六年级数学公式与概念

合集下载

人教版六年级数学上册概念与公式总结

人教版六年级数学上册概念与公式总结

人教版六年级数学上册概念与公式总结1. 数与代数运算- 自然数概念:自然数是由1、2、3……无限延伸下去的数。

- 小于1000的整数概念:小于1000的整数是由0、1、2、3……999这些数字构成的数。

- 两位数、三位数的概念:两位数是由10~99之间的整数组成,三位数是由100~999之间的整数组成。

- 加减法概念与运算规律:加法是将两个或更多数合并在一起求和,减法是从一个数中减去另一个数。

- 乘法与除法概念与运算规律:乘法是将两个或多个数相乘得到乘积,除法是将一个数分成若干个相等的部分。

2. 分数与小数- 分数的概念与表达方式:分数表示一个整体被等分成若干份的其中之一。

- 看、说、读、写带分数- 小数的概念与表达方式:小数是有整数部分和小数部分组成的数。

3. 平面图形- 点、线、线段、射线的概念与特点- 正方形、长方形、三角形、平行四边形的特点与区别- 镜面对称与图形的判断4. 量的转换- 长度的转换:厘米、分米、米、千米之间的转换- 重量的转换:克、千克、吨之间的转换- 容积的转换:毫升、升之间的转换- 还原图解决实际问题5. 有关时间、温度和人民币的计算- 时、分的概念与基本运算- 摄氏度、华氏度的概念与转换- 人民币的基本面值与简单计算6. 图形的位置与方向- 表示物体位置和方向的依据- 平面图中表示位置和方向的方法- 描写物体位置和方向的语言表达7. 正数与负数- 数轴与正数、负数的表示- 正数与负数的加法与减法- 温度计中的正数和负数以上是人教版六年级数学上册的概念与公式总结,对于每个概念和知识点,可以进一步进行学习与巩固。

人教版,六年级数学上册,概念与公式归纳整理汇总

人教版,六年级数学上册,概念与公式归纳整理汇总

人教版,六年级数学上册,概念与公式归纳整理汇总本文档整理了人教版六年级数学上册的概念与公式,旨在帮助学生们系统地复与整理课本中的重要内容。

第一章:数字与运算1. 数字的分类- 自然数:1, 2, 3, ...- 整数:... -2, -1, 0, 1, 2, ...- 有理数:可以表示为两个整数的比例,例如:$\frac{1}{2}$, $\frac{2}{3}$, ...- 无理数:无法表示为两个整数的比例,例如:$\sqrt{2}$, $\pi$2. 基本运算法则- 加法:$a + b = b + a$- 减法:$a - b ≠ b - a$- 乘法:$a \times b = b \times a$- 除法:$a \div b ≠ b \div a$3. 运算顺序- 括号内先计算- 乘法与除法优先于加法与减法4. 基本性质- 0 是加法和乘法的单位元素- 1 是乘法的单位元素- 负数与正数相乘为负数:$(-a) \times b = -(a \times b)$ 第二章:小数1. 小数的表示方法- 十分位:小数点后一位- 百分位:小数点后两位- 千分位:小数点后三位- ...2. 小数的运算- 加法与减法- 乘法与除法3. 百分数- 百分数的表示方法:$10\% = 0.1$第三章:图形的认识1. 点、线、面- 点:没有长度、宽度、高度,只有位置- 线:延伸无限,没有宽度- 面:由线围成的平面2. 常见图形的名称与特征- 点- 直线、射线、线段- 角- 三角形、四边形、正方形、长方形、平行四边形、菱形、梯形、圆形3. 对称- 线对称:图形按某条直线对折后重合- 点对称:图形按某个点对折后重合第四章:数据处理1. 统计与调查- 调查的目的与方法- 数据的整理与分类2. 图表的表示- 条形图- 饼图- 表格3. 数据的分析与预测- 平均数- 众数- 极差- 中位数以上总结了人教版六年级数学上册的部分概念与公式,仅供参考。

