南京邮电大学课程设计报告 简易数字频率计步骤详细

合集下载

课程设计报告(频率计)

课程设计报告(频率计)

设计题目:数字频率计的设计与制作一、课程设计的主要内容与目的1. 主要内容:数字频率计的主要功能是测量周期信号的频率,频率是单位时间内信号发生周期变化的次数,如果我们能在给定的1S时间内对信号波形计数,并将计数结果显示出来,就能读取被测信号的频率。

数字频率计首先必须获得相对稳定与准确的时间,同时将被测信号转换成幅度与波形均能被数字电路识别的脉冲信号,然后通过计数器计算这一段时间间隔内的脉冲个数,将其换算后显示出来,这就是数字频率计的基本原理。

从数字频率计的基本原理出发,根据设计要求,得到如图1所示的电路框图。

图12. 设计目的:(1)掌握数字频率计的工作原理(2)根据课程设计,熟悉一般产品设计的流程和方法。

(3)重点掌握数字频率计设计的计数部分。

二、主要技术指标1.频率测量范围:10~9999HZ。

2.输入信号波形:任意周期信号,输入电压幅度>300mv.3.电源:220V,50HZ。

系统框图中各部分的功能及实现方法(1)电源与整流稳压电路框图中的电源采用50Hz的交流市电。

市电被降压、整流、稳压后为整个系统提供直流电源。

系统对电源的要求不高,可以采用串联式稳压电源电路来实现。

(2)全波整流与波形整形电路本频率计采用市电频率作为标准频率,以获得稳定的基准时间。

按国家标准,市电的频率漂移不能超过0.5Hz,即在1%的范围内。

用它作普通频率计的基准信号完全能满足系统的要求。

全波整流电路首先对50Hz交流市电进行全波整流,得到如图2(a)所示100Hz的全波整流波形。

波形整形电路对100Hz信号进行整形,使之成为如图2(b)所示100Hz的矩形波。

波形整形可以采用过零触发电路将全波整流波形变为矩形波,也可采用施密特触发器进行整形。

图2 全波整流与波形整形电路的输出波形(3)分频器分频器的作用是为了获得1S的标准时间。

电路首先对图2所示的100Hz信号进行100分频得到如图3(a)所示周期为1S的脉冲信号。

课程设计数字频率计

课程设计数字频率计

课程设计数字频率计一、课程目标知识目标:1. 理解并掌握数字频率计的基本原理与功能,了解其在实际生活中的应用。

2. 学会使用特定软件或工具进行数字频率计的设计与仿真。

3. 掌握基本的计数、计时方法,并将其应用于数字频率计的搭建。

技能目标:1. 能够运用已学知识,设计并搭建一个简单的数字频率计,培养动手操作能力和问题解决能力。

2. 能够运用逻辑思维,分析并优化数字频率计的设计方案,提高创新意识和团队协作能力。

3. 能够熟练运用相关软件或工具进行数字频率计的仿真实验,提高计算机操作技能。

情感态度价值观目标:1. 培养学生对电子技术的兴趣,激发学习热情,形成积极的学习态度。

2. 培养学生的团队合作精神,学会倾听、交流、分享,增强集体荣誉感。

3. 使学生认识到科技对社会发展的作用,提高社会责任感和使命感。

本课程针对初中年级学生,结合电子技术课程内容,以数字频率计为主题,旨在培养学生的动手操作能力、问题解决能力和创新意识。

在教学过程中,注重理论与实践相结合,让学生在实际操作中掌握知识,提高技能,同时注重情感态度价值观的培养,使学生在学习过程中形成积极向上的人生态度。

通过本课程的学习,学生能够达到上述课程目标,为后续相关知识的学习奠定基础。

二、教学内容1. 理论知识:- 数字频率计的基本原理与功能- 频率的定义及测量方法- 计数器、定时器的工作原理2. 实践操作:- 数字频率计的硬件组成与电路设计- 软件仿真工具的使用方法- 设计并搭建数字频率计的实验步骤3. 教学大纲:- 第一阶段:数字频率计基本原理学习(1课时)- 理解频率概念,掌握频率测量方法- 了解数字频率计的基本原理与功能- 第二阶段:硬件组成与电路设计(2课时)- 学习数字频率计的硬件组成- 掌握计数器、定时器的工作原理- 分析并设计数字频率计电路- 第三阶段:软件仿真与实验操作(2课时)- 学习并掌握软件仿真工具的使用方法- 设计实验方案,搭建数字频率计- 进行仿真实验,验证设计效果4. 教材关联:- 本教学内容与教材中“电子技术基础”、“数字电路设计与应用”等章节相关。

