第5章光放大器
光纤通信系统与应用(胡庆)复习总结

红色:重点、绿色:了解第1章1、光纤通信的基本概念:以光波为载频,用光纤作为传输介质的通信方式。
光纤通信工作波长在于近红外区:0.85~2.00μm的波长区,对应频率: 167~375THz。
对于SiO2光纤,在上述波长区内的三个低损耗窗口,是目前光纤通信的实用工作波长,即0.85μm、 1.31μm 1.55μm及 1.625μm2、光纤通信系统的基本组成:P5 图1-3目前采用比较多的系统形式是强度调制/直接检波(IM/DD)的光纤数字通信系统。
该系统主要由光发送设备(光发射机)、光纤传输线路、光接收设备(光接收机)、光中继器以及各种耦合器件组成。
各部件功能:电发射机:对来自信源的信号进行模/数转换和多路复用处理;光发送设备:实现电/光转换;光接收机:实现光/电转换;光中继器:将经过光纤长距离衰减和畸变后的微弱光信号放大、整形、再生成具有一定强度的光信号,继续送向前方,以保证良好的通信质量。
3、光纤通信的特点:(可参照P1、2)优点:(1),传输容量大。
(2)传输损耗小,中继距离长。
(3)保密性能好:光波仅在光纤芯区传输,基本无泄露。
(4)抗电磁干扰能力强:光纤由电绝缘的石英材料制成,不受电磁场干扰。
(5)体积小、重量轻。
(6)原材料来源丰富、价格低廉。
缺点:1)弯曲半径不宜过小;2)不能远距离传输;3)传输过程易发生色散。
4、适用光纤:P11G.652 和G.654:常规单模光纤,色散最小值在1310nm处,衰减最小值在1550nm 处。
常见的结构有阶跃型和下凹型单模光纤。
G.653:色散位移光纤,色散最小值在1550nm处,衰减最小值在1550nm处。
难以克服FWM混频等非线性效应带来的影响。
G.655:非零色散光纤,色散在1310nm处较小,不为0;衰减最小值在1550nm处。
可以尽量克服FWM混频等非线性效应带来的影响。
补充:1、1966年7月,英籍华人(高锟)博士从理论上分析证明了用光纤作为传输介质以实现光通信的可能性。
第5章光电倍增管

1)阴极灵敏度测试图
Sk
Ik
电子
K
D1
D10
0V
A
-100V~-300V 照射到光电阴极上的光通量约为10-5~10-2lm
2)阳极光照灵敏度测试
10-10~10-6 lm E A
Sp
IA
G
各倍增极和阳极
都加上适当电压;
注明整管所加的
V
电压
2.电流增益
阳极电流与阴极电流之比称为电流增益M(内增益)
第5章 光电子发射探测器
具有外光电效应的材料 --光电子发射体
光电子发射探测器中的光电子发射体 --又称为光电阴极
光电阴极是完成光电转换的重要部件,其性能 好坏直接影响整个光电发射器件的性能!!!
第5章 光电子发射探测器
5.1 光电阴极 5.2 光电管和光电倍增管结构原理 5.3 光电倍增管的主要特性参数 5.4 光电倍增管的工作电路
1.灵敏度 3.光电特性
2.电流增益 4.光谱特性
5.伏安特性
6.时间特性
7.暗电流
8.疲劳特性
9.噪声
1.灵敏度
灵敏度是衡量光电倍增管探测 光信号能力的一个重要参数。
光电倍增管的灵敏度:
SKSK((?))=IKI?/K?λ?/ Φ
单位:
阴极灵敏度 --μA/lm或μA/W 阳极灵敏度 --A/lm 或 A/W
5.2.1 光电管
1、结构
真空光电管由玻壳、 光电阴极和阳极三部 分组成
真空光电管构造示意图
充气型光电管:
光电管的特点:光电阴极面积
大,灵敏度较高,一般积分灵 敏度可达20~200μA/lm;暗电 流小,最低可达10-14A;光电 发射弛豫过程极短。
非线性光纤光学-第五章-光孤子

➢ 孤子的物理理解: ✓ 光孤子由色度色散和自相位调制的结合而形成。 ✓ 通过选择适当的波长和脉冲形状,激光产生孤子波形, 孤子波形通过
自相位调制抵消掉色度色散,从而保持波形不变。 ✓ 色度色散和啁啾(chirp)彼此抵消,从而产生孤子。
光孤子的数学描述
➢ 非线性薛定谔方程(NLS) 从数学上描述光孤子需要用到前面介绍的NLS,
