开关电源的反馈控制模式研究

合集下载

开 关 电 源 反 馈 控 制 原 理 简 介

开 关 电 源 反 馈 控 制 原 理 简 介

在原单接电容补偿的地方改接电阻R和电容串联。
Thanks!
- uO
净输入量uD= uN- uP ,反馈信号 使净输入量增大,引入的是正反馈。
净输入量iN= iI- iF,反馈信号 使净输入量减小,引入的是负反馈。
Closed loop gain study 1

开环控制与闭环控制两者区别:
开环控制 没有反馈环节 闭环控制 有反馈环节可以对反馈的结果进行控制产生影响
反馈的概念:
控制系统中,输出量通过适当的检测装置返回到输入端并与输入 量进行比较的过程,就是反馈
反馈类型:
正反馈—加入反馈后,净输入信号比没有引入反馈时增加了,输出幅度增加 。 负反馈—加入反馈后,净输入信号比没有引入反馈时减小了,输出幅度下降
负反馈的功能:
稳定静态工作点;稳定放大倍数;改善输入电阻、输出电阻;扩展通频带。
R2
uI
+ A uO
R1
uI
+ A uO
uI
+ A R
R的接入没有引馈的放 大电路
入反馈
Basic concept of feedback control 4
正反馈与负反馈 + uI uN + + uD uP R1
判断的方法:瞬时极性法
A + - uO
R2
- uF

R2
iF + R1 + iN uN uI A iI +
Af=A/1+Af
在深度负反馈条件下,其计算公式近似为:Af=1/F
General methods for compensation 1
电容滞后补偿法
将补偿电容连接在前一级的输出电阻和后一级的输入电阻都比较大的回路