简易数字频率计设计

简易数字频率计设计

简易数字频率计设计简易数字频率计是一种统计计算工具,用于频率统计,使用适当的算法来测量特定序列中给定元素或者元素组合出现的频率,主要用于数据分析和统计工作,帮助使用者深入分析数据,得到较为精准的结果。

本文将详细说明一种简易的数字频率计的设计实现过程和分步流程。

设计步骤第一步:准备设计简易数字频率计所需要的硬件设备设计简易数字频率计需要的硬件设备有:计算机、网络设备、数据存储器、输入输出设备等。

计算机配备相应的硬件设备和软件,网络设备用于连接多台计算机,数据存储器用于存储数据,输入输出设备允许输入和输出各种不同类型的数据。

第二步:制定相应的算法根据具体情况,应制定出相应的算法,用于计算数据序列中给定元素或者元素组合出现的频率,主要包括排序算法,查找算法,求和算法,概率分布算法等。

比如:可以使用冒泡排序或者快速排序对数据序列进行排序,使用二分查找等技术快速查找元素,在运算时可以使用求和、乘法、平方等算法来计算数据,使用贝叶斯理论等方法来求取概率分布。

第三步:实现数据处理根据设计上的算法,使用计算机及其相应的软件和硬件设备,进行数据处理,对相关的数据序列进行相应的操作,实现频率的统计计算,得到精准的统计结果。

第四步:测试并可视化在完成简易数字频率计的设计之后,应当对数据处理过程进行测试,以验证所编写算法的正确性和可靠性。

完成测试之后,可以通过图表和表格的方式可视化频率计算结果,更加直观地显示出数据之间的关系以及频率变化趋势。

以上就是一种简易数字频率计的设计实现过程,它可以为使用者提供准确的统计数据和频率结果,促进数据深入分析等工作,为企业的发展带来重要的帮助。

数频率计的设计实验报告

数频率计的设计实验报告

数频率计的设计实验报告一、实验目的本实验的目的是设计并实现一个能够准确测量输入信号频率的数频率计。

通过本次实验,深入理解频率测量的原理和方法,掌握数字电路的设计与实现技能,提高解决实际问题的能力。

二、实验原理频率是指单位时间内信号周期性变化的次数。

数频率计的基本原理是在给定的时间间隔内对输入信号的脉冲个数进行计数,然后根据时间间隔和计数值计算出输入信号的频率。

常见的数频率计测量方法有直接测频法和间接测频法。

直接测频法是在单位时间内(通常为 1 秒)对输入信号的脉冲进行计数,得到的计数值即为输入信号的频率。

间接测频法是先测量输入信号的周期,然后通过计算周期的倒数得到频率。

在本实验中,我们采用直接测频法。

使用计数器对输入信号在 1 秒内的脉冲个数进行计数,计数结果通过数码管显示出来,即为输入信号的频率值。

三、实验设备与器材1、数字电路实验箱2、示波器3、函数信号发生器4、集成电路芯片(如计数器、译码器、数码管驱动芯片等)5、电阻、电容、导线等四、实验设计1、计数器模块选用合适的计数器芯片,如 74LS160 十进制计数器。

