge accumulation. A value of 65535 indicates the battery is not being charged.7.2.2.8 StandbyCurrent(): 0x1C/0x1DThis read-only function returns a signed integer value of the measured standby current through the sense resistor. The StandbyCurrent() is an adaptive measurement. Initially, it reports the standby current programmed in Initial Standby, and after spending some time in standby, reports the measured standby current.The register value is updated every 1 second when the measured current is above the Deadband (3 mA default) and is less than or equal to 2 x Initial Standby. The first and last values that meet this criterion should not be averaged in, since they may not be stable values. To approximate a 1 minute time constant, each new StandbyCurrent() value is computed as follows:StandbyCurrent()NEW = (239/256) × StandbyCurrent()OLD + (17/256) × AverageCurrent()7.2.2.9 StandbyTimeToEmpty(): 0x1E/0x1FThis read-only function returns an unsigned integer value of the predicted remaining battery life at the standby rate of discharge, in minutes. The computation should use Nominal Available Capacity (NAC), the uncompensated remaining capacity, for this computation. A value of 65535 indicates battery is not being discharged.7.2.2.10 MaxLoadCurrent(): 0x20/0x21This read-only function returns a signed integer value, in units of mA, of the maximum load conditions. The MaxLoadCurrent()is an adaptive measurement which is initially it reports the maximum load current programmed in Initial Max Load Current. If the measured current is ever greater than Initial Max Load Current, then MaxLoadCurrent() updates to the new current. MaxLoadCurrent() is reduced to the average of the previous value and Initial Max Load Current whenever the battery is charged to full after a previous discharge to an SOC less than 50%. This prevents the reported value from maintaining an unusually high value.7.2.2.11 MaxLoadTimeToEmpty(): 0x22/0x23This read-only function returns an unsigned integer value of the predicted remaining battery life at the maximum load current discharge rate, in minutes. A value of 65535 indicates that the battery is not being discharged.7.2.2.12 AvailableEnergy(): 0x24/0x25This read-only function returns an unsigned integer value of the predicted charge or energy remaining in the battery. The value is reported in units of mWh.7.2.2.13 AveragePower(): 0x26/0x27This read-word function returns an unsigned integer value of the average power of the current discharge. A value of 0 indicates that the battery is not being discharged. The value is reported in units of mW.7.2.2.14 TimeToEmptyAtConstantPower(): 0x28/0x29This read-only function returns an unsigned integer value of the predicted remaining operating time if the battery is discharged at the AveragePower() value in minutes. A value of 65535 indicates AveragePower() = 0. The gas gauge automatically updates TimeToEmptyatContantPower() based on the AveragePower() value every 1s.7.2.2.15 InternalTemp(): 0x2A/0x2BThis read-only function returns an unsigned integer value of the measured internal temperature of the device, in units of 0.1 K, measured by the fuel gauge.。

内容3--德州仪器(TI)的系列DSP

内容3--德州仪器(TI)的系列DSP
21:51:26 52
通过PB总线完成数据传递
PB总线能把存储在程序空间的数据操作 数(如系数表)传送到乘法器和加法器 中进行乘/累加运算,或者在数据移动指 令(MVPD和READA)中传送到数据空 间。这种能力再加上双操作数读的特 性,支持单周期3操作数指令的执行,如 FIRS指令。
21:51:26
21:51:26
15
第二部分 DSP硬件结构
在这一部分中,我们介绍:
TMS320LF240X的 硬件结构 TMS320VC3X的硬 件结构 TMS320C6201的 硬件结构 重点介绍: TMS320C54XX硬 件结构特点 ★
21:51:26 17
§2-1 TMS320LF240X的硬件 结构
各大公司定点DSP性能比较
21:51:26
13
浮点DSP的性能比较
21:51:26
14
DSP主要供应商的网站
德州仪器(TI):http:\\, http:\\ 模拟器件(ADI): http:\\ 郎讯科技:http:\\ 莫托罗拉:http:\\
21:51:26 11
定点DSP与浮点DSP
在DSP运用中的数据保真性很重 要,因此在定点DSP中必须要特别 考虑运算过程中可能出现的溢出等 情况。在定点DSP中,累加器一般 比存储器字长大,并特别设置了溢 出模式位,可以选择在溢出情况下 的处理方法,从而尽量降低数据失 真。
21:51:26 12
57
ALU框图:
21:51:26
58
累加器:
累加器ACCA和ACCB存放从ALU或乘 法器/加法器单元输出的数据,累加器也 能输出到ALU或乘法器/加法器中。
21:51:26
59