最详细的开关电源反馈回路设计

最详细的开关电源反馈回路设计

最详细的开关电源反馈回路设计开关电源是一种常用的电源供应方式,具有高效率和稳定输出电压的特点。

为了确保开关电源能够稳定工作,需要设计合理的反馈回路。

开关电源的反馈回路是一个闭环控制系统,通过对输出电压进行采样,与参考电压进行比较,计算出误差信号,再经过调整和补偿,使得输出电压稳定在设定值。

首先,需要选择合适的反馈控制策略。

常用的反馈控制策略有电压模式控制(Voltage Mode Control)和电流模式控制(Current Mode Control)。

电流模式控制具有更快的动态响应和更好的稳定性,但需要更复杂的设计和调试,因此在设计中需进行合理选择。

在电压模式控制中,可以使用一个误差放大器进行电压比较,产生误差信号。

误差放大器一般采用差分放大电路,通过输入电压和参考电压的差值乘以一个放大倍数,生成一个调整后的误差信号。

误差放大器的输出信号会经过一个滤波器进行滤波处理,以消除高频噪声。

接下来,需要设计一个比例积分(PI)控制器。

PI控制器可以提供稳定的、无超调的输出响应。

PI控制器的输入是经过滤波器处理后的误差信号,根据误差的大小来调整控制器的输出。

比例增益(Kp)决定了控制器对误差的响应速度,而积分时间常数(Ti)决定了控制器对误差的积分时间,即系统的稳定性。

在设计PI控制器时,可以根据经验公式来选择合适的参数。

通过实际测试和调整,可以优化控制器性能,使得开关电源的输出电压更加稳定。

最后,需要对开关电源进行保护设计。

开关电源反馈回路应具备过压保护、过流保护和短路保护等功能。

过压保护可以避免输出电压过高,过流保护可以防止过大的输出电流,短路保护可以防止输出端短路。

总之,开关电源反馈回路设计需要合理选择控制策略,设计误差放大器和滤波器、PI控制器,并进行参数调整和保护设计。

通过以上步骤,可以设计出稳定可靠的开关电源反馈回路。

开关电源电流控制模式工作原理

开关电源电流控制模式工作原理

开关电源电流控制模式工作原理1. 电流控制模式简介开关电源的电流控制模式是一种常见的控制方法,主要用于稳定和调节电源的输出电流。

通过检测电源的输出电流并对其进行相应的调节,可以确保输出电流保持在一个预设的范围内。

这种控制模式在各种电子设备和系统中得到了广泛应用,如计算机、通信设备、医疗设备等。

2. 反馈环路组成电流控制模式的开关电源通常包含一个反馈环路,用于将输出电流与预设值进行比较,并根据比较结果进行调节。

反馈环路主要由电流检测器、误差放大器、调节器、PWM比较器和开关管等元件组成。

3. 误差放大器误差放大器是反馈环路中的一个关键元件,用于放大输出电流与预设值之间的误差。

误差放大器的输出与输入成比例关系,当输出电流偏离预设值时,误差放大器的输出会相应地增加或减小,以驱动调节器进行相应的调节。

4. 调节器调节器是反馈环路中的另一个重要元件,它通常采用PID(比例-积分-微分)控制器或类似的控制器。

调节器接收误差放大器的输出信号,并根据预设的控制参数(如比例系数、积分系数和微分系数)计算出一个控制信号。

该控制信号用于调节PWM比较器的输出,从而控制开关管的通断时间。

5. PWM比较器PWM比较器是开关电源中的另一个关键元件,它根据调节器输出的控制信号和振荡器输出的三角波信号进行比较,产生一个脉宽调制信号。

该信号的脉冲宽度与控制信号的大小成比例关系,从而控制开关管的通断时间,进而调节输出电流的大小。

6. 开关管控制开关管是开关电源中的主要执行元件,用于控制电源的通断。

在电流控制模式下,开关管的通断时间由PWM比较器输出的脉宽调制信号控制。

当脉宽调制信号为高电平时,开关管导通,电能输出到负载;当脉宽调制信号为低电平时,开关管关断,停止电能输出。

通过调节脉宽调制信号的占空比(即高电平时间占一个周期的比例),可以调节输出电流的大小。

7. 输出电压调整在某些情况下,开关电源需要具备输出电压调整功能。

通过在反馈环路中引入输出电压检测和相应的调节机制,可以实现对输出电压的稳定和调节。

单片开关电源工作模式的设定及反馈理论分析4页word文档

单片开关电源工作模式的设定及反馈理论分析4页word文档

单片开关电源工作模式的设定及反馈理论分析时间:2011-02-17 14:54:56 来源:河北科技大学作者:沙占友,王书海,孟志永式中,IPRI为初级(PRIMARY)电流,它包含着峰值电流IP和脉动电流IR。