通过级联多个计数器实现对较大频率范围的测量。

2、控制模块设计一个控制电路,产生 1 秒的测量时间间隔。

可以使用 555 定时器和相关的电阻、电容组成单稳态触发器来实现。

3、显示模块选用数码管作为频率显示器件。

使用译码器芯片(如 74LS48)将计数器的输出转换为数码管的驱动信号。

五、实验步骤1、按照设计原理图在实验箱上连接电路,确保连接正确无误。

2、打开函数信号发生器,产生一个已知频率的正弦波信号,作为输入信号。

3、接通实验箱电源,观察数码管的显示值。

4、调整输入信号的频率,观察数码管显示值的变化,并与已知频率进行对比,验证测量的准确性。

5、使用示波器同时观察输入信号和计数器的输出信号,检查电路的工作状态。

六、实验结果与分析1、当输入信号频率较低时,测量结果较为准确,与已知频率的误差较小。

简易频率计课程设计

简易频率计课程设计

简易频率计课程设计一、课程目标知识目标:1. 学生能理解频率的基本概念,掌握频率的计算公式。

2. 学生能了解简易频率计的原理,明白其工作过程。

3. 学生掌握如何使用简易频率计进行实验,并能正确读取实验数据。

技能目标:1. 学生能够运用所学知识,动手搭建简易频率计,提高动手实践能力。

2. 学生能够运用计算器或编程软件进行频率的计算,提高数据处理能力。

3. 学生能够通过实验,观察现象,分析问题,培养科学探究能力。

情感态度价值观目标:1. 学生对物理学科产生兴趣,认识到物理知识在实际生活中的应用。

2. 学生养成合作学习的习惯,学会与他人分享实验成果,培养团队精神。

3. 学生通过实验,培养严谨的科学态度和探究精神,树立正确的价值观。

课程性质:本课程为物理学科实验课程,旨在通过实践操作,让学生深入了解频率相关知识。

学生特点:学生为八年级学生,已具备一定的物理知识基础,动手实践能力较强,对新鲜事物充满好奇心。

教学要求:结合学生特点,注重理论与实践相结合,以学生为主体,鼓励学生积极参与实验,培养学生的实践能力和科学素养。

通过本课程的学习,使学生能够将所学知识应用于实际生活中,提高解决问题的能力。

二、教学内容1. 理论知识:- 频率的基本概念:频率的定义、单位、与周期的关系。

- 频率计算公式:频率=1/周期。

- 简易频率计的原理:利用电子元件(如555定时器)产生稳定的方波信号,通过计数器进行计数,计算频率。

2. 实践操作:- 搭建简易频率计电路:学生分组进行实验,根据电路图搭建简易频率计。

- 实验操作步骤:调整信号发生器产生不同频率的信号,使用简易频率计进行测量,记录数据。

3. 教学大纲:- 第一课时:讲解频率的基本概念,让学生了解频率的定义和单位,学会计算频率。

- 第二课时:介绍简易频率计的原理,引导学生学习电路图,了解各元件的作用。

- 第三课时:分组实验,学生动手搭建简易频率计,进行频率测量,记录实验数据。

简易数字频率计(数字电路课程设计)

简易数字频率计(数字电路课程设计)

数字电路课程设计报告1)设计题目简易数字频率计2)设计任务和要求要求设计一个简易的数字频率计,测量给定信号的频率,并用十进制数字显示,具体指标为:1)测量范围:1H Z—9.999K H Z,闸门时间1s;10 H Z—99.99K H Z,闸门时间0.1s;100 H Z—999.9K H Z,闸门时间10ms;1 K H Z—9999K H Z,闸门时间1ms;2)显示方式:四位十进制数3)当被测信号的频率超出测量范围时,报警.3)原理电路和程序设计:(1)整体电路数显式频率计电路(2)单元电路设计;(a)时基电路信号号(b)放大逻辑电路信号通信号(c)计数、译码、驱动电路号(3)说明电路工作原理;四位数字式频率计是由一个CD4017(包含一个计数器和一个译码器)组成逻辑电路,一个555组成时基电路,一个9014形成放大电路,四个CD40110(在图中是由四个74LS48、四个74LS194、四个74LS90组成)及数码管组成。

两个CD40110串联成一个四位数的十进制计数器,与非门U1A、U1B构成计数脉冲输入电路。

当被测信号从U1A输入,经过U1A、U1B两级反相和整形后加至计数器U13的CP+,通过计数器的运算转换,将输入脉冲数转换为相应的数码显示笔段,通过数码管显示出来,范围是1—9。

