第二节 整式的加减运算及应用

合集下载

《整式的加减 》课件

《整式的加减 》课件
根据乘法分配律,将代数式中 的每一项分别乘以另一个代数 式中的每一项,再将结果相加 。
整式的除法运算
转化为乘法运算,再按照乘法 运算法则进行计算。
整式的混合运算实例
整式加法实例
$2x^2y + 3xy^2 + 4xz$
整式乘法实例
$(x + y)^2 times (x - y)^3$
整式减法实例
$5x^3 - 3x^2y + 4y^2 - 2y^3$
整式的分类
单项式
只包含一个项的整式,如: 3x^2y、4a。
多项式
包含多个项的整式,如:x^2 3x + 2、a^3 - 2a^2 + a。
整式的加减运算规则
同类项合并
幂次不变
同类项是指具有相同变量和幂次的项 ,同类项可以合并,如:2x^2 + 3x^2 = 5x^2。
在进行加减运算时,变量的幂次保持 不变,如:x^2 + x = x^2 + x。
整式除法实例
$frac{x^4 - y^4}{x + y}$
04
CATALOGUE
整式的加减在实际问题中的应用
整式的加减在数学问题中的应用
01
02
03
代数方程求解
通过整式的加减运算,可 以求解代数方程,如一元 一次方程、二元一次方程 等。
函数图像变换
整式的加减可以用于函数 图像的平移、伸缩等变换 ,有助于理解函数的性质 和变化规律。
几何图形面积计算
在几何图形中,整式的加 减可以用于计算图形的面 积和周长,如矩形、三角 形等。
整式的加减在实际生活中的应用
购物计算
在购物时,整式的加减可以用于 计算折扣、找零等,方便快捷。

人教版七年级初中数学上册第二章整式的加减-整式的加减(整式加减运算)PPT课件

人教版七年级初中数学上册第二章整式的加减-整式的加减(整式加减运算)PPT课件

b
1.5a
2b
解:小纸盒的表面积是(2ab+2bc+2ca
)c2
大纸盒的表面积是( 6ab+8bc+6ca)c2
新知探究
求 1 x 2( x 1 y 2 ) ( 3 x 1 y 2 ) 的值,其中 x 2, y 2
2
3
2
3
3
1
1 2
3
1 2
解: x 2( x y ) ( x y )
第二章 整式的加减
2.2.3 整 式 加 减 运 算
人教版七年级(初中)数学上册
授课老师:11
前 言
学习目标
1、熟练进行整式的加减运算。
2、利用去括号法则会进行整式的化简。
重点难点
重点:熟练进行整式的加减运算。
难点:利用去括号法则会进行整式的化简。
新知探究
(1)(2x-3y)+(5x+4y)
整式加减运算需注意:
A.14a+6b
B.7a+3b
C.10a+10b
D.12a+8b
提示:1.先求另一边边长。
2.长方形周长=(长+宽)*2
课堂练习
3.计算
(1) 3xy-4xy-(-2xy)
(2) (-x+2x2 +5)- (4x2 -3-6x)
课堂练习
4.填空
如果用a,b分别表示一个两位数的十位数字和个位数字,
小红买这种笔记本3本,买圆珠笔2支;
小明买这种笔记本4本,买圆珠笔3支.
问:买这些笔记本和圆珠笔,小红和小明一共花费多少钱?
分析
笔记本花费
圆珠笔花费

整式的加减的ppt课件

整式的加减的ppt课件
多项式
由多个单项式组成的整式,如:x + 2y、3x^2 - 4x + 5等。
整式的加减运算规则
01
02
03
合并同类项
将相同变数的项合并,如 :3x + 5x = 8x。
系数相加减
将同类项的系数进行相加 或相减,如:3x + (-2x) = x。
变数和常数相加减
在整式的加减中,变数和 常数可以相加减,如:x + 5 = x + 5。
电磁学问题
在电磁学中,电流、电压、电阻等物 理量的计算也需要使用到整式的加减 。通过整式的加减,我们可以得到更 加准确的物理量值。
整式的加减在化学问题中的应用
化学反应方程式
在化学反应方程式中,整式的加减可 以帮助我们理解反应物和生成物之间 的关系。例如,通过比较反应前后的 质量变化,我们可以计算出反应的能 量变化。
整式的加减在实际问题中的应用
整式的加减在数学问题中的应用
代数方程的求解
整式的加减在代数方程求解中有 着广泛的应用,例如线性方程、 二次方程等。通过合并同类项、 移项等整式加减运算,可以简化
方程,找到解。
函数图像的处理
在函数的学习中,整式的加减可 以帮助我们处理函数图像,例如 通过平移、伸缩等变换,使图像
利用分配律简化计算
分配律是整式加减运算的基础,灵活运用分 配律可以简化计算。
灵活运用交换律和结合律
交换律和结合律可以用来调整项的顺序,便 于计算。
合并同类项时注意符号
在合并同类项时,要注意各项的符号,正负 号要正确处理。
化简时注意化到最简形式
在化简整式时,应尽可能化到最简形式,避 免复杂计算。
整式的加减运算实例

