神经网络 论文
神经网络模型的研究毕业论文

神经网络模型的研究毕业论文简介本文旨在研究神经网络模型在机器研究中的应用。
神经网络是一种模仿人类神经系统工作的数学模型,能够研究输入和输出之间的复杂关系,并通过调整模型参数来提高预测准确度。
本文将探讨神经网络的基本原理、常见的网络结构和训练方法。
神经网络的基本原理神经网络由许多神经元组成,每个神经元接收来自其他神经元的输入,并通过激活函数进行处理,最终产生输出。
神经网络通过不断调整神经元之间的连接权重来研究输入和输出之间的关系。
常见的神经网络结构本文将介绍几种常见的神经网络结构,包括前馈神经网络、卷积神经网络和循环神经网络。
前馈神经网络是最基本的神经网络结构,信息只在一个方向传递。
卷积神经网络在图像处理中有广泛应用,能够从原始像素中提取特征。
循环神经网络则可以处理具有时序关系的数据,如文本和语音。
神经网络的训练方法神经网络的训练是通过优化算法来调整网络参数以减小预测误差。
本文将介绍几种常用的优化算法,包括梯度下降法和反向传播算法。
梯度下降法通过计算损失函数的梯度来更新网络参数,以使预测结果与实际输出更接近。
反向传播算法则是一种高效计算梯度的方法。
实验与结果分析本文将设计并实施几个实验来验证神经网络模型的性能。
通过使用公开的数据集和适当的评估指标,我们将对不同网络结构和训练方法进行比较,并对实验结果进行分析和讨论。
结论神经网络模型在机器研究中有着广泛的应用前景。
本文通过对神经网络的基本原理、常见的网络结构和训练方法的介绍,以及实验结果的分析,为研究和应用神经网络模型提供了有效的参考。
以上为《神经网络模型的研究毕业论文》的大纲。
人工智能神经网络论文

人工智能神经网络论文随着科学技术的发展,人工神经网络技术得到了空前的发展,并且在诸多领域得到了广泛的应用,为人工智能化的发展提供了强大的动力。
以下是店铺整理分享的人工智能神经网络论文的相关资料,欢迎阅读!人工智能神经网络论文篇一人工神经网络的发展及应用摘要随着科学技术的发展,人工神经网络技术得到了空前的发展,并且在诸多领域得到了广泛的应用,为人工智能化的发展提供了强大的动力。
人工神经网络的发展经历了不同的阶段,是人工智能的重要组成部分,并且在发展过程中形成了自身独特的特点。
文章对人工神经网络的发展历程进行回顾,并对其在各个领域的应用情况进行探讨。
关键词人工神经网络;发展;应用随着科学技术的发展,各个行业和领域都在进行人工智能化的研究工作,已经成为专家学者研究的热点。
人工神经网络就是在人工智能基础上发展而来的重要分支,对人工智能的发展具有重要的促进作用。
人工神经网络从形成之初发展至今,经历了不同的发展阶段,并且在经济、生物、医学等领域得到了广泛的应用,解决了许多技术上的难题。
1人工神经网络概述关于人工神经网络,到目前为止还没有一个得到广泛认可的统一定义,综合各专家学者的观点可以将人工神经网络简单的概括为是模仿人脑的结构和功能的计算机信息处理系统[1]。
人工神经网络具有自身的发展特性,其具有很强的并行结构以及并行处理的能力,在实时和动态控制时能够起到很好的作用;人工神经网络具有非线性映射的特性,对处理非线性控制的问题时能给予一定的帮助;人工神经网络可以通过训练掌握数据归纳和处理的能力,因此在数学模型等难以处理时对问题进行解决;人工神经网络的适应性和集成性很强,能够适应不同规模的信息处理和大规模集成数据的处理与控制;人工神经网络不但在软件技术上比较成熟,而且近年来在硬件方面也得到了较大发展,提高了人工神经网络系统的信息处理能力。
2人工神经网络的发展历程2.1 萌芽时期在20世纪40年代,生物学家McCulloch与数学家Pitts共同发表文章,第一次提出了关于神经元的模型M-P模型,这一理论的提出为神经网络模型的研究和开发奠定了基础,在此基础上人工神经网络研究逐渐展开。
对于神经网络技术论文

对于神经网络技术的探究多年以来,科学家们不断从医学、生物学、生理学、哲学、信息学、计算机科学、认知学、组织协同学等各个角度探索人脑工作的秘密,希望能制作模拟人脑的人工神经元。
在研究过程中,近年来逐渐形成了一个新兴的多学科交叉技术领域,称之为”人工神经网络”。
神经网络的研究涉及众多学科领域,这些领域互相结合、相互渗透并相互推动。
人工神经网络是由大量的简单基本元件-神经元相互联接而成的自适应非线性动态系统。
每个神经元的结构和功能比较简单,但大量神经元组合产生的系统行为却非常复杂。
人工神经网络的基本结构模仿人脑,反映了人脑功能的若干基本特性,能够自身适应环境、总结规律、完成某种运算、识别或过程控制。
人工神经网络具有并行处理特征,可以大大提高工作速度。
人工神经网络的特点和优越性,主要表现在三个方面:第一,具有自学习功能。