TI(德州仪器)公司产品导购手册

TI(德州仪器)公司产品导购手册

TI(德州仪器)德州仪器,简称TI,全球约 30,300人,总部位于美国得克萨斯州的达拉斯,2008年营业额为185亿美元, 是全球领先的半导体公司,为现实世界的信号处理提供创新的数字信号处理(DSP)及模拟技术, 应用领域涵盖无线通讯、宽带、网络家电、数字马达控制与消费类市场。

TI(德州仪器)目录更多关于产品•MSP430系列单片机•TMS370系列单片机•TMS470系列单片机•Stellaris系列单片机•32位C2000单片机•C2000 DSP•C5000 DSP•C6000 DSP•达芬奇 DSP•A/D转换器•D/A转换器•电池管理•PWM控制器•DC/DC控制器MSP430系列单片机MSP430 系列是一个 16 位的、具有精简指令集的、超低功耗的混合型单片机,在 1996 年问世,由于它具有极低的功耗、丰富的片内外设和方便灵活的开发手段,已成为众多单片机系列中一颗耀眼的新星。

MSP430 系列单片机的迅速发展和应用范围的不断扩大,主要取决于以下的特点。

强大的处理能力 MSP430 系列单片机是一个 16 位的单片机,采用了精简指令集( RISC )结构,具有丰富的寻址方式( 7 种源操作数寻址、 4 种目的操作数寻址)、简洁的 27 条内核指令以及大量的模拟指令;大量的寄存器以及片内数据存储器都可参加多种运算;还有高效的查表处理指令;有较高的处理速度,在 8MHz 晶体驱动下指令周期为 125 ns 。

这些特点保证了可编制出高效率的源程序。

在运算速度方面, MSP430 系列单片机能在 8MHz 晶体的驱动下,实现 125ns 的指令周期。

16 位的数据宽度、 125ns 的指令周期以及多功能的硬件乘法器(能实现乘加)相配合,能实现数字信号处理的某些算法(如 FFT 等)。

MSP430 系列单片机的中断源较多,并且可以任意嵌套,使用时灵活方便。

当系统处于省电的备用状态时,用中断请求将它唤醒只用 6us 。

德州仪器(Texas Instruments)DRV8871 3.6A 刷式直流电机驱动器说明书

德州仪器(Texas Instruments)DRV8871 3.6A 刷式直流电机驱动器说明书

Copyright © 2017, Texas Instruments IncorporatedProduct Folder Order Now Technical Documents Tools &SoftwareSupport &CommunityDRV8871ZHCSE26B –AUGUST 2015–REVISED JULY 2016具有内部电流感测功能的DRV88713.6A 刷式直流电机驱动器(PWM 控制)1特性•H 桥电机驱动器–驱动一个直流电机、一个步进电机的绕组或其他负载• 6.5V 至45V 宽工作电压范围•565m Ω(典型值)R DS(on)(HS +LS)• 3.6A 峰值电流驱动能力•PWM 控制接口•无需感测电阻即可实现电流调节•低功耗休眠模式•小型封装尺寸–8引脚HSOP 封装,带有PowerPAD™– 4.9mm ×6mm •集成保护特性–VM 欠压闭锁(UVLO)–过流保护(OCP)–热关断(TSD)–自动故障恢复2应用•打印机•电器•工业设备•其他机电应用3说明DRV8871器件是一款刷式直流电机驱动器,适用于打印机、电器、工业设备以及其他小型机器。

