导电高分子材料聚苯胺

合集下载

导电高分子聚苯胺简介

导电高分子聚苯胺简介

参考文献
• [1] 旷英姿. 导电高分子聚苯胺的合成及应用. 精细化工中 间体. 2004年8月,第34卷第4 期 • [2] 景遐斌,ห้องสมุดไป่ตู้利祥,王献红,耿延候,王佛松. 导电聚苯胺的合 成、结构、性能和应用. 高分子学报. 2005年10月, 第5期 • [3] 张连明,司慧涵,谢英男,詹自力,蒋登高. 聚苯胺的合成与 应用研究现状. 广西轻工业. 2007年2月,第2期 • [4] 曹丰,李东旭,管自生. 导电高分子聚苯胺研究进展. 材料 导报. 2007年8月,第21卷第8期 • [5] 王杨勇,强军锋,井新利,姚胜. 导电高分子聚苯胺及其应 用. 化工新型材料. 2003年3月, 第31 卷第3期 • [6] 周媛媛,余旻,李松,李蕾. 导电高分子材料聚苯胺的研究 进展. 化学推进剂与高分子材料. 2007年,第5卷,第6期
• 据上述模型推断聚苯胺的掺杂反应如下:
b.
氧化还原掺杂
• 事实上,除了质子酸掺杂外,我们还发现,聚苯胺也象其 它的导电高分子一样,能够进行氧化还原掺杂,这就是 “碘掺杂”、“光助氧化掺杂”以及“离子注入掺 杂” .
• 以上还原态聚苯胺的氧化掺杂和氧化态聚苯胺的还原掺杂, 与聚苯胺的质子酸掺杂一起,构成了聚苯胺的掺杂行为的 全貌. 显然,究竟发生哪一种掺杂,决定于它的化学结构:
导电高分子聚苯胺简介
Polyaniline
聚苯胺(PANI)
一.前言 二.聚苯胺的结构与性质 三. 聚苯胺的合成方法 四. 聚苯胺的掺杂 五. 聚苯胺的应用
一.前言
聚苯胺自从1984 年, 被美国宾夕法尼亚大学的 化学家MacDiarmid 等重新开发以来, 以其良好的 热稳定性, 化学稳定性和电化学可逆性, 优良的电 磁微波吸收性能, 潜在的溶液和熔融加工性能, 原 料易得, 合成方法简便, 还有独特的掺杂现象等特 性, 成为现在研究进展最快的导电高分子材料之一, 以其为基础材料, 目前正在开发许多新技术, 例如 全塑金属防腐技术、船舶防污技术、太阳能电池、 电磁屏蔽技术、抗静电技术、电致变色、传感器 元件、催化材料和隐身技术等。

导电聚苯胺

导电聚苯胺

结构性导电高分子材料的用途
应用领域或有 用的效用
实例
电子电导
电加热元件的挠性导体,电磁屏蔽材 料,抗静电材料
电极
燃料电池,光化学电池,传感器,心 电图仪
边界层效应 选择性透过膜,离子交换剂,医药控 制释放
电子学
分子电子学,发光二极管,数据存储, 改良场效应晶体管
光学
电致变色显示器,非线性光学材料, 滤光片
的室温电导率有明显的影响
• 质子酸掺杂 :一般通过化学反应来完成,近年发
现也可通过光诱导施放质子的方法来完成
• 还有掺杂—脱掺杂—再掺杂的反复处理方法,这
种掺杂方法可以得到比一般方法更高的电导率和 聚合物稳定性
导电高分子材料的应用• 导电合物特殊的结构以及优异的物理化
学性能,使得其在能源(二次电池、太阳 能电池、固体电池),光电器件,晶体管, 镇流器,发光二极管(LED),传感器 (气体和生物),电磁屏蔽,隐身技术以及 生命科学等方面都有诱人的应用前景
什么是导电高分子的掺杂呢?
• 纯净的导电聚合物本身并不导电,必须经过掺
杂才具备导电性
• 掺杂是将部分电子从聚合物分子链中迁移出来
从而使得电导率由绝缘体级别跃迁至导体级别 的一种处理过程
• 导电聚合物的掺杂与无机半导体的掺杂完全不

导电高分子的掺杂与无机半导体的掺杂的对比
无机半导体中的掺杂 导电高分子中的掺杂
本质是原子的替代
是一种氧化还原过程
掺杂量极低(万分之几)
掺杂剂在半导体中参与导 电
没有脱掺杂过程
掺杂量一般在百分之几到 百分之几十之间
只起到对离子的作用,不 参与导电
掺杂过程是完全可逆的
目前掺杂的方式主要有两种 :