当输入第十个脉冲,就通过CO输入下一个CD40110的CP+,所以此四位计数器范围为1—9999。

其中U1A与非门是一个能够控制信号是否输入的计数电路闸门,当一个输入端输入的时基信号为高电平的时候,闸门打开,信号能够通过;否则不能通过。

时基电路555与R2、R3,R4、C3组成低频多谐振荡器,产生1HZ的秒时基脉冲,作为闸门控制信号。

计数公式:]3)2243[(443.1CRRRf++=来确定。

与非门U2A与CD4017组成门控电路,在测量时,当时基电路输出第一个时基脉冲并通过U2A反相后加至CD4017的CP,CD4017的2脚输出高电平从而使得闸门打开。

数字频率计课程设计报告

数字频率计课程设计报告

数字频率计课程设计报告一、课程目标知识目标:1. 让学生理解数字频率计的基本原理,掌握频率、周期等基本概念;2. 使学生掌握数字频率计的使用方法,能够正确操作仪器进行频率测量;3. 引导学生运用已学的数学知识,对测量数据进行处理,得出正确结论。

技能目标:1. 培养学生动手操作仪器的技能,提高实验操作能力;2. 培养学生运用数学知识解决实际问题的能力,提高数据分析处理技能;3. 培养学生团队协作能力,提高实验过程中的沟通与交流技巧。

情感态度价值观目标:1. 培养学生对物理实验的兴趣,激发学习热情;2. 培养学生严谨的科学态度,养成实验过程中认真观察、准确记录的好习惯;3. 引导学生认识到物理知识在实际应用中的价值,提高学以致用的意识。

课程性质:本课程为物理实验课,结合数字频率计的原理与应用,培养学生的实践操作能力和数据分析能力。

学生特点:六年级学生具备一定的物理知识和数学基础,对实验操作充满好奇,具备初步的团队合作能力。

教学要求:结合学生特点,注重理论与实践相结合,以学生为主体,引导学生主动参与实验过程,培养其动手能力和解决问题的能力。

通过课程目标的分解,使学生在实验过程中达到预期的学习成果,为后续教学设计和评估提供依据。

二、教学内容1. 数字频率计基本原理:- 频率、周期的定义与关系;- 数字频率计的工作原理;- 数字频率计的测量方法。

2. 实验操作技能:- 数字频率计的操作步骤;- 实验过程中的注意事项;- 数据记录与处理方法。

3. 教学大纲:- 第一课时:介绍数字频率计的基本原理,让学生了解频率、周期的概念及其关系;- 第二课时:讲解数字频率计的工作原理,引导学生掌握其操作方法;- 第三课时:分组进行实验操作,让学生动手测量不同频率的信号;- 第四课时:对测量数据进行处理与分析,培养学生数据分析能力;- 第五课时:总结实验结果,讨论实验过程中遇到的问题及解决办法。

4. 教材章节:- 《物理》六年级下册:第六章《频率与波长》;- 《物理实验》六年级下册:实验八《数字频率计的使用》。

简易数字频率计设计报告

简易数字频率计设计报告

根据系统设计要求, 需要实现一个 4 位十进制数字频率计, 其原理框 图如图 1 所示。

主要由脉冲发生器电路、 测频控制信号发生器电路、 待测 信号计数模块电路、 锁存器、 七段译码驱动电路及扫描显示电路等模块组 成。

由于是4位十进制数字频率计, 所以计数器CNT10需用4个,7段显示译 码器也需用4个。

频率测量的基本原理是计算每秒钟内待测信号的脉冲个 数。

为此,测频控制信号发生器 F_IN_CNT 应设置一个控制信号时钟CLK , 一个计数使能信号输出端EN 、一个与EN 输出信号反 向的锁存输出信号 LOCK 和清零输出信号CLR 。