人教版,六年级数学上册,概念与公式总结与归纳

人教版,六年级数学上册,概念与公式总结与归纳

人教版,六年级数学上册,概念与公式总
结与归纳
概念与公式总结与归纳:
1. 数的概念:
- 数是人们用来表示事物数量的符号,包括自然数、整数、分数、小数、负数等。

- 自然数由0和比0大的正整数组成,用N表示。

- 整数由正整数、0和负整数组成,用Z表示。

- 分数由整数和真分数组成,用Q表示。

- 小数是不能化成整数的有理数或无理数,用R表示。

2. 四则运算:
- 加法:两个数相加,结果为和。

- 减法:一个数减去另一个数,结果为差。

- 乘法:两个数相乘,结果为积。

- 除法:一个数除以另一个数,结果为商。

3. 数的大小比较:
- 两个数的大小比较可以使用不等号进行表示。

- 大于:用>表示。

- 小于:用<表示。

- 大于等于:用≥表示。

- 小于等于:用≤表示。

4. 使用等式:
- 等式是指两个数或两个代数式之间相等的关系。

- 等号的左右两边的值相等,可以用等号表示。

- 可以进行等式的运算、变形和求解。

5. 坐标系与图形:
- 坐标系是由两条相互垂直的直线组成的,用于表示点在平面
上的位置。

- x轴和y轴是两条相互垂直的直线,它们交叉的点称为原点O,表示为(0, 0)。

- 横坐标表示点在x轴上的位置,纵坐标表示点在y轴上的位置。

- 平面上的点可以用坐标来表示。

以上是人教版六年级数学上册的概念与公式总结与归纳。

希望对你的学习有所帮助!。

小学六年级数学公式大全整理

小学六年级数学公式大全整理

学习整理收集于网络,仅供参考小学六年级数学公式大全整理小学六年级数学公式大全涵盖了多个方面,包括几何图形的周长、面积和体积计算,单位换算,以及基本的数量关系等。

以下是一些主要公式和概念的整理:一、几何图形相关公式1. 长方形周长:C = (a + b) × 2面积:S = a × b其中,a为长,b为宽。

2. 正方形周长:C = 4a面积:S = a^2其中,a为边长。

3. 三角形周长:三条边之和面积:S = (底×高) ÷ 2内角和:180度4. 平行四边形面积:S = 底×高5. 梯形面积:S = (上底 + 下底) ×高÷ 26. 圆直径:d = 2r半径:r = d ÷ 2周长(圆周):C = πd = 2πr面积:S = πr^27. 长方体底面积:长×宽表面积:(长×宽 + 长×高 + 宽×高) × 2体积:V = 长×宽×高8. 正方体棱长总和:12a表面积:6a^2体积:V = a^39. 圆柱体侧面积:底面周长×高 = 2πrh表面积:侧面积 + 2个底面面积 = 2πrh + 2πr^2体积:V = 底面积×高 = πr^2h10. 圆锥体体积:V = (1/3) ×底面积×高 = (1/3)πr^2h二、单位换算1、长度单位:1公里 = 1千米 = 1000米,1米 = 10分米 = 100厘米 = 1000毫米2、面积单位:1平方米 = 100平方分米 = 10000平方厘米 = 1000000平方毫米,1公顷 = 10000平方米3、体积单位:1立方米 = 1000立方分米 = 1000000立方厘米 = 1000000000立方毫米,1升 = 1立方分米 = 1000毫升4、重量单位:1吨 = 1000千克 = 1000000克 = 1000公斤 = 2000市斤5、时间单位:1世纪 = 100年,1年 = 12月,1日 = 24小时,1小时 = 60分钟 = 3600秒6、货币单位:1元 = 10角 = 100分三、数量关系速度、时间、路程:速度×时间 = 路程单价、数量、总价:单价×数量 = 总价工作效率、工作时间、工作总量:工作效率×工作时间 = 工作总量四、其他常用公式利息:利息 = 本金×利率×时间利润:利润 = 售价 - 成本利润率:利润率 = (利润÷成本) × 100%这些公式和概念是小学六年级数学学习中的重要内容,掌握它们对于解决实际问题具有重要意义。