II是初级电流的初始值。

UDS(ON)是MOSFET的漏-源导通电压,tON为导通时间。

由于VD截止,初级与输出负载隔离,因此原来储存在C2上的电能就给负载供电,维持输出电压不变。

此时电能以磁场能量的形式储存在高频变压器内。

在TOPSwitch关断期间,高频变压器中的磁通量开始减小,并且次级绕组的感应电压极性发生变化,使得VD因正向偏置而导通。

储存在高频变压器中的能量就传输到输出电路,一方面给RL供电,另一方面还给C2重新充电。

次级电流就从初始值按下式衰减:式中,IS为次级(SECONDARY)电流,IPNP/NS为次级电流的初始值。

IP为初级电流在TOPSwitch导通结束前的峰值。

UF1为输出整流管VD的正向导通压降。

tOFF是TOPSwitch的关断时间。

在TOPSwitch关断期间,如次级电流IS衰减到零,输出电流就由C2来提供。

TOPSwitch有两种工作方式,这取决于关断期间最后的IS值。

若在关断期间IS衰减到零,就工作在不连续方式。

若IS的衰减结果仍大于零,则工作在连续模式。

2.2实际情况下两种工作模式的反馈原理在理想情况下,不考虑反馈电路中寄生元件(分布电容和泄漏电感)的影响。

但实际情况下必须考虑分布电容和泄漏电感的影响,因此在工作波形中存在尖峰电压和尖峰电流。

1)实际不连续模式的反馈原理实际不连续模式的工作波形及简化电路原理如图3所示。

由图3(b)可见,在不连续模式下每个开关周期被划分成3个阶段。

另外,在实际电路中还存在着3个寄生元件:初级绕组的漏感LP0,次级绕组的漏感LS0,分布电容CD。

其中,CD是TOPSwitch的输出电容COSS与高频变压器初级绕组的分布电容CXT之和,即CD=COSS+CXT。

开关电源反馈

开关电源反馈
C 1 10
4
L 1 10
90 75 60 45 30 15 0 15 Gain( f ) 30 45 P hase( f ) 60 75 90 105 120 135 150 165 180 3 1 10
R 0 .02
二階極點
n
1 LC
1 10
4
1 10 f
5
1 10
1 10
3
1 10 f
4
1 10
5
开环传递函数稳定性判据:
1.
2. 3.
相位在低频段趋向于180度(即保证系统是负反馈系统)。
Open Loop Gain Phase Curve:
G ain f ) 2 0 l og G 2 i f (
在增益大于0的区间,相位必须大于0度。 在相位等于或接近0度时, 增益必须小于0。

P h ase f ) arg G 2 i f ( 1 80
180 160 140 120 100 80 60 40 Gain( f ) 20 0 P hase( f ) 20 40 60 80 100 120 140 160 180 100
相角裕量(degree) 40o 增益裕度(db) 10db 反馈带宽(kHz) 9kHz
3
C1 1 1 0
8
C2 1 1 0
9
R2
+
C2
Vref
R3
Uo
G( s) Uo / Ui
R1C1s 1 R2C1s( R1C2 s 1)
100 f
1 10
3
1 10
4
1 10
5
1. 2.

电源设计中的原边反馈控制和副边反馈控制方案分析-技术方案

电源设计中的原边反馈控制和副边反馈控制方案分析-技术方案

电源设计中的原边反馈控制和副边反馈控制方案分析-技术方案一、原边反馈控制、副边反馈控制方案分析PSR(Primary Side Regulator)即原边反馈,用于反激式开关电源中,其利用辅助线圈来提取副边线圈上的输出电压信号。

由于辅助线圈与副边线圈上的电压与匝数比有关,且在副边线圈去磁结束点(即线圈上的电流下降至零时),电源输出电压等于副边线圈上的电压,采样该反馈电压信号,经控制芯片处理得到理想的PWM控制信号,用于控制原边侧功率管的开关,功率管的开关时间决定了变压器上能量储存的多少,从而也直接影响了副边输出电压的大小。

利用这一系列的反馈关系,终可得到稳定的电压输出。

SSR(Secondary Side Regulator)即副边反馈,副边反馈控制技术是发展较早的反激式开关电源控制技术,其对输出电压的提取过程直接在变压器的副边电压输出端完成,因此需要在副边增加光耦、TL431及相关阻容元件,其中TL431为误差放大器,能够实时监测输出电压,并将监测结果以电流的形式通过光耦反馈至原边,同时保证输入端与输出端的隔离。

二、两者的比较如下为思睿达原边反馈控制(PSR)方案和副边反馈控制(SSR)方案。

C6267原边反馈控制方案C5269S副边反馈控制方案三、原边、副边方案如何选?比如在充电器领域,直接对电池充电的应用,一般会对空载电压精度要求高,可以选择副边电源IC+恒流芯片来做。