第二,具有联想存储功能。
第三,具有高速寻找优化解的能力。
1 神经网络的学习方法神经网络的学习也称为训练,指的是神经网络在外界环境的刺激作用下调整网络自由参数,并以新的方式来响应外部环境的过程。
能够从环境中学习并在学习中提高自身性能是神经网络最有意义的性质。
理想情况下,神经网络在每一次重复学习后,对它的环境有了更多的了解。
(1)监督学习(有教师学习)在学习时需要由教师提供期望输出,通常神经网络对于周围的环境未知而教师具有周围环境的知识,输入学习样本,教师可以根据自身的知识为训练样本提供最佳逼近结果,神经网络的自由参数在误差信号的影响下进行调整,其最终目的是让神经网络模拟教师。
(2)非监督学习(无教师学习)它也称为自组织学习,系统在学习过程中,没有外部教师信号,而是提供给一个关于网络学习性质的度量,它独立于学习任务,以此尺度来逐步优化网络,一旦网络与输入数据的统计规律达成一致,那么它将发展形成用于输入数据编码特征的内部表示能力,从而自动创造新的类别。
(3)强化学习(激励学习)在强化学习系统中,对输入输出映射的学习是通过与外部环境的不断交互作用来完成学习,目的是网络标量函数值最小,即外部环境对系统输出结果只给出评价信息(奖或罚)而不是给出正确答案,学习通过强化那些受奖的动作来改善自身性能。
《神经网络的稳定性研究》论文

《神经网络的稳定性研究》论文
神经网络的稳定性研究
近年来,神经网络技术在多个领域得到了广泛的应用,尤其是自然语言处理、图像分类和计算机视觉等方面。
然而,这项技术目前仍存在一些不足之处,例如稳定性问题。
稳定性是指系统在一定条件下行为保持不变的能力,是神经网络程序中最重要的性质之一。
本文旨在探讨神经网络系统的稳定性研究,提出稳定性研究的概念,并从网络结构、激活函数和学习算法三个方面具体分析。
首先,从网络结构的角度分析神经网络的稳定性,涉及的内容包括突触的强度、神经元联接的密度和网络结构的复杂度等。
通过仔细控制上述参数,可以改善网络的稳定性。
其次,从激活函数的角度分析神经网络的稳定性,涉及的内容包括激活函数类型、激活函数参数和激活函数的可拓展性等。
选择合适的激活函数能够有效地降低网络的不稳定性,而灵活的激活函数能够有效地扩展神经网络的空间。
最后,从学习算法的角度分析神经网络的稳定性,涉及的内容包括学习算法的优化策略、学习算法的正则化和学习算法的泛化能力等。
通过改进优化算法,在一定程度上可以提升系统的稳定性。
此外,采用一定的正则化策略可以降低神经网络模型的复杂性,减少过拟合现象,进而提升网络的稳定性。
综上所述,神经网络稳定性研究是一项重要的研究内容,其中涉及的内容包括网络结构、激活函数和学习算法三个方面。
研究人员可以通过仔细控制上述参数,有效地改进神经网络的稳定性,为将神经网络技术应用于商业应用奠定基础。
神经网络-论文

摘要神经网络是一门发展十分迅速的交叉学科,它是由大量的处理单元组成非线性的大规模自适应动力系统。
神经网络具有分布式存储、并行处理、高容错能力以及良好的自学习、自适应、联想等特点。
目前已经提出了多种训练算法和网络模型,其中应用最广泛的是前馈型神经网络。
前馈型神经网络训练中使用最多的方法是误差反向传播(BP)学习算法。
但随着使用的广泛,人们发现BP网络存在收敛速度缓慢、易陷入局部极小等缺陷。
于是我们就可以分析其产生问题的原因,从收敛速度和局部极小两个方面分别提出改进的BP网络训练方法。
关键字:神经网络,收敛速度,局部极小,BP网络,改进方法AbstractNeural network is a cross discipline which now developing very rapidly, it is the nonlinearity adaptive power system which made up by abundant of the processing units . The neural network has features such as distributed storage, parallel processing, high tolerance and good self-learning, adaptive, associate, etc. Currently various training algorithm and network model have been proposed , which the most widely used type is Feedforward neural network model. Feedforward neural network training type