第2节 整式的加减运算及运用

第2节  整式的加减运算及运用

第二节整式的加减运算及运用一、课标导航二、核心纲要1. 合并同类项法则:合并同类项时,只需把系数相加减,所含字母和字母指数不变.注:系数相加减,其余都不变.2. 去括号法则:去括号时,括号前面是“+”号时,括号里的各项都不变号....;括号前面是“-”号时,括号里的各项都改变符号......添括号法则:添括号时,括号前面是“+”号时,括在括号里的各项都不变号....;括号前面是“-”号时,括在括号里的各项都改变符号......注:负变正不变,3. 整式加减的实质:去括号,合并同类项.4. 化简求值的技巧:一化,二代,三计算.5. 化简求值的常用方法:(1)直接代入法;(2)整体代入法;(3)降次法.(4)赋值法等.6. 整式比较大小的方法:作差法.即:a-b>0 >b;a-b<0 a<b;a-b=0a=b本节重点讲解:一个运算,两个方法(化简求值、比较大小),三个法则.三、全能突破1.(1)下列各式中去括号正确的是( )A.a2-3(2a-b2+b) =a2-6a-b2+b B.-(2x+y)-(-x2+y2)=-2x+y+x2+y2C.2x2-3(x-5)=2x2-3x+5 D.–a3-[-4a2+2(1-3a)]=-a3+4a2-2+6a(2)下列式子中添括号错误..的是( ) A . 5x 2-x +2y -5z =5x 2-(x -2y +5z )B .2a 2 -3a -b -3c + 2d =2a 2 +(-3a -b )-(3c -2d )C .3x 2-3x -6=3x 2-3(x +6)D .-x +2y +x 2-y 2=-(x -2y )- (-x 2+y 2) 2.(1)单项式21412n a b --与3a 2m b 8m 的和是单项式,则(1+n )2010(1-m )2012的值为( ) A .14B . 1C . 4D .无法计算(2)若M 和N 都是六次多项式,那么M 十N 一定是( ) A .单项式 B . 次数不低于六次的多项式 C .六次多项式D .次数不高于六次的多项式或单项式3.若M =2a 2b ,N =7ab 2,P =-4a 2b ,则下列等式成立的是( )A .M +N =9a 2bB .N +P =3abC .M +P =-2a 2bD .M - P =2a 2b4.下面是小强做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上 面.2222221113(5)()22222x xy y x y x xy y -+---+=-+-,阴影部分即为被墨汁弄污的部分.那么被墨汁遮住的一项应是( ) A .-7xyB .+7xyC .-3xyD .+3xy5. 一个多项式,当减去2x 2-3x +7时,因把“减去”误认为“加上”,得5x 2-2x +4,试求正确的计算结果是____.6.化简:(1)2xy 2-4x 2y -(x 2y -2xy 2)(2) ( 9x 2+2xy +6) - (xy -7x 2-3y 2-5)(3) 15a 2-{-4a 2+ [5a – 8a 2- (2a 2-a )-9a 2]-3a }7.(1)先化简,再求值:-3x2-[5x-x2-(2x2-x)],其中x=1 2 .(2)若x是绝对值等于4的数.y是倒数等于12-的有理数,z的相反数是-1,求3x2y-[2x2y-(2xyz -x2z)-4x2z]-2xyz的值.8.(1)已知a+2b=5,ab=-3,求(3ab-2b)+[3a-(5ab-12b-2a)]的值.(2)已知代数式-3y2+2y-6=-8,求代数式32-y2+y-1的值.9.把(x-3)2-2(x-3)-5(x-3)2+(x-3)中的(x-3)看成一个因式合并同类项,结果应是( ) A.-4(x-3)2+(x-3) B.4(x-3)2-x(x-3)C.4(x-3)2-(x-3) D.-4(x-3)2-(x-3)10.若M=x3-3x2y+2xy2+3y3,N=x3-2x2y+xy2-5y3,则2x3-7x2y+5xy2+14y3的值为( ) A.M+N B.M-N C.3M-N D.N-3M11. 已知a-b=2004,b-c=-2005,c-d=2007,则(a-c) (b-d)=___________ . . 12.已知x2+xy=3,xy+y2=-2,则2x2-xy-3y2的值为______________ .13.已知A=4x2+ax-y+b,B=2bx2-x+5y-1,且A-2B的值与字母x的取值无关,则(a+b)2012=________.14.已知a、b、c满足:(1)5(a+3)2+2|b-2|=0;(2)13x2-a y1+b+c+22a4b+c+1是七次多顶式;求多项式a2b-[a2b-(2abc-a2c-3a2b)-4a2c]-abc的值.15.已知多项式A和B,A=(5m+1)x2+(3n+2)xy-3x+y,B=6x2+5xy-2x-1,当A与B的差不含二次项时,求(-1)m+n·[-m+n-(-n)3m]的值.16.已知A=2a2+2b2-3c2+2,B=3a2-b2-2c2-1,C=c2+2a2-3b2+3,试求(1)当b,c取不同的数值时,A-B+C的值是否发生变化?并说明理由.(2)A-B+C的取值是正数还是负数?若是正数,求出最小值;若是负数,求出最大值.17. 已知代数式ax4+bx3+cx2+dx+3,当x=2时它的值为20;当x=-2时它的值为16,求x=2时,代数式ax4+cx2+3的值.18.已知代数式y=12(-10x+196+|-10x+196|),当字母x分别取1,2,3,…,99,100这100个自然数时,代数式y对应的所有值的和是多少?19.已知(2x-1)6=ax6+bx5+cx4+dx3+ex2+fx+g(a、b、c、d、e、f、g均为常数),试求(1)a+b+c+d+e+f+g的值;(2)a-b+c-d+e-f+g的值:(3)a+c+e+g的值:(4)b+d+f的值.20.对任意有理数x ,试比较多项式M =4x 2-5x +2与N =4x 2-7x +8的值的大小21. 要把学而思编著的初中数学《几何辅助线秘籍》捆扎寄往上海分校.它的长、宽、高分别为a ,b ,c (a >b >c ),下面有三种不同的捆扎方式(图2-2-1所示的虚线),哪种方式用绳最少?哪种方式用绳最多?说明理由.中考链接22.(2010·乌鲁木齐)已知整式x 2-52x 的值为6,则2x 2-5x +6的值为( ) A .9B .12C .18D .2423. (2010·汉阳区)如果 A =x 2-xy +y 2 ,B =x 2 – 2xy +3y 2 , 则B -2A =_________.24. (2010·内蒙古乌兰察布)将一些半径相同的小圆按如图2-2-2所示的规律摆放,请仔细观察,第n 个图形有____个小圆(用含n 的代数式表示).巅峰突破25. 当x =2时,代数式ax 3-bx +1的值等于-17,那么当x =-1时,代数式12ax -3bx 3-5的值等于____________ .26.若m =-1998,则|m 2+11m -999|-|m 2+22m +999|+20=_________ . 27.已知m 2+m -1=0,求m 3 +2m 2+2007的值.图2-2-2a bc甲abc乙ca b丙图2-2-1。