两个逻辑输入控制H 桥驱动器,该驱动器由四个N 沟道金属氧化物半导体场效应晶体管(MOSFET)组成,能够以高达3.6A 的峰值电流双向控制电机。

利用电流衰减模式,可通过对输入进行脉宽调制(PWM)来控制电机转速。

如果将两个输入均置为低电平,则电机驱动器将进入低功耗休眠模式。

DRV8871器件具有高级电流调节电路,该电路不使用模拟电压基准或外部感应电阻器。

这种新型解决方案采用标准的低成本、低功耗电阻来设置电流阈值。

该器件能够将电流限制在某一已知水平,这可显著降低系统功耗要求,并且无需大容量电容来维持稳定电压,尤其是在电机启动和停转时。

该器件针对故障和短路问题提供了全面保护,包括欠压锁定(UVLO)、过流保护(OCP)和过热保护(TSD)。

德州仪器芯片命名规则

德州仪器芯片命名规则

德州仪器芯片命名规则德州仪器(Texas Instruments,简称TI)是全球领先的半导体设计和制造公司之一,其产品涵盖了广泛的应用领域,包括计算机、通信、汽车、工业控制、医疗设备等。

作为半导体行业的重要组成部分,芯片命名规则对于产品的识别和区分起着关键的作用。

下面将介绍德州仪器芯片的命名规则。

在德州仪器的芯片命名规则中,主要分为两个部分:前缀和功能标识。

1.前缀:前缀是芯片型号的第一个字母或几个字母,用于标识该芯片的主要类型。

以下是一些常见的前缀及其含义:-T:指示该芯片属于德州仪器公司产品。

-C:指示该芯片属于德州仪器的应用专用芯片产品。

-SN:指示该芯片属于德州仪器的运算放大器产品。

-LM:指示该芯片属于德州仪器的线性产品,如运算放大器、电压比较器等。

-OPA:指示该芯片属于德州仪器的运算放大器产品。

-TLC:指示该芯片属于德州仪器的逻辑电平转换产品。

-DRV:指示该芯片属于德州仪器的驱动器产品。

-MSP:指示该芯片属于德州仪器的微控制器系列产品。

2.功能标识:-功能标识是芯片型号的剩余部分,用于标识芯片的功能特性、系列等。

德州仪器的功能标识通常由字母和数字组成。

- 第一个字母通常表示芯片系列,如数字信号处理器(DSP)、运算放大器(Op-Amp)等。

-后面的数字则表示具体的功能特性和版本等。

不同数字对应不同的产品特性,比如频率范围、精度等。

除了前缀和功能标识外,德州仪器的芯片命名规则还可能包括尺寸、封装和温度范围等信息。

这些附加信息可以进一步细化芯片的具体规格和应用环境,有助于用户选择适合自己需求的芯片产品。

需要注意的是,芯片型号命名规则在不同的产品系列和产品类型中可能存在一定的差异,以上只是对德州仪器一般的命名规则进行了介绍。

对于具体的产品型号,用户还需要参考德州仪器的官方文档和资料进行查询和确认。

总结起来,德州仪器芯片的命名规则包括前缀和功能标识两个部分。

前缀标识了产品的主要类型,而功能标识则用于表示芯片的具体功能特性和版本等。

TL431资料

TL431资料

TL431德州仪器公司(TI)生产的TL431是一是一个有良好的热稳定性能的三端可调分流基准源。

它的输出电压用两个电阻就可以任意地设置到从Vref(2.5V)到36V范围内的任何值(如图2)。

该器件的典型动态阻抗为0.2Ω,在很多应用中可以用它代替齐纳二极管,例如,数字电压表,运放电路、可调压电源,开关电源等等。

平面向上,元件脚向自己.左起,1脚(R)REF也就是控制极.2脚(A)ANODE (元件符号像二极管的正极.3脚(K)CATHODE(类似二极管的负极)介绍: TL431是一个有良好的热稳定性能的三端可调分流基准电压源。

它的输出电压用两个电阻就可以任意地设置到从Vref(2.5V)到36V范围内的任何值。

该器件的典型动态阻抗为0.2Ω,在很多应用中可以用它代替齐纳二极管,例如,数字电压表,运放电路、可调压电源,开关电源等等。

特点:•可编程输出电压为36V•电压参考误差:±0.4%,典型值@25℃(TL431B)•低动态输出阻抗,典型0.22Ω•负载电流能力1.0mA to 100mA•等效全范围温度系数50 ppm/℃典型• 温度补偿操作全额定工作温度范围•低输出噪声电压图1 TO92封装引脚图图2 8脚封装引脚功能图3 SOP-8 贴片封装引脚图图4 TL431符号及内部方框图图5 TL431内部电路图MAXIMUM RATINGS (Full operating ambient temperature range applies, unless otherwise noted.)最大额定值(环境温度范围适用,除非另有说明。