used in most of the method is back-propagation (BP) algorithm. But with the use of BP network, people find that the convergence speed is slow, and easy fall into the local minimum. So we can analyze the causes of problems, from the two aspects respectively we can improve the BP training methods of neural network. Keywords:neural network,convergence speed,local minimum,BP neural network improving methods目录1 神经网络概述 (3)1.1生物神经元模型............................. 错误!未定义书签。
智能控制导论论文(人工神经网络)

智能控制导论论文●系别:●班级:●学号:●姓名:●日期:人工神经网络关键词:人工神经网络、产生、发展、应用内容摘要:人工神经网络是二十世纪科学技术所取得的重大成果之一,是人类认识自然道路上的又一座里程碑。
90年代以来,国际学术界掀起了研究人工神经网络的热潮,但是探讨其哲学思想方面的研究相对薄弱。
我们知道,任何一门影响巨大、意义深远的科学技术,其发展过程必然揭示了科学技术发展的基本规律以及影响其发展的主要因素。
人工神经网络(Artificial Neural Networks, ANN),一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。
这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。
人工神经网络具有自学习和自适应的能力,可以通过预先提供的一批相互对应的输入-输出数据,分析掌握两者之间潜在的规律,最终根据这些规律,用新的输入数据来推算输出结果,这种学习分析的过程被称为“训练”。
人工神经网络是一门发展十分迅速的交叉学科,它是由大量处理单元组成的非线性大规模自适应动力系统,具有学习能力、记忆能力、计算能力以及智能处理能力,并在不同程度和层次上模仿人脑神经系统的信息处理、存储及检索功能。
同时,人工神经网络具有非线性、非局域性、非定常性、非凸性等特点,因此在智能控制、模式识别、计算机视觉、自适应滤波和信号处理、非线性优化、自动目标识别、连续语音识别、声纳信号的处理、知识处理、智能传感技术与机器人、生物医学工程等方面都有了长足的发展。
人工神经网络产生的背景自古以来,关于人类智能本源的奥秘,一直吸引着无数哲学家和自然科学家的研究热情。
生物学家、神经学家经过长期不懈的努力,通过对人脑的观察和认识,认为人脑的智能活动离不开脑的物质基础,包括它的实体结构和其中所发生的各种生物、化学、电学作用,并因此建立了神经元网络理论和神经系统结构理论,而神经元理论又是此后神经传导理论和大脑功能学说的基础。
神经网络论文

人工智能专题报告题目模式识别及人工神经网络概述姓名专业学号学院电脑科学与技术学院内容摘要:模式识别是一项极具研究价值的课题,随着神经网络和模糊逻辑技术的发展,人们对这一问题的研究又采用了许多新的方法和手段,也使得这一古老的课题焕发出新的生命力.目前国际上有相当多的学者在研究这一课题,它包括了模式识别领域中所有典型的问题:数据的采集、处理及选择、输入样本表达的选择、模式识别分类器的选择以及用样本集对识别器的有指导的训练。
人工神经网络为数字识别提供了新的手段。
正是神经网络所具有的这种自组织自学习能力、推广能力、非线性和运算高度并行的能力使得模式识别成为目前神经网络最为成功的应用领域。
关键词:模式识别,神经网络,人工智能,原理,应用Abstract:Pattern recognition is an extremely valuable project research, with neural network and fuzzy logic technology development, people on this subject, and adopted many new methods and means, also make the ancient subject coruscate gives new vitality. Current international has quite a number of scholars in the