七上数学第二章整式的加减

七上数学第二章整式的加减

七上数学第二章整式的加减摘要:1.整式的概念及其分类2.整式的加减运算法则3.整式的加减运算实例分析4.整式的加减运算技巧和方法5.整式的加减在实际问题中的应用正文:七上数学第二章整式的加减一、整式的概念及其分类整式是指由常数、变量和它们的乘积以及它们的和差所组成的代数式。

整式可以分为单项式和多项式两大类。

单项式是只包含一个变量或常数的代数式,例如:3x、-2y等;多项式是由多个单项式通过加减运算组合而成的代数式,例如:x+3xy-2y等。

二、整式的加减运算法则整式的加减运算主要遵循以下法则:1.同类项相加减:同类项是指具有相同变量和相同次数的项,例如:3x 和4x 是同类项,而2x 和3y 不是同类项。

2.合并同类项:将同类项的系数相加减,字母和字母的指数不变。

3.遵循交换律和结合律:整式的加减运算可以交换顺序,也可以先计算部分项的和差,再进行总的加减运算。

三、整式的加减运算实例分析例如:计算以下整式的和差。

(1) 5x + 3xy - 2y + 2x - xy首先合并同类项,得到:7x + 2xy - 2y。

(2) 4a - 2b + 3c - (2a - b + c)去括号后,合并同类项,得到:2a - b + c。

四、整式的加减运算技巧和方法1.观察运算符号,根据符号进行相应的加减运算。

2.利用分配律,将加减运算分解为多个简单的加减运算。

3.注意合并同类项,避免遗漏或重复计算。

4.可以使用括号改变运算顺序,简化计算过程。

五、整式的加减在实际问题中的应用整式的加减在解决实际问题中具有重要作用,例如:在几何中求解面积、周长等问题时,需要用到整式的加减运算;在代数方程中,整式的加减是求解方程的重要手段。

人教版七年级上册数学教案:2.2整式的加减-去括号

人教版七年级上册数学教案:2.2整式的加减-去括号
具体内容包括:
-去括号的基本原则:同号括号相乘得正,异号括号相乘得负。
-去括号的方法:将括号内的每一项分别乘以括号外的系数,并保留符号。
-去括号的应用:解决整式加减问题,简化计算过程。
二、核心素养目标
1.培养学生的逻辑推理能力:通过学习去括号的方法,使学生能够理解和掌握整式加减的基本规则,提高他们在数学问题中的逻辑思维和推理能力。
三、教学难点与重点
1.教学重点
-重点一:去括号法则的理解与运用。使学生理解并掌握去括号的方法,包括同号括号相乘得正,异号括号相乘得负的规律,并能将其应用于整式的加减运算中。
举例:对于表达式3(x - 2y + z) - 2(x + y - z),学生需要能够去掉括号,得到3x - 6y + 3z - 2x - 2y + 2z。
-重点二:整式加减运算的顺序与法则。强调在进行整式加减时,先去括号,然后按照同类项合并的顺序进行运算。
举例:在解决2(x + 3) - 5 + x - (2x - 1)的问题时,学生应先去掉括号,再合并同类项,得到2x + 6 - 5 + x - 2x + 1。
2.教学难点
-难点一:符号的运用。学生在去括号时,容易在正负符号上出错,特别是在多层括号或括号前有负号的情况下。
举例:对于表达式-2(-3x + 4y - z),学生可能会错误地去掉括号后变为-6x + 8y - 2z,而正确的应该是6x - 8y + 2z。
-难点二:括号内项的分配律应用。学生需要理解并正确应用分配律,将括号外的数与括号内的每一项相乘。
举例:在处理5(2x - 3) + 4(3x + 1)的去括号过程中,学生应正确地将5乘以2x和-3,将4乘以3x和1,得到10x - 15 + 12x + 4。