六年级数学复习概念、公式等

六年级数学复习概念、公式等

六年级总复习概念公式一、计数部分1、个、十、百、千、万……亿都是计数单位。

2、每四个数位分为一级、个级包括(个位、十位、百位、千位),万级包括(万位、十万位、百万位、千万位),亿级包括(亿位、十亿位、百亿位、千亿位)。

3、读数时先分级,一级一级往下读,每级末尾0都不读,中间的0有几个只读一个0。

4、写数时一级一级的往下写,那位没有数字,就写0.5、表示物体个数的1、2、3、4、5、6……都是自然数。

一个物体也没有用0表示,0是自然数。

6、最小的自然数是0,没有最大的自然数,自然数的个数是无限的。

7、每相邻的两个计数单位间的进率都是十,这种计数方法叫做十进制计数法。

8、小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001;最大的小数计数单位是110 即0.1。

9、小数点向右移动一位,原数扩大10倍;向右移动两位,原数扩大100倍……。

小数点向左移动一位,原数缩小10倍;向左移动两位,原数缩小100倍……。

10、使方程左右两边相等的未知数的值,叫做方程的解。

11、求方程的过程叫做解方程。

12、一个小数的小数部分,从某一位起,一个数字或几个数字依次不断重复出现,这样的小数叫做循环小数。

如5.333……,7.14545……。

13、小数部分的位数是有限的小数,叫做有限小数。

如0.9375,小数部分的位数是无限的小数,叫做无限小数。

如0.2142857142857……。

14、一个小数的小数部分,依次不断重复出现的数字,叫做循环小数的循环节。

如4.33……的循环节是3;改写方法:4.33……写作 ;0.286286……写作 ;2.31919……写作 。

15、一个数的最小因数是1,最大因数是它本身。

16、一个数的因数的个数是有限的,而一个数的倍数的个数是无限的,最小是它本身,没有最大的倍数。

17、自然数中,是2的倍数的数叫做偶数,0是最小的偶数,没有最大的偶数。

18、自然数中,不是2的倍数的数叫做奇数。

六年级数学概念与公式

六年级数学概念与公式

六年级数学概念与公式
空间几何是关于空间物体的几何学,空间几何中的基本形状有球体、圆柱体、圆锥体、正方体和长方体等。

空间几何的公式可用于计算这些基本形状的表面积和体积。

例如:球的体积公式为V=4/3πr;正方体的表面积公式为 S = 6a。

二、概率:
概率是数学中一个重要的概念,它是描述随机实验结果出现的可能性的度量。

概率公式可以用来计算概率值,例如:蒙特卡罗法则公式为P(A)=n(A)/n(S)。

三、代数:
代数是数学中的一个重要领域,其主要研究方向是研究变量、方程和函数之间的关系。

六年级学生普遍学习的代数概念和公式主要包括一次函数、二次函数以及一元二次方程的解法等。

例如:一元二次方程的解法公式为x1= (-b + √Δ)/2a,x2= (-b - √Δ)/2a。

四、三角几何:
三角几何是研究三角形的几何学,它的公式可以用于计算三角形的面积和其他属性。

例如:三角形的面积公式为S=1/2absinC;三角形的角度关系公式为a+b+c=180°。

- 1 -。

六年级数学定义和公式

六年级数学定义和公式

六年级数学定义和公式六年级是小学的最后一年,在这一年里,学生将会学习到更多高级的数学概念。

以下是六年级数学中一些主要的概念和公式:分数1. 定义:分数是表示部分与整体关系的数。

形式为 $\frac{p}{q}$,其中$p$ 是分子,$q$ 是分母。