通过电池管理芯片,对电池充电的。

因为电池管理芯片会有过压和过流保护,可以直接选用原边方案来进行,这样成本相对于副边的方案来说会降低很多。

有时候也可以和客户讨论客户的设计方案来降低成本,引导客户开案。

如在LED灯领域,每串灯珠的前面没有加上一个限流电阻。

那么,在电源线路设计中,用副边方案的IC+高精度恒流方案来做,价格较高;用原边方案,原边的恒流精度在生产中很难达到客户的要求。

但是在每串灯珠的前面加上一个限流电阻,那么就可以直接用原边方案来进行设计,既可达到客户要求,又可以节约成本。

《开关电源反馈》课件

《开关电源反馈》课件

功率反馈
总结词
功率反馈通过监测开关电源的输出功 率来控制其输出。
详细描述
功率反馈的工作原理是将开关电源的 输出功率的变化转化为电信号,并将 其反馈到控制电路中。控制电路根据 反馈信号调整开关电源的输出,以保 持输出功率的稳定。
开关电源反馈系统的控制方式
总结词
开关电源反馈系统的控制方式主要有比例控制、积分控制和微分控制等。
反馈环路的设计原则
包括电源、反馈网络、比较器和误差放大 器等。
将输出电压或电流与参考值进行比较,产 生误差信号,用于调节开关电源的输出。
确保系统的稳定性和快速响应能力,同时 减小误差。
反馈元件的选择与设计
电阻的选择
根据系统要求选择适当的电阻值和精度 ,以满足系统性能要求。
运算放大器的选择
根据系统增益、带宽和精度要求选择适 当的运算放大器。
《开关电源反馈》ppt课件
目录
• 开关电源反馈系统概述 • 开关电源反馈系统的工作原理 • 开关电源反馈系统的设计
目录
• 开关电源反馈系统的应用 • 开关电源反馈系统的优化与改进
01
开关电源反馈系统概述
开关电源反馈系统的定义与作用
01
02
定义
作用
开关电源反馈系统是指通过反馈控制理论和技术,对开关电源的输出 电压或电流进行实时监测和调节,以保证输出稳定、可靠的系统。
这有助于提高光伏逆变器的效率和稳定性,延长其使 用寿命。
05
开关电源反馈系统的优化 与改进
提高开关电源的效率
01
02
03
优化控制策略
采用先进的控制算法,如 PID控制、模糊控制等, 提高开关电源的效率。
降低损耗
优化电路设计,减小导线 和元件的损耗,提高整体 效率。

开关电源中的电流型控制模式

开关电源中的电流型控制模式

开关电源中的电流型控制模式摘要:讨论了开关电源中电流反馈控制模式的工作原理、优缺点,以及与之有关的斜波补偿技术。

关键词:开关电源;电流型控制;斜波补偿1引言PWM型开关稳压电源是一个闭环控制系统,其基本工作原理就是在输入电压、内部元器件参数、外接负载等因素发生变化时,通过检测被控制信号与基准信号的差值,利用差值调节主电路功率开关器件的导通脉冲宽度,从而改变输出电压的平均值,使得开关电源的输出电压保持稳定。

以开关电源中的降压型变换为例(其它类型如正激型、推挽型等,均可由降压型派生得到),图1表示了该变换器的主电路的基本拓扑结构。

图1降压型开关电源根据选用不同的PWM控制模式,图1电路中的输入电压Uin、输出电压Uo、开关功率器件电流(可从A点采样)、输出电感电流(可从B或C点采样)均可作为控制信号,用于完成稳压调节过程。

目前在开关电源中广泛使用的控制方式是通过对输出电压或电流(功率开关器件或输出电感上流过的电流)进行采样,即形成2类控制方式:电压控制模式与电流控制模式。

2电流控制模式的工作原理图2为检测输出电感电流的电流型控制的基本原理框图。

它的主要特点是:将采样得到的电感电流直接反馈去控制功率开关的占空比,使功率开关的峰值电流直接跟随电压反馈电路中误差放大器输出的信号。

从图2中可以看出,与单一闭环的电压控制模式相比,电流模式控制是双闭环控制系统,外环由输出电压反馈电路形成,内环由互感器采样输出电感电流形成。

在该双环控制中,由电压外环控制电流内环,即内环电流在每一开关周期内上升,直至达到电压外环设定的误差电压阈值。

电流内环是瞬时快速进行逐个脉冲比较工作的,并且监测输出电感电流的动态变化,电压外环只负责控制输出电压。

因此电流型控制模式具有比起电压型控制模式大得多的带宽。

图2检测输出电感电流的电流型控制原理框图实际电路以单端正激型电源为例,如图3所示。

误差电压信号Ue送至PWM比较器后,并不是像电压模式那样与振荡电路产生的固定三角波状电压斜波比较调宽,而是与一个变化的、峰值代表功率开关上的电流信号(由Rs上采样得到)的三角状波形信号(电感电流不连续)或矩形波上端叠加三角波合成波形信号(电感电流连续)比较,然后得到PWM脉冲关断时刻。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