有机导电材料-聚苯胺PPT

有机导电材料-聚苯胺PPT

其他改性方法
其他改性方法包括交联改性、接枝改性、纳米改性等,这些方法可以改善聚苯胺的性能和拓宽其应用 领域。
交联改性是指通过化学反应使聚苯胺分子之间形成三维网络结构,提高其热稳定性和力学性能;接枝 改性是指将其他功能性基团连接到聚苯胺分子上,以改善其性能和拓宽其应用领域;纳米改性是指将 聚苯胺与纳米材料复合,利用纳米材料的特性改善聚苯胺的性能。
详细描述
模板法是一种制备具有特定形貌和结构聚苯胺材料的方法。通过使用不同的模板,如聚合物、无机物 或生物分子等,可以控制聚苯胺的聚合过程,从而得到具有特定结构和形貌的聚苯胺材料。该方法可 以制备出高性能的聚苯胺材料。
其他合成方法
总结词
除了上述三种方法外,还有一些其他合 成聚苯胺的方法,如光化学合成法、热 引发聚合等。
加强与其他学科的合作,推动聚苯胺在交叉学科领域 的应用和发展。
标准化与规范化
建立聚苯胺的标准化和规范化体系,促进其产业的健 康发展。
感谢观看
THANKS
此外,聚苯胺还可以作为药物载体和 生物医学成像剂等生物医学领域的应 用。
由于聚苯胺具有优异的电导率和环境稳 定性,它也被广泛应用于燃料电池、锂 离子电池和超级电容器等能源领域。
02
聚苯胺的导电机理
聚苯胺的导电性能
聚苯胺是一种具有导电性能的有机高分子材料,其导电性能 可以通过掺杂实现可调。在掺杂状态下,聚苯胺具有良好的 导电性和电化学活性,被广泛应用于传感器、电池、电容器 等领域。
03
聚苯胺的合成方法
化学氧化法
总结词
通过氧化剂如过硫酸铵、过氧化氢等引发,使苯胺单体在适当的溶剂中进行聚合,得到 聚苯胺。
详细描述
化学氧化法是最常用的聚苯胺合成方法之一。在适当的反应条件下,使用氧化剂引发苯 胺单体的聚合反应,通常在有机溶剂中进行,如甲酸、水、甲醇等。该方法操作简便,

聚苯胺导电态

聚苯胺导电态

聚苯胺导电态聚苯胺是一种具有导电性能的高分子材料,其导电态被广泛应用于电子器件和能源领域。

本文将从聚苯胺导电态的形成机制、导电性能的特点以及应用领域等方面进行介绍。

聚苯胺导电态的形成主要是通过掺杂的方式实现的。

在聚苯胺分子中,苯环上的氮原子可以接受或者捐赠电子,从而形成带正电或者带负电的离子。

常用的掺杂剂有酸、碱和氧化剂等。

其中,酸掺杂可以将聚苯胺分子中的某些氮原子负离子化,从而提高电子的导电性能;碱掺杂可以将聚苯胺分子中的某些氮原子正离子化,增加电子的输运性能;氧化剂掺杂可以使聚苯胺分子中的苯环形成氧化还原对,提高电子的传导性能。