2. 性质:基本性质:分数的分子和分母同时乘以或除以同一个非零数,分数的大小不变。

约分:简化分数的过程。

通分:将两个或多个分数化为同分母。

3. 运算:加法减法乘法除法小数1. 定义:小数是一种十进制表示的数,由整数部分、小数点和小数部分组成。

2. 性质:小数的末尾添上0或去掉0,小数的大小不变,但计数单位会改变。

3. 运算:加法减法乘法除法百分数1. 定义:百分数是一种特殊的分数,表示部分与整体的比例。

形式为$\%$ 或 $\frac{p}{100}$。

2. 性质:与分数相似,百分数也可以进行加、减、乘、除运算。

负数1. 定义:负数是小于0的数。

在数轴上,负数位于0的左侧。

2. 性质:负数与正数、0都有明确的界限和关系。

3. 运算:负数可以进行加、减、乘、除运算。

几何学基础1. 定义:几何学是研究形状、大小、图形的属性以及它们之间关系的科学。

2. 基础概念:点、线、面、角、多边形等。

3. 定理:如两点确定一条直线、内角和定理等。

4. 图形面积和体积公式:如矩形、三角形、圆的面积和体积公式等。

代数基础1. 定义:代数是研究数学中各种代数结构的科学。

2. 基础概念:变量、方程式、不等式等。

3. 运算律:加法交换律、结合律,乘法交换律、结合律、分配律等。

4. 一元一次方程式解法:通过移项、合并同类项等方法解方程式。

最新小学六年级数学概念和公式大全

最新小学六年级数学概念和公式大全

1.整数的概念:整数是由正整数、负整数和0组成的集合;负整数是正整数的相反数。

2.整数的加减法:-相反数:一个数和它的相反数的和为0,如5+(-5)=0。

-同号数相加:同号数相加,绝对值不变,符号保持不变,如:8+6=14,-2+(-7)=-9-异号数相加:异号数相加,绝对值较大的数的符号作为和的符号,如:3+(-5)=-2-加法法则:如果a+b=c,那么c-a=b,c-b=a。

-减法法则:如果a-b=c,那么c+b=a,c-a=-b。

3.小数的概念:小数是指小数点后有限位数的有理数。

4.小数的运算:-加减法:先对齐小数点,运算后小数点仍在原位置。

-乘法:按整数的乘法规则进行运算,然后确定小数点的位置。

-除法:将小数除数化为整数,分子小数点位置不变,除数小数点向右移动与零点对齐,进行整数的除法运算,并确定商的小数点位置。

5.分数的概念:分数是指一个整体被均匀地分成若干部分的其中一部分。

6.分数的运算:-加减法:找到两个分数的公分母,然后按照相应规则进行计算。

-乘法:将两个分数的分子和分母分别相乘。

-除法:将除数的倒数乘以被除数,然后将结果化简为最简分数。

7.平均数的概念:平均数是一组数据各项之和除以数据的个数。

8.百分数的概念:百分数是将一个数分成100等份的数。

9.百分数的运算:-百分数转化为小数:将百分数除以100。

-小数转化为百分数:将小数乘以100。

-百分数之间的加减法:先化为小数,再进行计算。

10.面积的概念:面积是一个平面图形所占的二维空间大小。

11.面积的计算:-长方形的面积:面积=长×宽。

-正方形的面积:面积=边长×边长。

-三角形的面积:面积=底边×高÷2-圆的面积:面积=π×半径×半径。

12.周长的概念:周长是封闭图形上所有边的长度之和。

13.周长的计算:-长方形的周长:周长=2×(长+宽)。

-正方形的周长:周长=4×边长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学六年级数学总复习的公式与概念第一部分:概念1、加法交换律:两数相加交换加数的位置,和不变。