《整式的加减》(二)—去括号与添括号 配套知识讲解2022人教七年级上册专练

整式的加减(二)—去括号与添括号(提高)知识讲解【学习目标】1.掌握去括号与添括号法则,注意变号法则的应用;2. 熟练运用整式的加减运算法则,并进行整式的化简与求值.【要点梳理】要点一、去括号法则如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.要点诠释:(1)去括号法则实际上是根据乘法分配律得到的结论:当括号前为“+”号时,可以看作+1与括号内的各项相乘;当括号前为“-”号时,可以看作-1与括号内的各项相乘.(2)去括号时,首先要弄清括号前面是“+”号,还是“-”号,然后再根据法则去掉括号及前面的符号.(3)对于多重括号,去括号时可以先去小括号,再去中括号,也可以先去中括号.再去小括号.但是一定要注意括号前的符号.(4)去括号只是改变式子形式,不改变式子的值,它属于多项式的恒等变形.要点二、添括号法则添括号后,括号前面是“+”号,括到括号里的各项都不变符号;添括号后,括号前面是“-”号,括到括号里的各项都要改变符号.要点诠释:(1)添括号是添上括号和括号前面的符号,也就是说,添括号时,括号前面的“+”号或“-”号也是新添的,不是原多项式某一项的符号“移”出来得到的.(2)去括号和添括号的关系如下:如:()a b c a b c +-+-添括号去括号, ()a b c a b c -+--添括号去括号要点三、整式的加减运算法则一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.要点诠释:(1)整式加减的一般步骤是:①先去括号;②再合并同类项.(2)两个整式相减时,减数一定先要用括号括起来.(3)整式加减的最后结果的要求:①不能含有同类项,即要合并到不能再合并为止;②一般按照某一字母的降幂或升幂排列;③不能出现带分数,带分数要化成假分数.【典型例题】类型一、去括号1.(2020•泰安模拟)化简m ﹣n ﹣(m+n )的结果是( )A . 0B . 2mC . ﹣2nD . 2m ﹣2n【答案】C【解析】解:原式=m ﹣n ﹣m ﹣n=﹣2n .故选C .【总结升华】解决此类题目的关键是熟记去括号法则,及熟练运用合并同类项的法则,其是各地中考的常考点.注意去括号法则为:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.类型二、添括号2.按要求把多项式321a b c -+-添上括号:(1)把含a 、b 的项放到前面带有“+”号的括号里,不含a 、b 的项放到前面带有“-”号的括号里;(2)把项的符号为正的放到前面带有“+”号的括号里,项的符号为负的放到前面带有“-”号的括号里.【答案与解析】解:(1)321(32)(1)a b c a b c -+-=---+;(2)321(3)(21)a b c a c b -+-=+-+.【总结升华】在括号里填上适当的项,要特别注意括号前面的符号,考虑是否要变号.举一反三:【变式】添括号:(1)22()101025()10()25x y x y x y +--+=+-+.(2)()()[(_______)][(_______)]a b c d a b c d a a -+-+-+=-+.【答案】(1)x y +; (2),b c d b c d -+-+ .类型三、整式的加减3. 3243245348x x x x x x -+--+-一个多项式加上得,求这个多项式.【答案与解析】解:在解答此题时应先根据题意列出代数式,注意把加式、和式看作一个整体,用括号括起来,然后再进行计算,在计算过程中找同类项,可以用不同的记号标出各同类项,减少运算的错误.43232(348)(45)x x x x x x --+---+ 4323243348453813.x x x x x x x x x =--+--+-=-+- 答:所求多项式为433813x x x -+-.【总结升华】整式加减的一般步骤是:①先去括号;②再合并同类项.举一反三:【变式】化简:(1)15+3(1-x )-(1-x+x 2)+(1-x+x 2-x 3).(2)3x 2y -[2x 2z -(2xyz -x 2z+4x 2y )].(3)-3[(a 2+1)-16(2a 2+a )+13(a -5)]. (4)ab -{4a 2b -[3a 2b -(2ab -a 2b )+3ab ]}.【答案】解: (1) 15+3(1-x )-(1-x+x 2)+(1-x+x 2-x 3)=15+3(1-x )-(1-x+x 2)+(1-x+x 2)-x 3=18-3x -x 3.. ……整体合并,巧去括号(2) 3x 2y -[2x 2z -(2xyz -x 2z+4x 2y )]=3x 2y -2x 2z+(2xy -x 2z+4x 2y ) ……由外向里,巧去括号=3x 2y -2x 2z+2xyz -x 2z+4x 2y=7x 2y -3x 2z+2xyz .(3) 22113[(1)(2)(5)]63a a a a -+-++- 2213(1)(2)(5)2a a a a =-+++-- 2213352a a a a =--++-+ 21222a a =--+. (4)ab -{4a 2b -[3a 2b -(2ab -a 2b )+3ab ]}=ab -4a 2b+3a 2b -2ab+a 2b+3ab ……一举多得,括号全脱=2ab .类型四、化简求值4. 先化简,再求各式的值:(){}123225,,12x y x x y x y x y --+-++==-⎡⎤⎣⎦其中. 【答案与解析】解:原式[2(3245)][2(3)]x y x x y x y x y x x y =--+--+=--+-+(23)(43)43444().x y x x y x y x x y x x y x y =---+=--=-+=-=- 将1,12x y ==-代入,得:134[(1)]4622--=⨯=. 【总结升华】化简求值题一般采用“一化二代三计算”,此类题最后结果的书写格式一般为:当……时,原式=?举一反三:【变式】(2020春•万州区期末)先化简,再求值:﹣2x 2﹣[3y 2﹣2(x 2﹣y 2)+6],其中x=﹣1,y=﹣.【答案】解:原式=﹣2x 2﹣y 2+x 2﹣y 2﹣3=﹣x 2﹣y 2﹣3,当x=﹣1,y=﹣时,原式=﹣1﹣﹣3=﹣4.5. 