✓ 随着波分复用技术的出现,色散管理技术被普遍采用,它通过周期性色散图从 总体上降低GVD,而在局部GVD则保持较高值。β2的周期性变化形成另一个光栅, 可以显著影响调制不稳定性。在强色散管理情况下(相对大的GVD变化),调制 不稳定性增益的峰值和带宽均减小。
✓ 调制不稳定性在几个方面影响WDM系统的性能。研究表明,四波混频的共振增强 对WDM系统有害,特别是当信道间隔接近调制不稳定性增益最强的频率时,使系 统性能明显劣化。积极的一面是,这种共振增强能用于低功率、高效的波长变 换
A z
i 2
2
2 A T 2
1 6
3
3 A T 3
i
|
A |2
A
2
A
为了简化孤子解,首先忽略光纤损耗和三阶色散,并引入归一化参量
U A , z , T
P0
LD
T0
输入脉冲宽度
归一化的方程为:
峰值功率
LD
T02
| 2
色散长度 |
i U
sgn(2
)
1 2
2U
2
N2
U 2U
N 2 LD
P0T02
第五章 光孤子
1.调制不稳定性 2.光孤子 3.其他类型孤子 4.孤子微扰 5.高阶效应
1.调制不稳定性
2024-2025学年新教材高中物理第5章传感器1认识传感器教案新人教版选择性必修第二册

3.实验器材:
-准备不同类型的传感器实物,如光敏电阻、热敏电阻、压力传感器等,以便于学生观察和学习。
-确保传感器实验套件充足,包括传感器、信号放大器、显示装置等,以便学生进行实际操作。
-准备实验所需的连接线、电源、测量仪器(如万用表)等辅助工具。
3.随堂测试:
-设计针对传感器基础知识、特性参数和实际应用的随堂测试,以评估学生对本节课重点内容的掌握情况。
-分析测试结果,了解学生的知识盲点和理解误区,为后续教学提供参考。
4.实验操作评价:
-观察学生在实验操作中的规范性和安全性,评估学生对实验原理的理解和实验技能的掌握。
-检查实验报告的撰写质量,包括实验数据的记录、分析和结论的推导。
-湿度监测与改善建议:学生需要描述如何使用湿度传感器监测植物生长环境的湿度,并提出根据监测结果调整浇水或增加湿度的措施。
-学会了与他人合作,能够在小组讨论中发挥自己的优势,共同解决问题。
3.情感态度与价值观:
-增强了对物理学科的兴趣,认识到传感器在现代科技中的重要性,激发了进一步学习的欲望。
-培养了创新意识和实践精神,敢于提出自己的观点,勇于尝试新的解决方案。
-提升了环保意识和社会责任感,了解到传感器在环境保护、资源节约等方面的应用价值。
教学评价与反馈
1.课堂表现:
-观察学生在课堂上的参与度、提问回答的积极性和准确性,以及学生对传感器知识点的理解和掌握程度。
-关注学生在课堂上的注意力集中情况,以及他们对传感器案例分析的感兴趣程度。
2.小组讨论成果展示:
-评估各小组讨论的深度和广度,以及提出的解决方案的创新性和实用性。
-检查小组成果展示的逻辑性和清晰度,以及学生在展示过程中的表达能力和沟通技巧。
第5章 光放大器

(1) 宽的增益平坦度(30 nm)。如对1500 nm波 长 区 的 宽 带 信 号 放 大, 最 高 带 宽 已 达 到80 nm, 是 EDFA最佳数据的两倍。在1530~1610 nm的波长区, 得到了20 dB以上的增益,增益平坦度达1.5 dB。 (2) 放大波段向长波长移动。硅和氟EDFA大约
拉曼光纤放大器的主要问题在于所需泵浦的种类, 其次是如何使放大器本身作为一个谐振腔来获得高数 量级的拉曼效应。 目前, 拉曼光纤放大器的小信号增 益为30 dB, 饱和输出功率为+25 dBm, 特别适于作光 功率放大级。
5.4 其他光纤放大器
1. 掺镨光纤放大器(PDFA) EDFA光纤放大器只能对1550 nm波段的光信号进 行放大,为了能对1310 nm波段的光信号进行放大, 人们在光纤中掺入镨。PDFA具有高的增益(约30 dB) 和高的饱和功率(20 dBm),适用于EDFA不能放大
放 大器
电 光变 换 (E /O )
光纤
光 的范 围
电 的范 围
光 的范 围
图5.1 传统的中继器原理框图