聚苯胺导电态的特点主要体现在其导电性能方面。

聚苯胺导电态的电导率可以在10^-3~10^3 S/cm之间变化,具有较高的导电性。

此外,聚苯胺导电态的导电性能还可以通过掺杂剂的种类和浓度进行调控。

例如,酸掺杂的聚苯胺导电态具有较高的导电性能,而碱掺杂的聚苯胺导电态具有较好的电子传输性能。

聚苯胺导电态在电子器件和能源领域有着广泛的应用。

在电子器件方面,聚苯胺导电态可以用作导电电极材料,如柔性电极和透明导电薄膜等。

聚苯胺导电态还可以用于制备有机场效应晶体管(OFET)和有机光电器件等。

在能源领域方面,聚苯胺导电态可以用于制备超级电容器电极材料,具有高能量密度和高功率密度的特点。

此外,聚苯胺导电态还可以用于制备柔性锂离子电池和柔性太阳能电池等。

总结起来,聚苯胺导电态是一种具有导电性能的高分子材料,其导电态的形成主要通过掺杂的方式实现。

聚苯胺导电态具有较高的导电性能和电子传输性能,可以在电子器件和能源领域中得到广泛的应用。

随着对聚苯胺导电态的深入研究,相信其在未来的应用中将发挥更加重要的作用。

导电聚苯胺的制备方法及应用

导电聚苯胺的制备方法及应用

导电聚苯胺的制备方法及应用导电聚苯胺是一种具有导电性质的高分子材料,其制备方法主要有化学氧化聚合法、电化学聚合法以及光聚合法等。

导电聚苯胺具有优良的导电性能和化学稳定性,因此在许多领域具有广泛的应用,如电子学、能源储存和传感器等。

一、化学氧化聚合法化学氧化聚合法是制备导电聚苯胺最常用的方法之一、该方法通过将苯胺溶解在酸性溶液中,然后加入氧化剂与苯胺反应,从而聚合形成导电聚苯胺。

具体的制备过程如下:1.酸性溶液的制备:将硫酸等酸性物质溶解在水中,调整pH值为酸性。

2.混合物的制备:将苯胺溶解在酸性溶液中,并加入氧化剂。

常用的氧化剂包括过硫酸铵、过氧化氢等。

3.聚合反应:将混合物在室温下静置一段时间,即可观察到溶液由无色逐渐变为蓝色或绿色,说明导电聚苯胺的形成。

4.聚合产物的处理:将聚合产物通过过滤、洗涤等方法进行固体分离和纯化。

二、电化学聚合法电化学聚合法是一种通过电活性物质进行电化学聚合的方法。

该方法通常使用两个电极(阳极和阴极)将苯胺溶液置于电解质中,通过控制电极之间的电势差,使苯胺发生氧化和还原反应,从而聚合形成导电聚苯胺。

具体的制备过程如下:1.电解槽的制备:将两个金属电极(阳极和阴极)插入电解质中,保持一定的距离。

2.溶液的制备:将苯胺溶解在电解质中,形成聚合溶液。

3.聚合反应:通过施加电压或电流,将电解槽连接到外部电源上,控制电极之间的电势差,使苯胺发生氧化和还原反应,从而聚合形成导电聚苯胺。

4.聚合产物的处理:将电极从聚合溶液中取出,经过洗涤、干燥等处理,得到聚合产物。

三、光聚合法光聚合法是一种利用光照激发苯胺发生聚合反应的方法。

该方法首先将苯胺溶解在溶剂中,然后加入光敏剂,通过光源的照射,使苯胺发生氧化聚合。

具体的制备过程如下:1.溶液的制备:将苯胺溶解在溶剂中,形成聚合溶液。

2.光敏剂的添加:适量的光敏剂被加入到聚合溶液中。

3.光照反应:将聚合溶液放置在光源下,进行照射。

光敏剂与光源发生反应,释放活性物质,使苯胺发生氧化聚合反应,形成导电聚苯胺。

导电聚苯胺的制备方法及应用

导电聚苯胺的制备方法及应用

导电聚苯胺的制备方法及应用一、导电聚苯胺的概述导电聚苯胺是一种具有良好导电性质的高分子材料,其主要由苯胺单体经过氧化聚合反应形成。

导电聚苯胺具有良好的机械性能、化学稳定性和导电性能,可以被广泛应用于传感器、光伏电池、锂离子电池等领域。

二、制备方法1. 化学氧化法制备导电聚苯胺将苯胺单体溶解在盐酸中,加入过氧化氢作为氧化剂,反应生成阳离子型聚合物。

然后通过还原剂将阳离子型聚合物还原为中性的导电聚苯胺。

2. 电化学合成法制备导电聚苯胺将含有苯胺单体和氧化剂的溶液倒入双极板之间,施加外加电压,在阳极上发生氧化反应,生成阳离子型聚合物。

然后在阴极上还原成中性的导电聚苯胺。

三、影响制备效果的因素1. 氧化剂种类:不同种类的氧化剂对产物结构和性能有不同的影响,常用的有过氧化氢、硫酸铵等。

2. 溶液pH值:pH值对聚合物形态、导电性能等方面都有影响,一般情况下制备导电聚苯胺时,pH值在酸性范围内。

3. 反应温度:反应温度对聚合物的分子量、结晶度、导电性能等都有影响,一般情况下制备导电聚苯胺时,反应温度在室温下进行。

四、导电聚苯胺的应用1. 传感器领域:导电聚苯胺可以作为传感器材料,用于检测各种物质如氧气、二氧化碳、氨气等。

2. 光伏电池领域:导电聚苯胺可以作为光伏材料中的光伏层,提高光伏电池的效率。

3. 锂离子电池领域:导电聚苯胺可以作为锂离子电池中的正极材料,提高锂离子电池的循环稳定性和容量。

五、总结通过化学氧化法和电化学合成法可以制备导电聚苯胺,制备过程中氧化剂种类、溶液pH值、反应温度等因素会影响产物的结构和性能。

导电聚苯胺可以广泛应用于传感器、光伏电池、锂离子电池等领域,具有广阔的应用前景。

聚苯胺电合成实验报告(3篇)