)RECOMMENDED OPERATING CONDITIONS建议操作条件ELECTRICAL CHARACTERISTICS(TA=25℃, unless otherwise noted.)电气特性(25℃ ,除非另有说明。

)ELECTRICAL CHARACTERISTICS (TA = 25℃, unless otherwise noted.)电气特性(25℃,除非另有说明。

TL431基准电源器件

TL431基准电源器件

TL431基准电源器件这个器件在电源中使用率最高,这里简单介绍该器件。

(一)TL431简介图5-2:TL431结构及原理德州仪器公司(TI)生产的TL431是一是一个有良好的热稳定性能的三端可调分流基准源。

它的输出电压用两个电阻就可以任意地设置到从Vref(2.5V)到36V范围内的任何值(如图2)。

该器件的典型动态阻抗为0.2Ω。

图5-2左图是该器件的符号。

3个引脚分别为:阴极(CATHODE)、阳极(ANODE)和参考端(REF)。

由图可以看到,VI是一个内部的2.5V基准源,接在运放的反相输入端。

由运放的特性可知,只有当REF端(同相端)的电压非常接近VI(2.5V)时,三极管中才会有一个稳定的非饱和电流通过,而且随着REF端电压的微小变化,通过三极管的电流将从1到100mA变化。

当然,该图绝不是TL431的实际内部结构,所以不能简单地用这种组合来代替它。

但如果在设计、分析应用TL431的电路时,这个模块图对开启思路,理解电路都是很有帮助的。

(二)TL431的应用前面提到TL431的内部含有一个2.5V的基准电压,所以当在REF 端引入输出反馈时,器件可以通过从阴极到阳极很宽范围的分流,控制输出电压。