若CLK 的输入频率为1HZ ,则输出信号端EN 输出 一个脉宽恰好为1秒的周期信号, 可以 作为闸门信号用。

由它对频率计的 每一个计数器的使能端进行同步控制。

当EN 高电平时允许计数, 低电平时 住手计数,并保持所计的数。

在住手计数期间,锁存信号LOCK 的上跳沿 将计数器在前1秒钟的计数值锁存进4位锁存器LOCK ,由7段译码器译出 并稳定显示。

设置锁存器的好处是: 显示的数据稳定, 不会由于周期性的标准时钟 CLKEN待测信号计数电路脉冲发 生器待测信号F_INLOCK锁存与译 码显示驱 动电路测频控制信 号发生电路CLR扫描控制数码显示清零信号而不断闪烁。

锁存信号之后,清零信号CLR对计数器进行清零,为下1秒钟的计数操作作准备。

时基产生与测频时序控制电路主要产生计数允许信号EN、清零信号CLR 和锁存信号LOCK。

其VHDL 程序清单如下:--CLK_SX_CTRLLIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY CLK_SX_CTRL ISPORT(CLK: IN STD_LOGIC;LOCK: OUT STD_LOGIC;EN: OUT STD_LOGIC;CLR: OUT STD_LOGIC);END;ARCHITECTURE ART OF CLK_SX_CTRL ISSIGNAL Q: STD_LOGIC_VECTOR(3 DOWNTO 0);BEGINPROCESS(CLK)BEGINIF(CLK'EVENT AND CLK='1')THENIF Q="1111"THENQ<="0000";ELSEQ<=Q+'1';END IF;END IF;EN<=NOT Q(3);LOCK<=Q(3)AND NOT(Q(2))AND Q(1);CLR<=Q(3)AND Q(2)AND NOT(Q(1));END PROCESS;END ART;测频时序控制电路:为实现系统功能,控制电路模块需输出三个信号:一是控制计数器允许对被测信号计数的信号EN;二是将前一秒计数器的计数值存入锁存的锁存信号LOCK;三是为下一个周期计数做准备的计数器清零信号CLR。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录第一章技术指标1.1整体功能要求1.2系统结构要求1.3电气指标1.4扩展指标设计条件1.5第二章整体方案设计2.1 算法设计整体方框图及原理2.2第三章单元电路设计3.1 时基电路设计3.2闸门电路设计3.3控制电路设计3.4 小数点显示电路设计3.5整体电路图3.6整机原件清单第四章测试与调整4.1 时基电路的调测4.2 显示电路的调测4-3 计数电路的调测4.4 控制电路的调测整体指标测试4.5第五章设计小结5.1 设计任务完成情况5.2 问题及改进5.3心得体会第一章技术指标1.整体功能要求频率计主要用于测量正弦波、矩形波、三角波和尖脉冲等周期信号的频率值。

其扩展功能可以测量信号的周期和脉冲宽度。

2.系统结构要求数字频率计的整体结构要求如图所示。

图中被测信号为外部信号,送入测量电路进行处理、测量,档位转换用于选择测试的项目------频率、周期或脉宽,若测量频率则进一步选择档位。

数字频率计整体方案结构方框图3.电气指标3.1被测信号波形:正弦波、三角波和矩形波。

3.2 测量频率范围:分三档:1Hz~999Hz0.01kHz~9.99kHz0.1kHz~99.9kHz3.3 测量周期范围:1ms~1s。

3.4 测量脉宽范围:1ms~1s。

3.5测量精度:显示3位有效数字(要求分析1Hz、1kHz和999kHz的测量误差)。

.报警,当被测信号的频率超出测量范围时3.6.4.扩展指标要求测量频率值时,1Hz~99.9kHz的精度均为+1。

5.设计条件5.1 电源条件:+5V。

门电路、阻容件、发光二极管和转换开关等原件自定。

整体方案设计第二章算法设计2.1频率是周期信号每秒钟内所含的周期数值。

可根据这一定义采用如图 2-2是根据算法构建的方框图。

2-1所示的算法。

图被测信号计数电路闸门输入电路显示电路闸门产生频率测量算法对应的方框图图2-2的闸门信号。

在测试电路中设置一个闸门产生电路,用于产生脉冲宽度为1s1s 改闸门信号控制闸门电路的导通与开断。

让被测信号送入闸门电路,当闸门脉冲到来时闸门导通,被测信号通过闸门并到达后面的计数电路(计数闸门结束时,闸门再次关闭,1s,当电路用以计算被测输入信号的周期数)即为被测信号的频内被测信号的周期个数,此时计数器记录的周期个数为1s内被测为保证在1s测量频率的误差与闸门信号的精度直接相关,率。