study of this topic, and it includes pattern recognition field of typical problems: the data acquisition, processing and selection, input data express choice, the choice of mode identification classifier and using samples of the reader has guidance training. Artificial neural network for digital recognition to provide a new way. It is neural network which has this kind of self-organization self-learning capability, generalization, nonlinear and computing highly parallel ability makes the pattern recognition become the neural network was the most successful application fields.引言具体的模式识别是多种多样的,如果从识别的基本方法上划分,传统的模式识别大体分为统计模式识别和句法模式识别,在识别系统中引入神经网络是一种近年来发展起来的新的模式识别方法。
神经网络 论文

神经网络论文以下是一些关于神经网络的重要论文:1. "A Computational Approach to Edge Detection",作者:John Canny,论文发表于1986年,提出了一种基于神经网络的边缘检测算法,被广泛应用于计算机视觉领域。
2. "Backpropagation Applied to Handwritten Zip Code Recognition",作者:Yann LeCun et al.,论文发表于1990年,引入了反向传播算法在手写数字识别中的应用,为图像识别领域开创了先河。
3. "Gradient-Based Learning Applied to Document Recognition",作者:Yann LeCun et al.,论文发表于1998年,介绍了LeNet-5,一个用于手写数字和字符识别的深度卷积神经网络。
4. "ImageNet Classification with Deep Convolutional Neural Networks",作者:Alex Krizhevsky et al.,论文发表于2012年,提出了深度卷积神经网络模型(AlexNet),在ImageNet图像识别竞赛中取得了重大突破。
5. "Deep Residual Learning for Image Recognition",作者:Kaiming He et al.,论文发表于2015年,提出了深度残差网络(ResNet),通过引入残差连接解决了深度神经网络训练中的梯度消失和梯度爆炸问题。
6. "Generative Adversarial Networks",作者:Ian Goodfellow etal.,论文发表于2014年,引入了生成对抗网络(GAN),这是一种通过博弈论思想训练生成模型和判别模型的框架,广泛应用于图像生成和增强现实等领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要神经网络是一门发展十分迅速的交叉学科,它是由大量的处理单元组成非线性的大规模自适应动力系统。
神经网络具有分布式存储、并行处理、高容错能力以及良好的自学习、自适应、联想等特点。
目前已经提出了多种训练算法和网络模型,其中应用最广泛的是前馈型神经网络。
前馈型神经网络训练中使用最多的方法是误差反向传播(BP)学习算法。
但随着使用的广泛,人们发现BP网络存在收敛速度缓慢、易陷入局部极小等缺陷。
于是我们就可以分析其产生问题的原因,从收敛速度和局部极小两个方面分别提出改进的BP网络训练方法。