开关电源的反馈控制模式研究
[摘要] 本文比较详细地说明了电压模式、峰值电流模式、平均电流模式、滞环电流模式、相加模式等PWM反馈控制模式的基本工作原理、发展过程、关键波形、性能特点及应用要点。

[关键词] 开关电源反馈控制模式控制
1.引言
PWM开关稳压或稳流电源基本工作原理就是在输入电压变化、内部参数变化、外接负载变化的情况下,控制电路通过被控制信号与基准信号的差值进行闭环反馈,调节主电路开关器件的导通脉冲宽度,使得开关电源的输出电压或电流等被控制信号稳定。

PWM的开关频率一般为恒定,控制取样信号有:输出电压、输入电压、输出电流、输出电感电压、开关器件峰值电流。

由这些信号可以构成单环、双环或多环反馈系统,实现稳压、稳流及恒定功率的目的,同时可以实现一些附带的过流保护、抗偏磁、均流等功能。

2.开关电源PWM的五种反馈控制模式
一般来讲,根据选用不同的PWM反馈控制模式,电路中的输入电压、输出电压、开关器件电流、电感电流均可作为取样控制信号。

输出电压在作为控制取样信号时,通常经过处理,得到电压信号,再经处理或直接送入PWM 控制器。

电压运算放大器的作用有三:①将输出电压与给定电压的差值进行放大及反馈,保证稳态时的稳压精度。

该运放的直流放大增益理论上为无穷大,实际上为运放的开环放大增益。

②将开关电源主电路输出端的附带有较宽频带开关噪声成分的直流电压信号转变为具有一定幅值的比较“干净”的直流反馈控制信号即保留直流低频成分,衰减交流高频成分。

③对整个闭环系统进行校正,使得闭环系统稳定工作。

2.1 电压模式控制PWM
电压模式控制PWM是60年代后期开关稳压电源刚刚开始发展而采用的第一种控制方法。

该方法与一些必要的过电流保护电路相结合,至今仍然在工业界很好地被广泛应用。

电压模式控制只有一个电压反馈闭环,采用脉冲宽度调制法。

当输入电压突然变小或负载阻抗突然变小时,因为主电路有较大的输出电容及电感相移延时作用,输出电压的变小也延时滞后,输出电压变小的信息还要经过电压误差放大器的补偿电路延时滞后,才能传至PWM比较器将脉宽展宽。

这两个延时滞后作用是暂态响应慢的主要原因。

电压模式控制的优点:①PWM三角波幅值较大,脉冲宽度调节时具有较好的抗噪声裕量;②占空比调节不受限制;③对于多路输出电源,它们之间的交互调节效应较好;④单一反馈电压闭环设计、调试比较容易;⑤对输出负载的变
化有较好的响应调节。

缺点:①对输入电压的变化动态响应较慢;②补偿网络设计本来就较为复杂,闭环增益随输入电压而变化使其更为复杂;③输出LC滤波器给控制环增加了双极点,在补偿设计误差放大器时,需要将主极点低频衰减,或者增加一个零点进行补偿;④在传感及控制磁芯饱和故障状态方面较为麻烦复杂。

2.2 峰值电流模式控制PWM
峰值电流模式控制简称电流模式控制。

它的概念在60年代后期来源于具有原边电流保护功能的单端自激式反激开关电源。

在70年代后期才从学术上作深入地建模研究。

直至80年代初期,第一批电流模式控制PWM集成电路的出现使得电流模式控制迅速推广应用,主要用于单端及推挽电路。

近年来,由于占空比时所必需的同步不失真斜坡补偿技术实现上的难度及抗噪声性能差,电流模式控制面临着改善性能后的电压模式控制的挑战。

峰值电流模式控制PWM的优点:①暂态闭环响应较快,对输入电压的变化和输出负载的变化的瞬态响应均快;②控制环易于设计;③输入电压的调整可与电压模式控制的输入电压前馈技术相媲美;④简单自动的磁通平衡功能;⑤瞬时峰值电流限流功能,即内在固有的逐个脉冲限流功能;⑥自动均流并联功能。