2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。

3、乘法交换律:两数相乘,交换因数的位置,积不变。

4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。

5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。

如:(2+4)×5=2×5+4×56、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。

除以任何不是O 的数都得O。

简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。

7、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。

等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。

8、什么叫方程式?答:含有未知数的等式叫方程式。

9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。

学会一元一次方程式的例法及计算。

即例出代有x的算式并计算。

10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。

11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。

异分母的分数相加减,先通分,然后再加减。

12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。

异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。

15、分数除以整数(0除外),等于分数乘以这个整数的倒数。

16、真分数:分子比分母小的分数叫做真分数。

17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。

假分数大于或等于1。

18、带分数:把假分数写成整数和真分数的形式,叫做带分数。

19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。

20、一个数除以分数,等于这个数乘以分数的倒数。

21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。

分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。

异分母的分数相加减,先通分,然后再加减。

分数的乘法则:用分子的积做分子,用分母的积做分母。

22、什么叫比:两个数相除就叫做两个数的比。

如:2÷5或3:6或1/3。

比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。

23、什么叫比例:表示两个比相等的式子叫做比例。

如3:6=9:1824、比例的基本性质:在比例里,两外项之积等于两内项之积。

25、解比例:求比例中的未知项,叫做解比例。

如3:χ=9:1826、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。

如:y/x=k(k一定)或kx=y27、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。

如:x×y = k( k一定)或k / x = y28、百分数:表示一个数是另一个数的百分之几的数,叫做百分数。

百分数也叫做百分率或百分比。

29、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。

其实,把小数化成百分数,只要把这个小数乘以100%就行了。

30、把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

31、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。

32、把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。

33、要学会把小数化成分数和把分数化成小数的化发。

34、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。

(或几个数公有的约数,叫做这几个数的公约数。

其中最大的一个,叫做最大公约数。

)35、互质数:公约数只有1的两个数,叫做互质数。

36、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。

37、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。

(通分用最小公倍数)38、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。

(约分用最大公约数)39、最简分数:分子、分母是互质数的分数,叫做最简分数。

40、分数计算到最后,得数必须化成最简分数。

41、个位上是0、2、4、6、8的数,都能被2整除,即能用2进行约分。

个位上是0或者5的数,都能被5整除,即能用5进行约分。

在约分时应注意利用。

42、偶数和奇数:能被2整除的数叫做偶数。

不能被2整除的数叫做奇数。

43、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。

44、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。

1不是质数,也不是合数。

45、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)46、利率:利息与本金的比值叫做利率。

一年的利息与本金的比值叫做年利率。

一月的利息与本金的比值叫做月利率。

47、自然数:用来表示物体个数的整数,叫做自然数。

0也是自然数。

48、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。

如3. 14141449、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。

如圆周率:3.14159265450、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。

如3.14159265452、什么叫代数?代数就是用字母代替数。

53、什么叫代数式?用字母表示的式子叫做代数式。

如:3x =ab+c第二部分:数量关系式1、单价×数量=总价2、单产量×数量=总产量3、速度×时间=路程4、工效×时间=工作总量5、加数+加数=和一个加数=和+另一个加数6、被减数-减数=差减数=被减数-差被减数=减数+差7、因数×因数=积一个因数=积÷另一个因数8、被除数÷除数=商除数=被除数÷商被除数=商×除数9、有余数的除法:被除数=商×除数+余数10、一个数连续除以用两个数,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。

例:90÷5÷6=90÷(5×6)第三部分:单位间进率1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米1吨=1000千克1千克= 1000克= 1公斤= 1市斤1公顷=10000平方米1亩=666.666平方米1升=1立方分米=1000毫升1毫升=1立方厘米第四部分:几何知识三角形的面积=底×高÷2 公式S= a×h÷2正方形的面积=边长×边长公式S= a×a长方形的面积=长×宽公式S= a×b平行四边形的面积=底×高公式S= a×h梯形的面积=(上底+下底)×高÷2 公式S=(a+b)h÷2内角和:三角形的内角和=180度长方体的体积=长×宽×高公式:V=abh长方体(或正方体)的体积=底面积×高公式:V=abh正方体的体积=棱长×棱长×棱长公式:V=aaa圆的周长=直径×π公式:c=πd=2πr圆的面积=半径×半径×π公式:S=πr2圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高公式:S=ch=πdh=2πrh圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积公式:S=ch+2s=ch+2πr2圆柱的体积:圆柱的体积等于底面积乘高公式:V=Sh圆锥的体积=1/3底面×积高公式:V=1/3Sh平行线:同一平面内不相交的两条直线叫做平行线垂直:两条直线相交成直角,像这样的两条直线,我们就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。