第1篇一、实验目的1. 了解聚苯胺的合成原理和电化学合成方法。

2. 掌握电化学合成聚苯胺的实验操作技能。

3. 研究不同合成条件对聚苯胺性能的影响。

二、实验原理聚苯胺(Polypyrrole,PPy)是一种具有导电性的导电聚合物,其合成方法主要有化学氧化法和电化学合成法。

本实验采用电化学合成法,通过在苯胺溶液中引入氧化剂,在电极上发生氧化还原反应,生成聚苯胺。

三、实验材料与仪器1. 实验材料:苯胺、氧化剂(如过硫酸铵)、导电聚合物溶液、导电聚合物粉末、电极、电解液、电化学工作站等。

2. 实验仪器:电化学工作站、恒温水浴、磁力搅拌器、电子天平、玻璃电极、电极夹具、扫描电镜等。

四、实验步骤1. 准备工作:(1)配制苯胺溶液:称取一定量的苯胺,加入适量的溶剂(如无水乙醇)溶解,配制成一定浓度的苯胺溶液。

(2)配制氧化剂溶液:称取一定量的氧化剂,加入适量的溶剂溶解,配制成一定浓度的氧化剂溶液。

(3)准备电极:将导电聚合物粉末与导电聚合物溶液混合,涂覆在电极上,晾干备用。

2. 电化学合成:(1)将电极浸入电解液中,调整电极电位。

(2)开启电化学工作站,进行电化学合成实验,记录电流、电压等参数。

(3)实验结束后,取出电极,用扫描电镜观察聚苯胺的形貌。

3. 性能测试:(1)用电化学工作站测试聚苯胺的电化学性能,如电导率、氧化还原峰电流等。

(2)用电子天平称量电极的质量,计算聚苯胺的质量。

五、实验结果与分析1. 形貌观察:扫描电镜结果显示,聚苯胺在电极上形成均匀的薄膜,具有良好的导电性。

2. 电化学性能:(1)电导率:实验结果显示,聚苯胺的电导率随氧化剂浓度的增加而增加,在氧化剂浓度为0.1 mol/L时,电导率达到最大值。

(2)氧化还原峰电流:实验结果显示,聚苯胺的氧化还原峰电流随氧化剂浓度的增加而增加,在氧化剂浓度为0.1 mol/L时,氧化还原峰电流达到最大值。

六、实验结论1. 采用电化学合成法可以成功合成聚苯胺,且具有良好的导电性。

导电聚苯胺的制备方法及应用

导电聚苯胺的制备方法及应用导电聚苯胺(Conductive Polyaniline,简称PANI)是一种具有导电性的高分子化合物。

它由苯胺单体聚合而成,具有良好的导电性能和化学稳定性。

导电聚苯胺的制备方法主要包括化学氧化聚合法、电化学聚合法和生物合成法等。

下面将详细介绍这些制备方法及导电聚苯胺的应用。

一、化学氧化聚合法化学氧化聚合法是将苯胺单体在存在氧化剂的条件下进行聚合反应,实现导电聚苯胺的制备。

典型的氧化剂包括过氧化铁(III)、过硫酸铵和硫酸等。

制备过程中,苯胺单体首先与氧化剂发生氧化反应,形成导电聚苯胺。

化学氧化聚合法具有制备简单、操作容易的优点,适用于大规模生产导电聚苯胺。

然而,该方法中用到的化学品有毒或对环境有害,需要严密的防护装备和废物处理手段。

二、电化学聚合法电化学聚合法是将苯胺单体在电极表面以电化学方式进行聚合反应,制备导电聚苯胺。

这种方法一般采用三电极系统,即工作电极、对电极和参比电极。

工作电极是苯胺单体在电极上聚合成导电聚苯胺的区域,对电极起到催化剂的作用。

电化学聚合法可以制备大面积、连续性好的导电聚苯胺膜。

这种方法有助于控制导电聚苯胺的形貌和性能,例如导电性能和光电特性等。

此外,电化学聚合法对环境友好、反应过程可以在常温下进行。

但是,电化学聚合法需要专门的仪器设备,并且需要严格控制反应条件。

三、生物合成法生物合成法是利用微生物体内的酶参与导电聚苯胺的聚合反应。