尽管这种方式对于单个波长且数据速率不太高的 通信很适用, 但对于高速率的多个波长系统显然是相 当复杂的, 每一波长就需一个再生器, 如有N个波长 就需要N个这样的再生器,造价是相当高的。另一方面, 对于很高的数据速率,电放大器的实现难度很大。 因 此, 人们试图对光信号直接放大, 如果这种放大的带 宽较宽, 则可以同时对多个波长进行放大,因而只需 一个放大器即可。 人们经过很大的努力, 终于研制成
模光纤的构造一样, 如图5.3所示。 铒离子位于EDF的
纤芯中央地带, 将铒离子放在这里有利于其最大地吸 收泵浦和信号能量, 从而产生好的放大效果。
光放大器工作原理

光放大器工作原理
光放大器是一种用于放大光信号的设备,其工作原理基于光的受激辐射效应。
光放大器通常由具有谐振腔的光介质和激发源组成。
当外界光信号通过激发源注入到光介质中时,光介质中的原子或分子会吸收光能并处于激发态。
接下来,在光介质中近邻的原子或分子也会因为受到激发态的原子或分子的辐射而被受激辐射,使得它们跃迁到较低的激发态。
在辐射过程中,这些受激辐射产生的光子与外界光信号具有相同的频率和相位。
一些跃迁到较低激发态的原子或分子会经历非辐射跃迁过程,回到基态并释放出多余的能量。
这些能量释放出的光子形成背景信号,但并不具有与外界光信号的相位和频率相一致的特性。
在谐振腔的作用下,激发态的原子或分子会来回穿梭,使得它们与外界光信号相互作用,并释放出与外界光信号相位一致、频率相同的光子。
通过在谐振腔中引入一些可调节的光学增益介质,可以进一步增强光信号的强度。
通过不断地进行受激辐射和非辐射跃迁,将光信号放大到较大的幅度。
最后,放大后的光信号可以通过输出端口传输到后续的光学器件或接收器进行进一步的处理或接收。
总而言之,光放大器工作原理利用受激辐射效应和谐振腔的作用,通过放大外界光信号并保持其相位和频率不变,实现对光
信号的放大。
这种原理在光通信、光传感和激光器等领域有着广泛的应用。
第5章 光交叉连接设备解读

4. 模块性 因通信业务量的不断增长,考虑到建设OXC的成本, 人们希望OXC结构应该具有模块性(包括波长模块性和 链路模块性),以便于将来的升级和扩容。模块性是指 当建网初期业务量比较小时,需要OXC的交叉连接容量 不大,只需小容量的OXC;而当几年后业务量增加时, 在不改动现有OXC结构连接的情况下,只需增加模块就 可实现节点吞吐量的扩容。如果除了增加新模块外,不 需改动现有OXC结构,就能增加节点的输入/输出链路 数,则称这种结构具有链路模块性。这种节点可以很方 便地通过增加节点的链路数来进行网络扩容。这样可以 减少建网初期费用,又不会造成以后业务量增加时更换 OXC所造成的浪费。
OXC依据它所具有的功能可以出现在光网络的许多位 置,如网络的边缘和网络的内部等,它们应用在不同的位 置时,功能会有所差异。 1.光交叉连接 OXC具有强大的网络重组和业务疏导交换能力。它具有 多个标准的光纤接口,它可以把输入端的来自任一光纤信 号(或其各波长信号)可控地连接到输出端的任一光纤(或其 各波长)中去,并且这一过程是完全在光域中进行的。通 过使用光交叉连接设备,可以有效地解决现有的数字交叉 连接(DXC)设备的电子瓶颈问题。 随着光网络的发展,实现多粒度的交叉连接的需求日 渐迫切。OXC目前的发展趋势是向多粒度、多层次交叉连 接的方向发展,实现光纤级、波长级和子波级的交叉连接。
5.3 OXC的主要性能
1.交叉连接容量 交叉连接容量的大小取决于OXC的端口数。OXC具有透 明的传输代码格式和比特率,可以对不同传输代码格式 和不同比特速率等级的信号进行交叉连接,所以OXC的 端口数是衡量OXC的交换能力的重要标志。不同网络对 OXC交换能力的要求不同。OXC的端口数量少的可有 2×2,4×4 ;多的可达1024×1024。2001年OFC会议上, Lucent公司报导已实现1296× 1296个端口MEMS,每个 端口上输入40× 40Gbit/s =1.6Tbit/s的WDM信号,总的 交叉能力达到2.07Pbit/s .