约数和倍数:如果数a能被数b整除(b≠0),a就叫做b的倍数,b就叫做a的约数.一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身.一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数.整除:整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说数a能被数b整除,或数b能整除a.除尽:数a除以数b(b≠0),除得的商是整数或是有限小数,这就叫做除尽.区别: 整除是除尽的一种特殊情况,整除也可以说是除尽,但除尽不一定是整除.能被2.3.5整除的数的特征:能被2整除的数的特征:个位上是0,2,4,6,8,能被5整除的数的特征:个位上是0或5最小的质数是:能被3整除的数的特征:各个位上的数字的和能被3整除能同时被2,5整除的数的特征:个位是0能同时被2,3,5整除的数的特征:个位是0,而且各个位上的数字的和能被3整除.最小的质数是: 2最小的合数是:4质因数:每一个合数都可以写成几个质数相乘的形式,这几个质数叫做这个合数的质因数.分解质因数:把一个合数用几个质因数相乘的形式表示出来.叫做分解质因数.分解质因数的方法:短除法十进制计数法:一(个)、十、百、千、万……都叫做计数单位.其中“一”是计数的基本单位.10个一是十,10个十是百……10个一百亿是一千亿……每相邻两个计数单位之间的进率都是十.这种计数方法叫做十进制计数法.读数:读数时,从高位起,一级一级地往下读,属于亿级和万级的要读出级名. 读数时,每级末尾的“0”都不读,其他数位有一个0或连续几个0都只读一个0.写数:写数时,从高位起,一级一级地往下写,哪一位上一个单位也没有,就在哪个数位上写0四舍五入法:求一个数的近似数,要看尾数的最高位上的数是几,如果比5小,就把尾数都舍去;如果尾数最高位上的数是5或大于5,就把尾数舍去后,要向它的前一位进1.整数大小的比较:比较两个多位数的大小,首先看它们位数的多少,位数较多的数较大;如果两个数的位数相同,那么首先看最高位,最高位上的数较大的,这个数就大; 如果最高位相同,则左边第二位上的数较大的,这个数就大……小数:把整数“1”平均分成10份,100份……这样的一份或几份分别是十分之几,百分之几……可以用小数表示.小数点右边第一位是十分位,计数单位是十分之一;第二位是百分位,计数单位是百分之一……小数部分的最大计数单位是十分之一,没有最小的计数单位.小数部分有几个数位,就叫做几位小数.小数的读法和写法:读小数时,小数的整数部分按整数的读法来读,小数点读作“点”,小数部分按照顺序读出每一个数位上的数字.写小数时,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字.小数的性质:小数的末尾添上0或者去掉0,小数的大小不变.运用小数的性质,可以在小数末尾添上0. 如:3.5=3.50 也可以把小数化简. 如3.500=3.5 小数点数位移动引起小数大小的变化:小数点向右(左)移动一位、两位、三位……原来的数就扩大(缩小)10倍、100倍、1000倍……如果要把一个数扩大或缩小10倍、100倍……只需要移动小数点,数位不够时用0补足.循环小数:一个小数的小数部分,从某一位起,有一个或几个数字依次不断重复出现,这样的数叫做循环小数.如0.5555……7.23838……依次不断重复出现的数字叫做循环节.循环小数的简便记法0.5555……记作:0.5 7.23838……记作:7.238循环小数:循环节从小数部分第一位开始的叫纯循环小数.如0.5循环节不是从小数部分第一位开始的叫混循环小数.如7.238分数的意义和分数单位:单位“1”----一个物体,一个计量单位或是许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”分数----把单位“1”平均分成若干份,表示这样的一份或者几份的数,叫做分数.分数单位----把单位“1”平均分成若干份,表示其中的一份的数.分数大小的比较:分母相同的两个分数,分子大的分数比较大.分子相同的两个分数,分母小的分数比较大.真分数----分子比分母小的分数.真分数<1假分数----分子比分母大或者分子和分母相等的分数.分数的基本性质:分数的分子和分母同时乘以或者除以相同的数(零除外),分数的大小不变.。

相关文档
最新文档