已知3a 2-4b 2=5,2a 2+3b 2=10.求:(1)-15a 2+3b 2的值;(2)2a 2-14b 2的值.【答案与解析】显然,由条件不能求出a 、b 的值.此时,应采用技巧求值,先进行拆项变形.解:(1)-15a 2+3b 2=-3(5a 2-b 2)=-3[(3a 2+2a 2)+(-4b 2+3b 2)]=-3[(3a 2-4b 2)+(2a 2+3b 2)]=-3×(5+10)=-45;(2)2a 2-14b 2=2(a 2-7b 2)=2[(3a 2-2a 2)+(-4b 2-3b 2)]=2×[(3a 2-4b 2)-(2a 2+3b 2)]=2×(5-10)=-10.【总结升华】求整式的值,一般先化简后求值,但当题目中含未知数的部分可以看成一个整体时,要用整体代入法,即把“整体”当成一个新的字母,求关于这个新的字母的代数式的值,这样会使运算更简便. 举一反三:【变式】当2m π=时,多项式31am bm ++的值是0,则多项式3145_____2a b ππ++=. 【答案】∵ 3(2)210a b ππ++=, ∴ 338212(4)10a b a b ππππ++=++=,即3142a b ππ+=-. ∴31114555222a b ππ++=-+=. 6. .已知多项式2x ax y b +-+与2363bx x y -+-的差的值与字母x 无关,求代数式:22223(2)(4)a ab b a ab b ---++的值.【答案与解析】解:222(363)(1)(3)7(3)x ax y b bx x y b x a x y b +-+--+-=-++-++.由于多项式2x ax y b +-+与2363bx x y -+-的差的值与字母x 无关,可知: 10b -=,30a +=,即有1,3b a ==-.又2222223(2)(4)74a ab b a ab b a ab b ---++=---,将1,3b a ==-代入可得:22(3)7(3)1418---⨯-⨯-⨯=.【总结升华】本例解题的关键是多项式的值与字母x 无关.“无关”意味着合并同类项后,其结果不含“x ”的项,所以合并同类项后,让含x 的项的系数为0即可.类型五、整式加减运算的应用7. (湖南益阳)有一种石棉瓦(如图所示),每块宽60厘米,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10厘米,那么n (n 为正整数)块石棉瓦覆盖的宽度为 ( ) .A .60n 厘米B .50n 厘米C .(50n+10)厘米D .(60n -10)厘米【答案】C .【解析】观察上图,可知n 块石棉瓦重叠的部分有(n -1)处,则n 块石棉瓦覆盖的宽度为:60n -10(n -1)=(50n+10)厘米.【总结升华】求解本题时一定要注意每相邻两块重叠部分的宽都为10厘米这一已知条件,一不小心就可能弄错.举一反三:【变式】如图所示,长方形内有两个相邻的正方形,面积分别为9和a 2(a >0).那么阴影部分的面积为________.【答案】3a-a2提示:由图形可知阴影部分面积=长方形面积29--,而长方形的长为3+a,宽为3,从而使问a题获解.第二课时【学习目标】1.理解方程,等式及一元一次方程的概念,并掌握它们的区别和联系;2.会解一元一次方程,并理解每步变形的依据;3.会根据实际问题列方程解应用题.【知识网络】【要点梳理】知识点一、一元一次方程的概念1.方程:含有未知数的等式叫做方程.2.一元一次方程:只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:判断是否为一元一次方程,应看是否满足:①只含有一个未知数,未知数的次数为1;②未知数所在的式子是整式,即分母中不含未知数.3.方程的解:使方程的左、右两边相等的未知数的值叫做这个方程的解.4.解方程:求方程的解的过程叫做解方程.知识点二、等式的性质与去括号法则1.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.2.合并法则:合并时,把系数相加(减)作为结果的系数,字母和字母的指数保持不变.3.去括号法则:(1)括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.(2)括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反.知识点三、一元一次方程的解法解一元一次方程的一般步骤:(1)去分母:在方程两边同乘以各分母的最小公倍数.(2)去括号:依据乘法分配律和去括号法则,先去小括号,再去中括号,最后去大括号.(3)移项:把含有未知数的项移到方程一边,常数项移到方程另一边.(4)合并:逆用乘法分配律,分别合并含有未知数的项及常数项,把方程化为ax =b (a ≠0)的形式.(5)系数化为1:方程两边同除以未知数的系数得到方程的解b x a=(a ≠0). (6)检验:把方程的解代入原方程,若方程左右两边的值相等,则是方程的解;若方程左右两边的值不相等,则不是方程的解.知识点四、用一元一次方程解决实际问题的常见类型1.行程问题:路程=速度×时间2.和差倍分问题:增长量=原有量×增长率3.利润问题:商品利润=商品售价-商品进价4.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量5.银行存贷款问题:本息和=本金+利息,利息=本金×利率×期数6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+.【典型例题】类型一、一元一次方程的相关概念1.已知方程(3m -4)x 2-(5-3m )x -4m =-2m 是关于x 的一元一次方程,求m 和x 的值.【思路点拨】若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.【答案与解析】 解:因为方程(3m -4)x 2-(5-3m )x -4m =-2m 是关于x 的一元一次方程,所以3m -4=0且5-3m ≠0.由3m -4=0解得43m =,又43m =能使5-3m ≠0,所以m 的值是43. 将43m =代入原方程,则原方程变为485333x ⎛⎫--⨯= ⎪⎝⎭,解得83x =-. 所以43m =,83x =-. 【总结升华】解答这类问题,一定要严格按照一元一次方程的定义.