例如,利用酵母菌、细菌或藻类等微生物合成导电聚苯胺。

这种方法无需使用有毒的化学品,具有环境友好死和无机械强度要求的优点。

1.电子技术领域:导电聚苯胺可以用于制备导电涂料和导电墨水,应用于印刷电路板和电子元器件的制造。

2.光电器件领域:导电聚苯胺可以制备光伏电池、光电传感器和柔性显示器件等,具有良好的光电性能。

3.能量领域:导电聚苯胺可以用于制备超级电容器或锂离子电池的电极材料,具有高容量、高比能量密度等特点。

4.催化领域:导电聚苯胺作为催化剂载体,可用于催化剂固载和催化反应中。

导电聚苯胺实验报告

一、实验目的1. 学习导电聚苯胺的化学合成方法。

2. 探究不同合成条件对聚苯胺导电性能的影响。

3. 通过实验测试聚苯胺的导电性能,分析其导电机制。

二、实验原理导电聚苯胺是一种具有独特导电性能的高分子材料,其导电性能与其化学结构、掺杂剂种类和浓度等因素密切相关。

本实验采用化学氧化合成方法,通过苯胺的氧化聚合制备导电聚苯胺,并研究其导电性能。

三、实验材料与仪器1. 实验材料:- 苯胺- 氧化剂(如过硫酸铵)- 溶剂(如盐酸、乙醇等)- 掺杂剂(如氯化锂、氯化钾等)- 实验试剂:盐酸、乙醇、过硫酸铵等2. 实验仪器:- 磁力搅拌器- 电热恒温水浴锅- 四探针法电阻率测试仪- 电子天平- 移液器- 烧杯、试管、滴定管等四、实验步骤1. 苯胺的氧化聚合:- 称取一定量的苯胺,加入一定量的溶剂,溶解后加入一定量的氧化剂。

- 将混合溶液置于磁力搅拌器上,在恒温水浴锅中加热至一定温度,保持一段时间。

- 停止加热,待溶液冷却至室温后,加入一定量的掺杂剂,搅拌均匀。

2. 聚苯胺的导电性能测试:- 将制备好的聚苯胺溶液滴涂在玻璃板上,晾干后形成薄膜。

- 使用四探针法电阻率测试仪测试聚苯胺薄膜的电阻率。

- 改变掺杂剂种类和浓度,重复上述实验,比较不同条件下的导电性能。

五、实验结果与分析1. 苯胺的氧化聚合:- 在一定温度下,苯胺与氧化剂发生氧化聚合反应,生成聚苯胺。

- 通过改变氧化剂种类、用量和反应时间,可以控制聚苯胺的分子量和结构。

2. 聚苯胺的导电性能:- 在不同掺杂剂种类和浓度下,聚苯胺的导电性能有所差异。

- 当掺杂剂种类和浓度适中时,聚苯胺的导电性能较好。

- 通过改变掺杂剂种类和浓度,可以调节聚苯胺的导电性能。

六、结论1. 本实验成功制备了导电聚苯胺,并研究了其导电性能。

2. 通过改变氧化剂种类、用量和反应时间,可以控制聚苯胺的分子量和结构。

3. 通过改变掺杂剂种类和浓度,可以调节聚苯胺的导电性能。

4. 导电聚苯胺具有广泛的应用前景,如电池、超级电容器、传感器等。

导电高分子材料聚苯胺

苯胺简介及结构聚苯胺是一种具有金属光泽的粉末,因分子内具有大的线型共轭π电子体系,其自由电子可随意迁移和传递,而成为最具代表性的有机半导体材料。

与其他导电聚合物相比,聚苯胺具有结构多样化、耐氧化和耐热性好等特点,同时还具有特殊的掺杂机制。

MacDiarmid 重新开发聚苯胺后,在固体13C-NMR及IR研究的基础上提出聚苯胺是一种头尾连接的线性聚合物,由苯环-醌环交替结构所组成,但这种结构和后来出现的大量实验数据相矛盾。

1987年,MacDiarmid进一步提出了后来被广泛接受的苯式-醌式结构单元共存的模型,两种结构单元通过氧化还原反应相互转化。

即本征态聚苯胺由还原单元:和氧化单元:构成,其结构为:其中y值用于表征聚苯胺的氧化还原程度,不同的y值对应于不同的结构、组分和颜色及电导率,完全还原型(y=1)和完全氧化型(y=0)都为绝缘体。