如图5-3所示的电路,当R1和R2的阻值确定时,两者对Vo的分压引入反馈,若V o增大,反馈量增大,TL431的分流也就增加,从而又导致Vo下降。

显见,这个深度的负反馈电路必然在VI等于基准电压处稳定,此时Vo=(1+R1/R2)Vref。

选择不同的R1和R2的值可以得到从2.5V到36V范围内的任意电压输出,特别地,当R1=R2时,Vo=5V。

需要注意的是,在选择电阻时必须保证TL431工作的必要条件,就是通过阴极的电流要大于1 mA 。

当然,这个电路并不太实用,但它很清晰地展示了该器件在应用中的方法。

将这个电路稍加改动,就可以得到在很多实用的电源电路,如图5-4。

一般地,在阴极和参考端之间,可以引进R、C串联网络,以做相位补偿。

DMD工作原理介绍

DMD工作原理介绍

DMD工作原理介绍DMD,即数字微型反射镜器件(Digital Micro-mirror Device),是一种利用微型反射镜阵列实现图像显示和光学投射的技术。

DMD是由德州仪器(Texas Instruments)公司发明并推广的,是一种基于微机械系统(MEMS)的光学设备。

在DMD中,数百万个微小的反射镜根据输入信号的控制模式进行快速调节,从而实现对光的反射和制备出复杂的图像。

DMD的基本组成是一个正方形的芯片,芯片上布满了微小的单晶硅反射镜。

每个反射镜的大小约为10-15微米,而整个芯片上有数百万个反射镜。

每个反射镜的底部通过支撑结构与芯片连接,而顶部则可以根据控制电信号的输入而自由旋转。

当反射镜转到角度为±12°左右时,反射镜上的光线会被反向反射。

DMD的工作原理可以分为三个阶段来解释:扫描切换、光成像和图像显示。

在扫描切换阶段,DMD芯片上的所有反射镜都按照固定的顺序进行扫描。

每个反射镜都有一个驱动电路来控制其偏转。

对于每个扫描周期,芯片上的每个反射镜会从初始位置向两个方向之一旋转,形成一个1-bit图像,即只有两个可能的状态:+12°或-12°。

DMD的扫描速度非常快,可以达到每秒几千次,使得人眼无法察觉到这种切换。

在光成像阶段,通过使用镜头和光源来照射在DMD芯片上的反射镜上。

每个反射镜的旋转状态将决定光线是被反向反射还是向正前方传播。

通过控制每个反射镜上光线的反射方式,可以通过调整光路实现对光的强弱调节,进而形成不同灰度的图像。

在图像显示阶段,DMD芯片的驱动电路通过一个控制板将要显示的图像数据传输给芯片上的反射镜。

反射镜根据这些输入信号进行调节,选择性地反射光线以形成对应的图像。

通过快速的扫描切换和光线反射调节,DMD就可以实现高帧率和高分辨率的图像显示。

相比其他显示技术,DMD具有如下几个优点:1.高亮度和对比度:由于DMD采用反射式显示方式,较少的能量损失会使得图像更加亮度和清晰。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• ADS1218: 0 to +2.5V 带校准和设置结构的 Flash 存储器.
• ADS1216: 和 ADS1218一样, 但没有 Flash • ADS1217: 和 ADS1216相似, 但 输入 +/-5V •参考电压: 内部的1.25 or 2.5 V 或外部的参考源 • 内置温度传感器 • 两路 8-bit 可编程电流 DACs: 0 to 2mA FSR
(Products High-lighted in RED are Available, BLUE are Future.)
TLC4541
TLC4545
16-bit, 200kSPS 内部时钟作采样频率 灵活的输入性能:
— TLC4541 单通道单极性输入 — TLC4545 虚差分输入 低功耗: 20mW @ 5V 性能:
ADS1100
•16-bit ADC 采用最小的SOT23-6封装 • ADS1100: Ratiometric to Supply • ADS1110: 内部参考电压 • 单通道差分输入 •可编程的高达160 SPS的数据转换率 • 16-bit 分辨率 • PGA = 1, 2, 4, 8 • I2C 串行接口 • Vdd 2.7 到 5.25V • 250 W 耗电量 •低价的ADC: $1.75 @ 1kpcs
通道ADC结构 8- to 12-bit分辨率 <10MSPS 数据转换率
集中在: 增强的数据转换率 真正的两极输入 提高精度: INL & DNL +/-10V 高电压输入
应用包括: 发动机控制, 便携式医疗器械, SCADA, ATE, 等等。
Confidential
性能
TLC4541/45 低功耗, 200KSPS, 16-bit ADC
Confidential
ADS8324 1.8V, 14-bit 超低功耗 ADC
ADS8324
(Products High-lighted in RED are Available, BLUE are Future.)
50kSPS 采样率
虚的双极性输入范围
Only ADC @ 1.8V ~ 3.6V 操作电压
ADS1251 $5.31 ADS1254 $6.38
奈奎斯特 ADC 产品
Confidential 通常有两种结构
连续近似 ADC 结构 8- to 16-bit 分辨率 (Future 18-bit Resolution) 50 to 500kSPS 数据转换率 (Future 3MSPS @ 16-bits)
应用包括: 精确地将“现实世界”的物 理变量数字化: 温度, 流量, 压力, 重量, 生物医学等。
Confidential
性能
ADS1100/10 SOT23-6的 16位的 ADC
(Products High-lighted in RED are Available, BLUE are Future.)
TLC4541 $7.00 TLC4545 $7.00
— INL +/-2.5LSB Max
— DNL +/-1LSB Max