方程(3m -4)x 2-(5-3m )x -4m =-2m 2是关于x 的一元一次方程,就是说x 的二次项系数3m -4=0,而x 的一次项系数5-3m ≠0,m 的值必须同时符合这两个条件.举一反三:【变式】下面方程变形中,错在哪里:(1)方程2x=2y两边都减去x+y,得2x-(x+y)=2y-(x+y), 即x-y=-(x-y).方程 x-y=-(x-y)两边都除以x-y, 得1=-1.(2)3721223x xx-+=+,去分母,得3(3-7x)=2(2x+1)+2x,去括号得:9-21x=4x+2+2x.【答案】(1)答:错在第二步,方程两边都除以x-y.(2)答:错在第一步,去分母时2x项没乘以公分母6.2.如果5(x+2)=2a+3与(31)(53)35a x a x+-=的解相同,那么a的值是________.【答案】7 11【解析】由5(x+2)=2a+3,解得275ax-=.由(31)(53)35a x a x+-=,解得95x a=-.所以27955aa-=-,解得711a=.【总结升华】因为两方程的解相同,可把a看做已知数,分别求出它们的解,令其相等,转化为求关于a 的一元一次方程.举一反三:【变式】(2020•温州模拟)已知3x=4y,则=.【答案】.解:根据等式性质2,等式3x=4y两边同时除以3y,得:=.类型二、一元一次方程的解法3.解方程:4621132x x-+-=.【答案与解析】解:去分母,得:2(4-6x)-6=3(2x+1).去括号,得:8-12x-6=6x+3.移项,合并同类项,得:-18x=1.系数化为1,得:118x=-.【总结升华】转化思想是初中数学中一种常见的思想方法,它能将复杂的问题转化为简单的问题,将生疏的问题转化为熟悉的问题,将未知转化为已知.事实上解一元一次方程就是利用方程的同解原理,将复杂的方程转化为简单的方程直至求出它的解.举一反三:【变式1】解方程26752254436z z z zz+---++=-【答案】解:把方程两边含有分母的项化整为零,得267522544443366z z z z z +++-=--+. 移项,合并同类项得:1122z =,系数化为1得:z =1. 【变式2】解方程: 0.10.050.20.05500.20.54x x +--+=. 【答案】 解:把方程可化为:0.520.550254x x +--+=, 再去分母得:232x =-解得:16x =-4.解方程3{2x -1-[3(2x -1)+3]}=5.【答案与解析】解:把2x -1看做一个整体.去括号,得:3(2x -1)-9(2x -1)-9=5.合并同类项,得-6(2x -1)=14. 系数化为1得:7213x -=-,解得23x =-. 【总结升华】把题目中的2x -1看作一个整体,从而简化了计算过程.本题也可以考虑换元法:设2x -1=a ,则原方程化为3[a -(3a+3)]=5.类型三、特殊的一元一次方程的解法1.解含字母系数的方程5.解关于x 的方程:11()(2)34m x n x m -=+ 【思路点拨】这个方程化为标准形式后,未知数x 的系数和常数都是以字母形式出现的,所以方程的解的情况与x 的系数和常数的取值都有关系.【答案与解析】解:原方程可化为:(43)462(23)m x mn m m n -=+=+当34m ≠时,原方程有唯一解:4643mn m x m +=-; 当33,42m n ==-时,原方程无数个解; 当33,42m n =≠-时,原方程无解; 【总结升华】解含字母系数的方程时,一般化为最简形式ax b =,再分类讨论进行求解,注意最后的解不能合并,只能分情况说明.2.解含绝对值的方程6. 解方程|x -2|=3.【答案与解析】解:当x -2≥0时,原方程可化为x -2=3,得x =5.当x -2<0时,原方程可化为-(x -2)=3,得 x =-1.所以x =5和x =-1都是方程|x -2|=3的解.【总结升华】如图所示,可以看出点-1与5到点2的距离均为3,所以|x -2|=3的意义为在数轴上到点2的距离等于3的点对应的数,即方程|x -2|=3的解为x =-1和x =5.举一反三:【变式1】若关于x 的方程230x m -+=无解,340x n -+=只有一个解,450x k -+=有两个解, 则,,m n k 的大小关系为: ( )A . m n k >> B.n k m >> C.k m n >> D.m k n >>【答案】A【变式2】若9x =是方程123x m -=的解,则__m =;又若当1n =时,则方程123x n -=的解是 . 【答案】1; 9或3. 类型四、一元一次方程的应用7.李伟从家里骑摩托车到火车站,如果每小时行30千米,那么比火车开车时间早到15分钟;若每小时行18千米,则比火车开车时间迟到15分钟,现在李伟打算在火车开车前10分钟到达火车站,求李伟此时骑摩托车的速度应是多少?【思路点拨】本题中的两个不变量为:火车开出的时间和李伟从家到火车站的路程不变.【答案与解析】解:设李伟从家到火车站的路程为y 千米,则有:151530601860y y +=-,解得:452y = 由此得到李伟从家出发到火车站正点开车的时间为4515213060+=(小时). 李伟打算在火车开车前10分钟到达火车站时,设李伟骑摩托车的速度为x 千米/时, 则有:452271010116060y x ===--(千米/时) 答:李伟此时骑摩托车的速度应是27千米/时.【总结升华】在解决问题时,当发现某种方法不能解决问题时,应该及时变换思维角度,如本题直接设未知数较难时,应迅速变换思维的角度,合理地设置间接未知数以寻求新的解决问题的途径和方法.8. (2020春•万州区校级月考)一项工程,甲单独做要10天完成,乙单独做要15天完成,两人合做4天后,剩下的部分由乙单独做,还需要几天完成?【答案与解析】解:设乙还需x 天完成,由题意得4×(+)+=1,解得x=5.答:乙还需5天完成.【总结升华】本题考查了一元一次方程的应用,解决问题的关键是找到所求的量的等量关系.当题中没有一些必须的量时,为了简便,可设其为1.举一反三:【变式】某商品进价2000元,标价4000元,商店要求以利润率不低于20%的售价打折出售,售货员最低可以打几折出售此商品?【答案】解:设售货员可以打x折出售此商品,得:x⨯=+40000.12000(120%),x=解得: 6.答:售货员最低可以打六折出售此商品.。