关键字:神经网络,收敛速度,局部极小,BP网络,改进方法AbstractNeural network is a cross discipline which now developing very rapidly, it is the nonlinearity adaptive power system which made up by abundant of the processing units . The neural network has features such as distributed storage, parallel processing, high tolerance and good self-learning, adaptive, associate, etc. Currently various training algorithm and network model have been proposed , which the most widely used type is Feedforward neural network model. Feedforward neural network training type used in most of the method is back-propagation (BP) algorithm. But with the use of BP network, people find that the convergence speed is slow, and easy fall into the local minimum. So we can analyze the causes of problems, from the two aspects respectively we can improve the BP training methods of neural network. Keywords:neural network,convergence speed,local minimum,BP neural network improving methods目录1 神经网络概述 (3)1.1生物神经元模型............................ 错误!未定义书签。
1.2人工神经元模型............................ 错误!未定义书签。
2 BP神经网络....................... 错误!未定义书签。
2.1 BP神经网络特点............................. 错误!未定义书签。
2.2 BP神经网络介绍............................. 错误!未定义书签。
3 BP神经网络算法的改进 (8)3.1BP 神经网络训练过程介绍 (8)3.2动态调节学习率的改进方法 (8)3.3 BP神经网络收敛速度的改进方法 (10)3.4局部极小问题的几种改进方案 (11)4 结束语 (13)【参考文献】 (14)1.神经网络概述1.1 生物神经元模型人脑是由大量的神经细胞组合而成的,它们之间相互连接。
每个神经细胞(也称神经元)具体如图1.1所示的结构。
图1.1 生物神经元模型由图看出,脑神经元由细胞体、树突和轴突构成。
细胞体是神经元的中心,它一般又由细胞核、细胞膜等构成。
树突是神经元的主要接受器,它主要用来接受信息。
轴突的作用主要是传导信息,它将信息从轴突的起点传到轴突末梢,轴突末梢与另一个神经元的树突或细胞体构成一种突触的机构。
通过突触实现神经元之间的信息传递。
1.2人工神经元模型人工神经网络是利用物理器件来模拟生物神经网络的某些结构和功能。
图1.2是最典型的人工神经元模型。
图1.2 人工神经元模型这个模型是1943年心理学家McCulloch 和科学家W.Pitts 在分析总结神经元基本特性的基础上首先提出的M-P 模型,它是大多数神经网络模型的基础。
ji w ---代表神经元i 与神经元j 之间的连接强度(模拟生物神经元之间突触连接强度),称之为连接权;i u ---代表神经元i 的活跃值,即神经元状态;i v ---代表神经元j 的输出,即是神经元i 的一个输入;i θ---代表神经元的阐值。
函数f 表达了神经元的输入输出特性。
在M-P 模型中,f 定义为阶跳函数:01,()00,i i i iu v f u u =>⎧=⎨≤⎩ 人工神经网络是一个并行与分布式的信息处理网络结构,该网络结构一般由许多个神经元组成,每个神经元由一个单一的输出,它可以连接到许多其他的神经元,其输出有多个连接通路,每个连接通路对应一个连接权系数。
严格来说,神经网络是一个具有如下性质的有向图。
(1) 对于每个结点有一个状态变量j x ;(2) 结点i 到结点j 有一个连接权系数ji w ;(3) 对于每个结点有一个阈值j θ;(4) 对于每个结点定义一个变换函数[],,()i i ji j f x w i j θ≠,最常见的情形为()ji i j if w x θ-∑。
图1.3表示了两个典型的神经网络结构,做为前馈网络,右为反馈网络。