— SINAD= 87dB, SFDR= 96dB, THD= 95dB @ 12kHz fin, 200kSPS 数
据率
Pin-Compatible 10/12/14/16-bit 系列
D: +/-2LSB MAX
AC:
THD: 86 dB SINAD: 78 dB
ADS8324 $3.95
SFDR: 86 dB
SNR: 78 dB
低功耗:
5 mW@ 2.7V
2mW@ 1.8V
3A Power-down
兼容ADS7817/22 端口, MSOP-8
THS1218 Serial, 12-bit, 2.2MSPS 4S/H ADC
低速, 高性能 Delta-Sigma ADCs解决方案 24-bit 10 - 1kSPS 数据率
中速,高性能 Delta-Sigma ADCs解决方案 24-bit >20kSPS 数据率
高速,高性能 Delta-Sigma ADCs解决方案 16- to 18-bit 5MSPS 数据率
COMP
Serial Interface
Serial Data
DCLOCK CS/SHDN
Confidential
ADS7823 & ADS7828
12-bit I2C ADC
(Products High-lighted in RED are Available, BLUE are Future.)
ADS1110
ADS1100 $1.75 ADS1110 $1.95
不同之处
应用
• 低功耗- 250µA max IDD • 16-bit 分辨率 •SOT23-6最小的印刷电路制作。
便携式应用 工业过程控制 远程应用 电源监控
Confidential
ADS1242/43 特性 24-bit ADC in SSOP
RDAC VREFCAP VREFOUT VREF+VREF- XIN XOUT
参考电压
时钟 发生器
2 uA
A = 1:128
BUF PGA
MUX
调M节od器
数字 滤波器
控制 寄存器
2 uA BUFEN
数字式 I/O 接口
...
D0 . . . D7
4K Bytes FLASH
串行接口
WREN
DSYNC PDWN
SPI/DSP 串行接口
TLC3541/45: 200KSPS 14-bit兼容
— 高达 20MHz SCLK
TLV2541/45: 12-bit, 140K~200KSPS TLC2551/55: 12-bit, 175K~360KSPS
8-pin SOIC 和MSOP封装
TLV1572: 10-bit, 1.25MSPS
德州仪器 数据采集产品
数据转换产品
奈奎斯特 A/D转换产品
D/A 转换产品
过采样A/D 转换产品
微系统 产品
工业音频 产品
产品: GP SAR ADCs: • 马达控制 • 8- to 18-bits
<10MSPS ADCs • 8- to 12-bits
产品: GP DACs: • “String” DACs • R-2R DACs • 8- to 16-bits
Delta-Sigma DACs • 16- 20位
高精度 ADCs 和DACs - - DC to 10MSPS
产品: 增强型音频: • >115dB 性能
触摸屏控制
声音超过 IP 解码器: • DSP 线形解码器 • PCM 编码器 • 低功耗助听器
过采样转换产品
Confidential 通常有两方面的应用属性
(Products High-lighted in RED are Available, BLUE are Future.)
ADS1242 & ADS1243 比ADS1240 & ADS1241 封装更小.
ADS1242: 16-pin SSOP
ADS1243: 20-pin SSOP • 灵活的多路转换
DVDD DGND AVDD AGND
RESET DRDY SCLK DIN DOUT CS POL
Confidential
ADS1251/53/54 24-bit, 中等速度 ADC
(Products High-lighted in RED are Available, BLUE are Future.)
TI 数据转换 HPA两个部分
高性能 的模拟产品
Fs < 10MSPS
高速转换部分
强调高性能 ‘C6000, C54xx DSP 终端设备: 通信方面 医学图象方面
数据采集部分
强调低功耗 ‘C54xx & C2000 DSP 微控制器 –通常带SPI 终端设备: DWDM, MP3, 触摸屏幕
Confidential
I2C接口 2-Wire SDA 和 SCLK 支持所有的 3 Modes 标准模式: 达到 100kbit/s 快捷模式: 达到 400kbit/s 超速模式: 达到 3.4Mbit/s
12-Bit A/D 转换
ADS7823 $3.02 ADS7828 $3.48
12-Bits No Missing Codes 2.7V 操作电压 8-Lead MSOP 单通道 (ADS7823) 16-Lead SSOP 8通道多路转换(ADS7828)
Hi-Resolution 微功耗 16-bit SAR A/D 转换
Confidential
(Products High-lighted in RED are Available, BLUE are Future.)
ADS8320 & ADS8321
ADS8325
SPI & SSI 串行接口协议
Confidential
德州仪器
数据采集产品
高精度 DC TO 10MSPS
数据转换
Skip Osgood 市场部经理 2002年六月
德州仪器 = 全部解决问题
Confidential
我们拥有…
• 在每一种高性能模拟产品中占驻着主导地位。 • 有提供在信号通道中的每一模拟组件的能力。
Confidential
• Vdd 2.7 to 5.25V • 570 W 功耗
ADS1242 $3.64 ADS1243 $4.00
Confidential
相关文档
最新文档