《医疗器械概论》 第二篇第5章 医用光学仪器

第一节 光学基础
1.光学基础
人类对光的利用
望远镜、显微镜、光谱仪、光学计量仪器和技术、照相机(摄像机)、激光等。
光在医学中的应用
眼科光学仪器 显微镜 医用内窥镜 医用激光仪器 红外热像
光学系统的光学零件主要由透镜、柱镜、 反射镜及平行平板等组成。
2.显微电视图像系统
为了满足一机多用的要求,显微镜还设有为各种特殊用途而附加的装置, 如摄影,投影,荧光光源等带有摄影装置的显微镜叫做摄影显微镜。
电视显微镜和电荷耦合器显微镜是以电视摄像靶或电荷耦合器作为接收元 件的显微镜,在显微镜的实相面处装入电视摄像靶或电荷耦合器取代人眼 作为接收器,通过这些光电器件将光学图像转换成电信号,然后对之进行 尺寸检测、颗粒计数等工作。
第五章 医用光学仪器
THANKS
谢谢观看
(1)硬性内镜。 (2)纤维内镜。 (3)电子内镜。
第三节 医用内镜
1.医用内镜的组成原理
硬性内镜 硬性内镜的发展已经历了漫长的历史。早在1795年Bozzine就首次制造 出一个以烛光为光源的硬件内镜,可观察到直肠和子宫内腔。 硬性内镜以金属管为外壳,内装有物镜,目镜、棱镜、反光镜等光学元 件的硬性直管性内镜。 其种类主要有腹腔镜、宫腔镜、尿道膀恍镜、关节镜、胸腔镜、脑颅镜、 直肠镜、鼻窦镜等。
一个光学系统可以由一个或几个部件组 成,每个部件可以由一个或几个透镜组成, 组成的部件称为光组。
实际工作中,常把几个光组组合在一起, 通常两个光组的组合最常见,也是最基本的 组合。
光学系统
第一节 光学基础
2.光学系统
光学系统的基本组成 – 透镜
正透镜:凸透镜,中心厚,边缘薄,使光线会聚,也叫会聚透镜 会聚作用:出射光线相对于入射光线向光轴方向折转
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
泵浦 能带
快速非辐 射跃迁
亚稳态能带
吸收泵浦光 980nm 1480nm
产生噪声
光放大
自发辐射 受激吸收 受激辐射
基态 能带
1550nm
掺铒光纤放大器的基本结构
掺铒光纤:当一定的泵浦光注入到掺铒光纤中时,Er3+从低能级被激发到高 能级上,由于在高能级上的寿命很短,很快以非辐射跃迁形式到较低能级上, 并在该能级和低能级间形成粒子数反转分布。 半导体泵浦二极管:为信号放大提供足够的能量,使物质达到粒子数反转。 波分复用耦合器:将信号光和泵浦光合路进入掺铒光纤中。 光隔离器:使光传输具有单向性,放大器不受反射光影响,保证稳定工作。 光滤波器:滤除光放大器中ASE噪声,提高EDFA的信噪比。
5.2 掺铒光纤放大器EDFA
掺杂光纤放大器利用掺入石英光纤的稀土离子作为 增益介质,在泵浦光的激发下实现光信号的放大, 放大器的特性主要由掺杂元素决定,而不是由起主介 质作用的石英光纤决定。
工作波长为1550nm的铒(Er)掺杂光纤放大器(EDFA) 工作波长为1300nm的镨(Pr)掺杂光纤放大器(PDFA) 工作波长为1400nm的铥(Tm)掺杂光纤放大器(TDFA) 目前,EDFA最为成熟,是光纤通信系统必备器件。
光放大器(O-O)
多波长放大、低成本,只能实现1R中继
•3R再生功能
放大 消除波 形畸变 消除时 间抖动
光放大器的原理
光放大器的功能:提供光信号增益,以补偿光信 号在通路中的传输衰减,增大系统的无中继传输 距离。
在泵浦能量(电或光)的作用下,实现粒子数反 转(非线性光纤放大器除外),然后通过受激辐 射实现对入射光的放大。
EDFA的工作原理
EDFA采用掺铒离子单模光纤为增益介质,在泵浦光作用 下产生粒子数反转,在信号光诱导下实现受激辐射放大。
Input signal 1530nm-1570nm
Amplified output signal
980nm or 1480nm Power laser
(Pump)