图1.3 典型的神经元网络结构2. BP神经网络人工神经网络是一种信息处理系统,它有很多种模型。
其中有一种用误差传播学习算法(Error Back Propagation即BP算法)进行训练的多层前馈神经网络,简称为BP网络。
BP神经网络模型是人工神经网络的重要模型之一。
它有广泛的应用,主要包括模式识别及分类、故障智能诊断、图像处理、函数拟合、最优预测等方面的应用。
2.1BP神经网络特点:l)分布式的信息存储方式神经网络是以各个处理器本身的状态和它们之间的连接形式存储信息的,一个信息不是存储在一个地方,而是按内容分布在整个网络上。
网络上某一处不是只存储一个外部信息,而是存储了多个信息的部分内容。
整个网络对多个信息加工后才存储到网络各处,因此,它是一种分布式存储方式。
2)大规模并行处理BP神经网络信息的存储与处理(计算)是合二为一的,即信息的存储体现在神经元互连的分布上,并以大规模并行分布方式处理为主,比串行离散符号处理的现代数字计算机优越。
3)自学习和自适应性BP神经网络各层直接的连接权值具有一定的可调性,网络可以通过训练和学习来确定网络的权值,呈现出很强的对环境的自适应和对外界事物的自学习能力。
4)较强的鲁棒性和容错性BP神经网络分布式的信息存储方式,使其具有较强的容错性和联想记忆功能,这样如果某一部分的信息丢失或损坏,网络仍能恢复出原来完整的信息,系统仍能运行。
1986年由Rumelhart和McCelland领导的科学家小组在《Parallel Distributed Processing》一书中,对具有非线性连续转移函数的多层前馈网络的误差反向传播算法进行了详尽分析,实现了Minsky关于多层网络的设想。
人工神经网络具有广泛的应用领域;在所有的神经网络应用中,BP神经网络所占比例在80%以上。
BP神经网络因其良好的非线性逼近能力和泛化能力以及使用的易适性而更是受到众多行业的青睐。
BP神经网络采用的反向传播算法(BP算法)是目前在前馈神经网络中研究得最为成熟且应用最广的一种有导师学习算法。
BP 神经网络在模式识别、图像处理、信息处理、智能控制、故障检测、企业管理、市场分析等方面的应用已取得了显著成效。
可以说,BP神经网络的应用已深入到经济、化工、工控、军事等众多领域,并且从其应用的优势及趋势可以预言其应用前景将更加光明。
在这样一个信息及经济高度发达的时期,研究BP神经网络,为其进一步的发展及应用做出一定的贡献是极具理论价值和实用价值。
2.2 BP神经网络介绍BP网络是一种单向传播的多层前馈网络,它包含输人层、隐含层和输出层,如图2.1所示,是目前应用较多的一种模型。
该算法在层次型网络结构上采用误差逆传播学习方式,学习过程由正向传播和误差逆传播组成。
图2.1 BP网络示意图BP网络的结构如图1所示,算法的主要思想是把学习过程分为两个阶段:第一阶段是正向传播过程,输入信息从输入层经隐层逐层计算各单元的实际输出值,每一层神经元的状态只对下一层神经元的状态产生影响;第二阶段是反向传播过程,若在输出层未能得到期望的输出值,则逐层递归计算实际输出与期望输出之间的差值,根据此误差修正前一层权值使误差信号趋向最小。
它通过连续不断地在相对于误差函数斜率下降的方向上计算网络权值和偏差变化而逐渐逼近目标。
每一次权值和误差的变化都与网络误差的影响成正比。
假设神经网络每层有N个节点,若某一层节点j与上层节点i之间权值为W ij ,节点的输入总和计为net j 、输出计为O j ,转移函数取非线性的Sigmoid 型函数1()()x f x H e =,对于节点j ,其输入值为其前一层各单元加权和j i j j inet W O b =+∑,输出值为()j j O f met =.定义误差函数2^1()2i i E y y =-∑ 式中^i y 为输出期望值,j y 为输出实际值。
BP 算法采用梯度法调整权值,每次调整的量ij ijE W W η∂∆=-∂、式中0<η<1,称为学习速率,它决定每一次训练中的权值变化大小。
进一步简化计算有ij ij b W O ηδ∆=,i ij b ηδ∆=,其中:^()()ij j j j f net y y δ=-,j 为输出层单元;()ij j jk jk f net W δδ=∑,j 为隐层单元。
BP 网络是一种多层前馈神经网络,它采用后向传播算法,亦称BP 算法(首先样本从输入层经各中间层向输出层传播,输出层的各神经元获得网络的输人响应;然后按照减小目标输出与实际输出误差的方向,从输出层开始经各中间层逐层修正各连接权值,以达到学习目的)。
BP 网络具有结构简单、可操作性强、能模拟任意的非线性输入/输出关系等优点,目前已被广泛应用于模式识别、智能控制、预测、图像识别等领域。