缺点:①占空比大于50%的开环不稳定性,存在难以校正的峰值电流与平均电流的误差;②闭环响应不如平均电流模式控制理想;③容易发生次谐波振荡,即使占空比小于50%,也有发生高频次谐波振荡的可能性。

因而需要斜坡补偿;④对噪声敏感,抗噪声性差。

⑤电路拓扑受限制;⑥对多路输出电源的交互调节性能不好。

2.3 平均电流模式控制PWM
平均电流模式控制概念产生于70年代后期。

平均电流模式控制PWM集成电路出现在90年代初期,成熟应用于90年代后期的高速CPU专用的具有高di/dt 动态响应供电能力的低电压大电流开关电源。

将误差电压接至电流误差信号放大器的同相端,作为输出电感电流的控制编程电压信号。

带有锯齿纹波状分量的输出电感电流信号接至电流误差信号放大器的反相端,代表跟踪电流编程信号的实际电感平均电流,与的差值经过电流放大器放大后,得到平均电流跟踪误差信号。

再由及三角锯齿波信号通过比较器比较得到PWM关断时刻。

平均电流模式控制的优点是:①平均电感电流能够高度精确地跟踪电流编程信号;②不需要斜坡补偿;③调试好的电路抗噪声性能优越;④适合于任何电路拓扑对输入或输出电流的控制;⑤易于实现均流。

缺点是:①电流放大器在开关频率处的增益有最大限制;②双闭环放大器带宽、增益等配合参数设计调试复杂。

2.4 滞环电流模式控制PWM
滞环电流模式控制PWM为变频调制,也可以为定频调制。

将电感电流信号与两个电压值比较,第一个较高的控制电压值由输出电压与基准电压的差值放大
得到,它控制开关器件的关断时刻;第二个较低电压值由控制电压减去一个固定电压值得到,控制开关器件的开启时刻。

滞环电流模式控制是由输出电压值、控制电压值及三个电压值确定一个稳定状态,比电流模式控制多一个控制电压值,去除了发生次谐波振荡的可能性。

滞环电流控制模式的优点:①不需要斜坡补偿;②稳定性好,不容易因噪声发生不稳定振荡。

缺点:①需要对电感电流全周期的检测和控制;②变频控制容易产生变频噪声。

2.5 相加模式控制PWM
相加模式控制PWM与电压模式控制有些相似,但有两点不同:一是放大器是比例放大器,没有电抗性补偿元件。

控制电路中电容较小,起滤除高频开关杂波作用;二是经过滤波后的电感电流信号也与电压误差信号相加在一起构成一个总和信号与三角锯齿波比较,得到PWM控制脉冲宽度。

相加模式控制PWM 是单环控制,但它有输出电压、输出电流两个输入参数。

如果输出电压或输出电流变化,那么占空比将按照补偿它们变化的方向而变化。

相加控制模式的优点是:动态响应快(比普通电压模式控制快3~5倍),动态过冲电压小,输出滤波电容需要较少。

相加模式控制中的Ui注入信号容易用于电源并联时的均流控制。

缺点是:需要精心处理电流、电压取样时的高频噪声抑制。

3.结论
1)不同的PWM反馈控制模式具有各自不同的优缺点,在设计开关电源选用时要根据具体情况选择合适的PWM的控制模式。

2)各种控制模式PWM反馈方法的选择一定要结合考虑具体的开关电源的输入输出电压要求、主电路拓扑及器件选择、输出电压的高频噪声大小、占空比变化范围等。

3) PWM控制模式是发展变化的,是互相联系的,在一定的条件下是可以互相转化的。

参考文献:
[1]何希才.新型开关电源的设计与应用[M]北京:科学出版社.2001.。

相关文档
最新文档