在0<y<1的任一状态都能通过质子酸掺杂,从绝缘体变为导体,仅当y=0.5时,其电导率为最大。

聚苯胺的导电原理物质的导电过程是载流子(电子、离子等带电粒子) 在电场作用下定向移动的过程。

通常认为, 高分子聚合物导电必须具备两个条件:一是要能产生足够数量的载流子, 二是大分子链内和链间要能够形成导电通道。

纯的聚苯胺是绝缘体, 要使它变为导体需要掺杂, 就是掺入少量其他元素或化合物。

0<y<1的聚苯胺, 掺杂后能变为导体, y为0.5的中间氧化态聚苯胺(苯式-醌式交替结构) 掺杂后的导电性最好。

而y为1的完全还原态聚苯胺(全苯式结构) 和y为0的完全氧化态聚苯胺(全醌式结构) 即使掺杂也不能变为导体。

一种掺杂聚苯胺的结构式如图所示, x代表掺杂程度, A-是掺杂剂质子酸中的阴离子, y仍代表还原程度。

向聚苯胺中掺入质子酸是一种有效的掺杂方式, 但是使用普通有机酸及无机弱酸获得的掺杂产物电导率不高, 必须用酸性较强的质子酸(如H2SO4、H3PO4、HBr和HCl) 作掺杂剂才可得到电导率较高的掺杂态聚苯胺, 盐酸是最常用的无机掺杂酸。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导电高分子材料聚苯胺(PAn)的研究进展摘要:本文主要结合导电高分子材料聚苯胺(PAn)目前现状,综述了聚苯胺的结构、特性、合成方法、用途。

指出了聚苯胺的发展方向和前景.关键词:性质、应用、合成方法、发展引言聚笨胺(olyaniline)即导电塑料,是一种高分子合成材料。

它是一类特种功能材料,有塑料的性质——密度和可加工性,又具有金属的导电性,还具备金属和塑料所欠缺的化学和电化学性能,在生活中有许多应用。

1聚苯胺的性质聚苯胺的主链上含有交替的苯环和氮原子,是一种稳定性较好的导电高分子材料,而且它的实际应用前景很广阔。

它具有优良的环境稳定性,是一种具有金属光泽的粉末。

聚苯胺是典型的高分子半导体,本身导电性很差(纯的聚苯胺不导电),需要掺杂以后才能提高导电性。

聚苯胺能被氧化,最终是白色。

1.1聚苯胺的结构1.2 聚苯胺的性质(1)导电性聚苯胺本身的导电性差,需要掺杂以后才能提高电性,它是典型的高分子半导体。

聚苯胺的导电性受很多因素的影响,除了分子链本身的结构外,还有PH值和温度等等。

导电性是聚苯胺的一个非常重要的特性,完全还原的聚苯胺是白色,不导电;再经氧化掺杂后显蓝色,不导电(如果完全氧化则不能导电);再经酸掺杂后显绿色,导电。

PH值与聚苯胺导电率的依赖关系:当PH>4时,导电率与PH值无关,呈绝缘体性质;当2<PH<4时,导电率随溶液PH值的降低而迅速增加,其表现为半导体特性;当PH<2时,导电率与ph值无关,呈金属特性。