去括号-整式的加减第二课时七年级数学课件


01
02
03
括号前是正号
如果括号前是正号,则直 接去掉括号,括号内的各 项符号不变。
括号前是负号
如果括号前是负号,则去 掉括号后,括号内的各项 符号需要改变。
乘法分配律
在整式加减中,去括号需 要遵循乘法分配律,即 a(b+c) = ab+ac。
去括号在整式加减中的实例解析
单一括号
例如,计算(x+y)+(x-y), 通过去括号得到2x。
详细描述
在数学中,括号通常用于改变运算顺 序或强调某些项的重要性。去括号的 过程就是将这些被括号包围的项进行 简化,以方便计算或表达式的化简。
去括号的法则及其应用
总结词
去括号的法则主要涉及括号前后的加减乘除运算。具体来说 ,括号前是加号时,去括号后各项不变;括号前是减号时, 去括号后各项都变号。
详细描述
根据去括号的法则,如果括号前是加号,如 (a+b),去括号后 仍为 a+b。如果括号前是减号,如 -(a+b),去括号后变为 -ab。这个法则在整式的加减运算中非常重要,可以帮助我们简化 复杂的数学表达式。
去括号的注意事项
总结词
在进行去括号的过程中,需要注意以下几点,如括号内的每一项都要进行运算,括号的加减乘除运算要遵循先乘 除后加减的原则。
THANKS FOR WATCHING
感谢您的观看
详细描述
首先,去括号时必须对括号内的每一项都进行运算,不能只去除部分项。其次,在进行括号的加减乘除运算时, 要遵循先乘除后加减的原则,确保运算的正确性。最后,还要注意符号的变化,特别是当括号前是减号时,去括 号后各项都要变号。
02 整式的加减运算
整式的定义与表示

《整式的加减》课件


整式的分类
01
02
03
单项式
只包含一个项的整式,例 如:$x^2$、$5a$。
多项式
包含多个项的整式,例如 :$x^2 - 3x + 2$。
整式的次数
一个整式中,所有字母的 指数之和称为该整式的次 数,例如:$x^2$的次数 为2。
整式的加减运算规则
同类项合并
同类项是指具有相同字母和相同 指数的项,同类项可以合并,例 如:$2x^2 + 3x^2 = 5x^2$。
去括号法则
总结词
去括号法则是整式加减运算中的一项重要法则,用于消除括号并简化整式的形式。
详细描述
去括号法则包括两个步骤,一是消除括号前的正号或负号,二是将括号内的各项分别与括号前的符号相乘或相除 。例如,在整式2(x + 3y) - (2x - y)中,根据去括号法则,首先消除括号前的正号,得到2x + 6y - 2x + y,然后 分别将括号内的各项与括号前的符号相乘或相除,得到最终结果-5y。
移项法则
总结词
移项法则是整式加减运算中的另一项重要法则,用于将整式中的项从一边移动到另一边 。
详细描述
移项法则包括两个步骤,一是将整式中的项从一边移动到另一边,二是根据移动的方向 改变该项的符号。例如,在整式6x - 5 = 2x + 1中,要将-5移到等号的另一边,根据 移项法则,首先将-5从等号的左边移动到右边,并改变其符号得到+5,得到新的等式
05
练习与巩固
基础练习题
总结词
帮助学生掌握整式加减的基本概 念和运算规则。
详细描述
设计一些简单的整式加减题目, 如合并同类项、去括号等,让学 生通过练习加深对整式加减基本 概念和运算规则的理解。

整式的加减乘除课件

整式的加减乘除课件整式是代数的基础,掌握整式的加减乘除运算对于学习代数和解决实际问题至关重要。

本课件将为大家详细介绍整式的加减乘除运算方法,以及一些常见的应用例题。

一、整式的概念和基本规则1. 整式的定义:只包含有限个代数运算符号和常数的代数式称为整式。

整式可以包含变量、常数、和代数运算符号(加减乘除和指数等)。

2. 整式的项:整式的每一部分称为项,项可以是常数、变量的幂、变量的乘积等。

每个项都可以用系数与变量的乘积形式进行表达。

3. 整式的次数:整式中最高次数的项决定了整式的次数。

4. 整式的加减运算:对于整式的加法,将同类项合并即可;对于整式的减法,可以通过乘以-1再进行加法运算。

5. 整式的乘法运算:将整式中的每一项进行相乘,并根据指数幂次法则进行合并和简化。

6. 整式的除法运算:如果整式A除以整式B,可以通过长除法的方法进行求解。

将整式B乘以一个合适的整式C,使得A能够被C整除,然后将C作为商,余数则为两个整式之间的差。

二、整式的加法运算整式的加法运算是最基础的运算,掌握好整式的加法运算方法对于后续的整式运算非常重要。

例如,对于整式的加法运算:3x^2 + 2x + 5+ 2x^2 - 4x + 3---------------5x^2 - 2x + 8三、整式的减法运算整式的减法运算实际上是将减数乘以-1,然后再进行整式的加法运算。

例如,对于整式的减法运算:3x^2 + 2x + 5- (2x^2 - 4x + 3)---------------3x^2 + 2x + 5 - 2x^2 + 4x - 3= x^2 + 6x + 2四、整式的乘法运算整式的乘法运算是将每一项进行相乘,然后根据指数幂次法则进行合并和简化。

例如,对于整式的乘法运算:(3x + 2)(2x - 4)= 3x * 2x + 3x * (-4) + 2 * 2x + 2 * (-4)= 6x^2 - 12x + 4x - 8= 6x^2 - 8x - 8五、整式的除法运算整式的除法运算可以通过长除法的方法进行求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二节整式的加减运算及应用
一、课标导航
二、核心纲要
1.合并同类项法则:合并同类项时,只需把系数相加减,所含字母和字母指数不变。

注:系数相加减,其余都不变。

2.去括号法则:去括号时,括号前面是“+”号时,括号里的各项都不变号;括号前面是“-”号时,括号里的各项都改变符号。

添括号法则:添括号时,括号前面是“+”号时,括在括号里的各项都不变号;括号前面是“-”号时,括在括号里的各项都改变符号。

注:负变正不变。

3.整式加减的实质:去括号,合并同类项。

4.化简求值的技巧:一化,二代,三计算。

5.化简求值的常用方法:
(1)直接代入法;
(2)整体代入法; (3)降次法; (4)赋值法等;
6.整式比较大小的方法:作差法,即:0>b a -b a >;0<b a -b a <;0
=-b a b a =。