Fiber containing erbium dopant
利用半导体制作的半导体光放大器(SOA)
几种光放大器的比较
放大器 类型
原理
激励 工作长 噪声 与光 与光 稳 方式 度 特性 纤耦 偏振 定
合 关系 性
掺稀土光 粒子数反 光 数米到 好 容易 无 好
纤放大器 转
数十米
(喇曼)光 光学非线 光 数千米 好 容易 大 好 纤放大器 性(喇曼)
效应
展宽带宽:C-band 40nm, L-band 再加40nm; 均衡功能:针对点对点系统的增益均衡,针对全
光网的功率均衡; 监控管理功能:在线放大器,全光网路由改变; 动态响应特性; 其它波段的光纤放大器,如Raman放大器。
第五章 光放大器
5.1 光放大器概述 5.2 掺铒光纤放大器EDFA 5.3 半导体光放大器SOA 5.4 拉曼光纤放大器RFA
光放大器是基于受激辐射或受激散射原理实现入 射光信号放大的一种器件。其机制与激光器完全 相同。实际上,光放大器在结构上是一个没有反 馈或反馈较小的激光器。
光放大器的类型
利用稀土掺杂的光纤放大器(EDFA、 PDFA、TDFA)
利用光纤非线性效应制作的非线性光纤放大 器(RFA、BFA)
信号光与波长较其为短的光波(泵浦光)同沿光纤传输,泵浦 光的能量被光纤中的稀土元素离子吸收而使其跃迁至更高能 级,并可通过能级间的受激发射转移为信号光的能量。信号 光沿光纤长度得到放大,泵浦光沿光纤长度不断衰减。
EDFA中的Er3+能级结构
铒离子简化 能级示意图
泵浦波长可以是520、650、800、980、1480nm
Multistag e EDFA
Remote Pnm的光损耗较小,所以 1480nm泵浦光又常用于遥泵方式。
EDFA的工作特性
光放大器的增益 放大器的噪声 EDFA的多信道放大特性 EDFA的大功率化 EDFA的宽带特性
三种泵浦方式的EDFA
LD
EDF
in APC
WDM EDF
out APC LD
in APC
WDM
out APC
LD1
EDF
in APC
WDM1
LD2 out
WDM2 APC
同向泵浦(前向泵浦) 型:好的噪声性能
反向泵浦(后向泵浦) 型:输出信号功率高
双向泵浦型:输出信 号功率比单泵浦源高 3dB,且放大特性与 信号传输方向无关
掺铒光纤放大器给光纤通信领域带来的革命
EDFA解决了系统容量提高的最大的限制——光 损耗
补偿了光纤本身的损耗,使长距离传输成为可能 大大增加了功率预算的冗余,系统中引入各种新
型光器件成为可能 支持了最有效的增加光通信容量的方式-WDM 推动了全光网络的研究开发热潮
为什么要用掺铒光纤放大器
半导体光 粒子数反 电 100m 差 很难 大 差
放大器
转
~1mm
光放大器的应用
线路放大(In-line):周 期性补偿各段光纤损耗
功率放大(Boost):增加 入纤功率,延长传输距离
前置预放大(Pre-Amplify): 提高接收灵敏度
局域网的功率放大器:补偿 分配损耗,增大网络节点数
研究新热点
第五章 光放大器
5.1 光放大器概述 5.2 掺铒光纤放大器EDFA 5.3 半导体光放大器SOA 5.4 拉曼光纤放大器RFA
5.1 光放大器概述
光放大器的出现,可视为光纤通信发展史上的重要 里程碑。
光放大器出现之前,光纤通信的中继器采用光-电 -光(O-E-O)变换方式。
装置复杂、耗能多、不能同时放大多个波长信道,在 WDM系统中复杂性和成本倍增,可实现1R、2R、3R 中继
工作频带正处于光纤损耗最低处(1525-1565nm); 频带宽,可以对多路信号同时放大-波分复用; 对数据率/格式透明,系统升级成本低; 增益高(>40dB)、输出功率大(~30dBm)、噪声低
(4~5dB); 全光纤结构,与光纤系统兼容; 增益与信号偏振态无关,故稳定性好; 所需的泵浦功率低(数十毫瓦)。