温度对聚苯胺导电性的影响也很大,在一定的温度范围内,导电性会有规律的变化,但温度超过后会改变聚苯胺的微观结构。

(2)热稳定性聚苯胺的热稳定性是待解决的问题,它的环境稳定性强,但它的加工强度和机械性能差。

聚苯胺难以保证经过常见工程塑料加工温度热处理后电导率不发生大幅度减弱甚至变为绝缘体。

(3)聚苯胺的溶解性由于聚苯胺链间的相互作用使得它的溶解性极差,相应地可加工性也差,限制了它在技术上的广泛应用。

当今,改善聚苯胺(外观是咖啡色)的可溶性和可加工性已成为国内外研究者们非常关注的课题。

本征态聚苯胺(外观是咖啡色)只能溶于少数几种溶剂(完全溶解于N-甲基吡咯烷酮中,溶解度大于10%。

),严重限制了聚苯胺的可加工性。

如何提高聚苯胺在溶剂中的溶解性成为解决其可加工性的关键。

当前,制备水溶性的聚苯胺引起了广泛的关注。

在苯环或氮原子上引入酸基,被广泛地用于制备水溶性的聚苯胺。

采用大尺寸的功能酸,作掺杂剂可制得溶解性较好的掺杂态聚苯胺。

文献报道,用包含亲水的氧化乙烯低聚体的质子酸作为掺杂剂,可方便地制得水溶性的导电聚苯胺。

采用水-油二相乳液聚合方法,以十二烷基苯磺酸为乳化剂和掺杂剂,过硫酸铵为引发剂可制备出可溶性聚苯胺。

利用聚乙烯醇作稳定剂和成膜剂,可制备稳定的聚苯胺水基胶体分散液。

采用以有机溶剂、水混合或双相体系为溶剂进行聚合的方法可制备高溶解性的不同分子量的聚苯胺。

通过苯胺与一些带有极性和可溶性基团的苯胺衍生物,邻氨基苯磺酸发生共聚,得到溶解性和可加工性较好的共聚态聚苯胺。

2 合成方法2.1 化学氧化聚合法聚苯胺的化学氧化聚合法是在酸性水溶液中用氧化剂使苯胺单体氧化聚合。

化学氧化法能够制备大批量的聚苯胺,也是最常用的一种制备聚苯胺的方法。

化学氧化法合成聚苯胺主要受反应介质酸的种类及浓度、氧化剂的种类及浓度、单体浓度和反应温度、反应时间等因素的影响。

质子酸是影响苯胺氧化聚合的重要因素,它主要起两方面的作用:提供反应介质所需要的pH值和以掺杂剂的形式进入聚苯胺骨架赋予其一定的导电性。

苯胺化学氧化聚合常用的氧化剂有:过氧化氢、重铬酸盐、过硫酸盐、氯化铁等,所得聚苯胺性质基本相同。

也有用过硫酸铵和碳酸酯类过氧化物组成复合氧化剂制备聚苯胺的相关报道。

以Fe2+为催化剂和H2O2为氧化剂可合成高溶解性的聚苯胺。

过硫酸铵不含金属离子,后处理简便,氧化能力强,是最常用的氧化剂。

苯胺聚合是放热反应,且聚合过程有一个自加速过程。

如果单体浓度过高,则会发生暴聚,一般单体浓度在0.25~0.5mol/L为宜。

在一定的酸浓度范围内,聚合温度与聚苯胺的电导率无关,但与聚苯胺的分子质量有关。

随着聚合温度的降低,聚苯胺的分子质量升高,并且结晶度增加[6]。

聚合反应在装有搅拌器的三口瓶中进行,首先在经氮气置换且保护的三口瓶中,依次加入水、盐酸、苯胺,然后在搅拌下滴加过硫酸铵的盐酸水溶液。

在一定温度下聚合,将得到的产物过滤,用1mol/L的盐酸反复洗涤,然后水洗至滤液基本无色为止。

产物在60℃下,真空干燥48h,得到墨绿色掺杂态聚苯胺。

2.2 电化学聚合法电化学法制备聚苯胺是在含苯胺的电解质溶液中,选择适当的电化学条件,使苯胺在阳极上发生氧化聚合反应,生成粘附于电极表面的聚苯胺薄膜或是沉积在电极表面的聚苯胺粉末。

操作过程如下:氨与氢氟酸反应制得电解质溶液,以铂丝为对电极,铂微盘电极为工作电极,Cu/CuF2为参比电极,在含电解质和苯胺的电解池中,以动电位扫描法进行电化学聚合,反应一段时间后,聚苯胺便牢固地吸附在电极上,形成坚硬的聚苯胺薄膜。

电化学方法合成的聚苯胺纯度高,反应条件简单且易于控制。

但电化学法只适宜于合成小批量的聚苯胺。

主要的电化学聚合法有:动电位扫描法、恒电位法、恒电流法和脉冲极化法。

最普遍采用的是动电位扫描法,其特点是成膜较为均匀,膜与电极粘着较好。

恒电流聚合也能达到这一目的,其特点是成膜快,操作方便。

用脉冲极化法可以得到较厚的膜。

影响聚苯胺的电化学法合成的因素有:电解质溶液的酸度、溶液中阴离子种类、苯胺单体的浓度、电极材料、电极电位、聚合反应温度等[7]。

电解质溶液酸度对苯胺的电化学聚合影响最大,当溶液pH<1.8时,聚合可得到具有氧化还原活性并有多种可逆颜色变化的聚苯胺膜;当溶液pH>1.8时,聚合则得到无电活性的惰性膜。

反应过程中,电极电位控制氧化程度,聚合电位和聚合电流都不宜过大,聚合电流高于0.18V时,则引起膜本身不可逆的氧化反应,使其活性下降。

2.3 乳液聚合法乳液聚合法制备聚苯胺有以下优点:以水作热载体,产物不需沉析分离以除去溶剂;采用大分子有机磺酸作表面活性剂,可一步完成质子酸的掺杂从而提高聚苯胺的导电性;通过将聚苯胺制备成可直接使用的乳状液,可在后加工过程中,避免再使用一些昂贵(如NMP)或有强腐蚀性(如浓硫酸)的溶剂。

具体操作步骤如下:在反应器中加入苯胺与十二烷基苯磺酸,混合均匀后依次加入水、二甲苯,充分搅拌,得到透明乳液。

然后向乳液中滴加过硫酸铵水溶液,体系颜色很快变深,保持体系温度0~20℃,继续搅拌,然后加入丙酮破乳,过滤,依次用水、十二烷基苯磺酸溶液洗涤至滤液基本无色,干燥,得到掺杂的聚苯胺粉末[8]。

用这种方法生产聚苯胺,其聚合产率大于80%,聚苯胺的电导率大于1S/cm;并且在有机溶剂中的溶解性与用化学氧化合成的聚苯胺相比有显著的提高。

2.4 微乳液聚合法微乳液聚合体系由水、苯胺、表面活性剂、助表面活性剂组成,所得聚合物微乳液乳胶粒粒径分布比常规乳液聚合得到的乳胶粒径分布要窄得多,而且所得聚合物分子质量很高,一般在l06以上。