本节重点讲解:一个运算,两个方法(化简求值、比较大小),三个法则。

三、全能突破
基础演练
1.(1)下列各式中去括号正确的是( )
A.b b a a b b a a +--=+--22226)2(3
B.22222)()2(y x y x y x y x +++-=+--+-
C.532)5(3222+-=+-x x x x
D.[]
a a a a a a 624)31(242323+-+-=-+--- (2)下列式子中添括号错误的是( ) A.)52(552522z y x x z y x x +--=-+-
B.)23()3(2233222d c b a a d c b a a ----+=+---
C.)6(3363322+-=--x x x x
D.)()2(22222y x y x y x y x +----=-++-
2.(1)单项式41221
b a n --与m m b a 823的和是单项式,则20122010)1()1(n n -+的值为( )。

A.
4
1
B.1
C.4
D.无法计算 (2)若M 和N 都是六次多项式,那么N M +一定是( )。

A.单项式 B.次数不低于六次的多项式 C.六次多项式 D.次数不高于六次的多项式或单项式 3.若b a M 22=,27ab N =,b a P 24-=,则下列等式成立的是( )。

A.b a N M 29=+
B.ab P N 3=+
C.b a P M 22-=+
D.b a P M 22=-
4.下面是小强做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面。

2221()215(x y xy x ---+-▆2222
3
221)y xy x y -+-=+,阴影部分即为被墨汁弄污的部分.那么
被墨汁遮住的一项应是( )。

A.xy 7-
B.xy 7+
C.xy 3-
D.xy 3+
5.一个多项式,当减去7322+-x x 时,因把“减去”误认为“加上”,得4252+-x x ,试求正确的计算结果是______________。

6.化简:(1))2(422222xy y x y x xy ---
(2))537()629(222--+-++y x xy xy x
(3)[]{}
a a a a a a a a 39)2(8541522222-+---+--
7.(1)先化简,再求值:[]
)2(53222x x x x x -----,其中2
1=x 。

(2)若x 是绝对值等于4的数,y 是倒数等于2
1
-的有理数,z 的相反数是1-,求
[]
xyz z x z x xyz y x y x 24)2(232222-----的值。

8.(1)已知52=+b a ,3-=ab ,求[])2125(3)23(a b ab a b ab ---+-的值。

(2)已知代数式86232-=-+-y y ,求代数式12
32
-+-y y 的值。

能力提升
9.把)3()3(5)3(2)3(22-+-----x x x x 中的)3(-x 看成一个因式合并同类项,结果应是( )。

A.)3()3(42-+--x x
B.)3()3(42---x x x
C.)3()3(42---x x
D.)3()3(42----x x
10.若3223323y xy y x x M ++-=,322352y xy y x x N -+-=,则322314572y xy y x x ++-的值为( )。

A.N M +
B.N M -
C.N M -3
D.M N 3-
11.已知2004=-b a ,2005-=-c b ,2007=-d c ,则=--))((d b c a _____________。

12.已知32=+xy x ,22-=+y xy ,则2232y xy x --的值为_____________。

13.已知b y ax x A +-+=24,1522-+-=y x bx B ,且B A 2-的值与字母x 的取值无关,则
=+2012)(b a _____________。

14.已知c b a 、、满足:(1)022)3(52=-++b a ;(2)123
1
4212+++++-c b a y x c b a 是七次多项式;
求多项式[]
c a b a c a abc b a b a 222224)32(-----的值。

15.已知多项式A 和B ,y x xy n x m A +-+++=3)23()15(2,12562--+=x xy x B ,当A 与B 的差不含二次项时,求[]
m n m n n m 3)()1(--+-⋅-+的值。

16.已知2322222+-+=c b a A ,123222---=c b a B ,332222+-+=b a c C ,试求: (1)当b ,c 取不同的数值时,C B A +-的值是否发生变化?并说明理由。

(2)C B A +-的取值是正数还是负数?若是正数,求出最小值;若是负数,求出最大值。

17.已知代数式3234++++dx cx bx ax ,当2=x 时它的值为20;当2-=x 时它的值为16,求
2=x 时,代数式324++cx ax 的值。

18.已知代数式)1961019610(2
1
+-++-=
x x y ,当字母x 分别取1,2,3,…,99,100这100个自然数时,代数式y 对应的所有值的和是多少?
19.已知g fx ex dx cx bx ax x ++++++=-234566)12((g f e d c b a ,,,,,,均为常数),试求 (1)g f e d c b a ++++++的值;(2)g f c d c b a +-+-+-的值;(3)g e c a +++的值; (4)f d b ++的值。

20.对任意有理数x ,试比较多项式2542+-=x x M 与8742+-=x x N 的值的大小。

21.要把学而思编著的初中数学《几何辅助线秘籍》捆扎寄往上海分校,它的长、宽、高分别为c b a ,,(c b a >>),下面有三种不同的捆扎方式(如图3-2-1所示的虚线),哪种方式用绳更少?哪种方式用绳更多?说明理由。

图3-2-1
中考链接
22.(辽宁沈阳)如果1=x 时,代数式4322++bx ax 的值是5,那么1-=x 时,代数式4323++bx ax 的值_____________。

23.(山东日照)已知62=-m m ,则=+-m m 2212_____________。

24.(内蒙古乌兰察布)将一些半径相同的小圆按图3-2-2所示的规律摆放,请仔细观察,第n 个图形有_____________个小圆(用含n 的代数式表示)。

图3-2-2
巅峰突破
25.当2=x 时,代数式13+-bx ax 的值等于17-,那么当1-=x 时,代数式53123--bx ax 的值等于_____________。

26.若1998-=m ,则=+++--+20999229991122m m m m _____________。

27.已知012=-+m m ,求2007223++m m 的值。

相关文档
最新文档