与传统乳液聚合法相比,微乳液聚合法可大大缩短聚合时间(3h),并且所得产物的电导率和产率均优于采用传统乳液聚合法合成的聚苯胺。

用微乳液聚合法制得的聚苯胺链结构规整性好、结晶度高,而且可以合成出具有纳米尺寸的聚苯胺颗粒,具有较好的溶解性[9]。

近年来,报道了聚苯胺的反向(油包水)微乳液聚合法。

用超声波辅助反向微乳液聚合法合成聚苯胺。

苯胺的聚合发生在分散且狭窄的水相池中,超声波起到加速聚合速率的作用,并且将很容易聚集在一起的聚苯胺纳米颗粒进行分散,能够较好地控制聚苯胺颗粒的形态和尺寸。

用这种方法可制得尺寸在10~50nm之间的聚苯胺球形颗粒,颗粒尺寸的减小有利于掺杂以提高电导率[10]。

应用3聚苯胺的应用3.1 聚苯胺在金属防腐领域的应用金属腐蚀给国民经济带来了巨大的损失,由腐蚀引起的破坏事例遍及所有使用金属的场合。

据统计,每年由于腐蚀而报废的金属设备和材料相当于金属年产量的1/3,造成的损失非常巨大[19]。

1985年,DeBerry发现,在酸性介质中用电化学法合成的聚苯胺膜能使不锈钢表面活性钝化而防腐,这一特点引起了人们的关注,从此人们在腐蚀防护领域开始了导电高分子膜的应用研究[20]。

其防腐机理为: 聚苯胺使金属和聚苯胺膜界面处形成一层金属氧化膜,该金属的电极电位处于钝化区,从而得到保护。

聚苯胺的氧化还原电位比铁高,当两者相互接触时,在水和氧的参与下发生氧化还原反应,在界面处形成一层致密的金属氧化膜。

聚苯胺作为一种优良的防腐材料逐渐被引起重视,并且有可能成为聚苯胺最有希望的应用领域。

研究结果显示,聚苯胺在环境pH值≥7时具有完全氧化态(LEB)和半氧化态(EB)结构,这两种结构的聚苯胺在金属的防护过程中,只起到一种机械隔离作用,它类似于金属表面的非金属涂装保护这种形式,当金属表面的聚苯胺有缺损时,它对该部位不能起到保护作用;而当聚苯胺在环境pH值<7时,聚苯胺结构发生变化,形成聚苯胺盐(ES)形态,此时聚苯胺具有良好的导电性和电化学活性。

当金属表面的聚苯胺有缺损时,它对该部位起一种催化钝化作用,使缺损聚苯胺涂层的金属裸露部分在酸性条件下,发生阳极氧化反应,快速恢复表面钝化层[21]。

聚苯胺对氧气的渗透起到了屏障作用,使之无法直接渗透到金属表面,从而吸氧腐蚀无法发生。

同时在铁被氧化过程中产生H+,可以进一步掺杂本征态聚苯胺。

通过在聚苯胺上引入磺酸基团等方法制备可溶性聚苯胺,人们采用机械涂膜的方法在金属表面形成均匀完整的聚苯胺防腐膜,取得了很好的效果。

作为防腐涂料,无论从试验室结果还是实际检测结果来看,聚苯胺都是较为理想的,尤其是其特有的抗腐蚀、抗划伤能力更是单纯环氧涂层不可比拟的。

因此,聚苯胺类防腐涂料有较大的实用前景[22]。

3.2 聚苯胺在二次电池方面的应用由于聚苯胺具有良好可逆的电化学氧化还原性能,因而适宜做电极材料,制造可以反复充放电的二次电池。

1991年日本桥石公司推出第一个商品化的聚合物钮扣二次电池,其正极为聚苯胺,负极为锂铝合金,电解质是LiBF4,为了克服聚苯胺锂电池易燃、易爆、干涸的缺点,20世纪90年代后期,用嵌锂的炭电极取代金属锂。

这类商品化电极的充放电容量已达800Ah/kg~1000Ah/kg,现在这类电池市场占有率可以与镍镉或镍氢电池相比。

把电池中正负极活性物质和电解质都做成几十微米厚的薄膜压制在一起,日本已研究开发了薄膜型Li-Al/LiBF4-(PC+DME)/Pan二次电池。

Kitani发现用电化学合成的聚苯胺制成的蓄电池在1.0~1.7V之间以1mA/cm2进行充放电时,充放电效率可达100%,充电容量为40Ah/kg,可循环2000次以上。

相关文档
最新文档