因此,例如,量级。

? 10 则要求闸门信号的精度为量级,3 10 信号的周期量误差在.当被测信号为1kHz时,在1s的闸门脉冲期间计数器将计数1000次,由于闸门脉冲精度为10 ?,闸门信号的误差不大于0.1s,固由此造成的计数误差不会超过1,符合5*10 3的误差要求。

进一步分析可知,当被测信号频率增高时,在闸门脉冲精度不变的情况下,计数器误差的绝对值会增大,但是相对误差仍在5*10 3范围内。

2.2 整体方框图及原理输入电路:由于输入的信号可以是正弦波,三角波。

而后面的闸门或计数电路要求被测信号为矩形波,所以需要设计一个整形电路则在测量的时候,首先通过整形电路将正弦波或者三角波转化成矩形波。

在整形之前由于不清楚被测信号的强弱的情况。

所以在通过整形之前通过放大衰减处理。

当输入信号电压幅度较大时,通过输入衰减电路将电压幅度降低。

当输入信号电压幅度较小时,前级输入衰减为零时若不能驱动后面的整形电路,则调节输入放大的增益,时被测信号得以放大。

频率测量:测量频率的原理框图如图2-3.测量频率共有3个档位。

被测信号经整形后变为脉冲信号(矩形波或者方波),送入闸门电路,等待时基信4093振荡电路构成一个较稳定的多谐振荡器,经RC号的到来。

时基信号由.整形分频后,产生一个标准的时基信号,作为闸门开通的基准时间。

被测信号通过闸门,作为计数器的时钟信号,计数器即开始记录时钟的个数,这样就达到了测量频率的目的。

周期测量:测量周期的原理框图2-4.测量周期的方法与测量频率的方法相反,即将被测信号经整形、二分频电路后转变为方波信号。

方波信号中的脉冲宽度恰好为被测信号的1个周期。

将方波的脉宽作为闸门导通的时间,在闸门导通的时间里,计数器记录标准时基信号通过闸门的重复周期个数。

计数器累计的结果可以换算出被测信号的周期。

用时间Tx来表示:Tx=NTs式中:Tx为被测信号的周期;N为计数器脉冲计数值;Ts为时基信号周期。

时基电路:时基信号由4093、RC组容件构成多谐振荡器,其两个暂态时间分别为T1=0.7(Ra+Rb)C T2=0.7RbC重复周期为 T=T1+T2 。

由于被测信号范围为1Hz~1MHz,如果只采用一种闸门脉冲信号,则只能是10s脉冲宽度的闸门信号,若被测信号为较高频率,计数电路的位数要很多,而且测量时间过长会给用户带来不便,所以可将频率范围设为几档: 1Hz~999Hz档采用1s闸门脉宽;0.01kHz~9.99kHz档采用0.1s闸门脉宽;0.1kHz~99.9kHz档采用0.01s闸门脉宽。

多谐振荡器经二级10分频电路后,可提取因档位变化所需的闸门时间1ms、0.1ms、0.01ms。

闸门时间要求非常准确,它直接影响到测量精度,在要求高精度、高稳定度的场合,通常用晶体振荡器作为标准时基信号。

在实验中我们采用的就是前一种方案。

在电路中引进电位器来调节振荡器产生的频率。

使得能够产生10kHz的信号。

这对后面的测量精度起到决定性的作用。

计数显示电路:在闸门电路导通的情况下,开始计数被测信号中有多少个上升沿。

在计数的时候数码管不显示数字。

当计数完成后,此时要使数码管显示计数完成后的数字。

控制电路:控制电路里面要产生计数清零信号和锁存控制信号。

控制电路工作波形的示意图如图2-5.第三章单元电路设计3.1 时基电路设计图3-1 时基电路与分频电路它由两部分组成:如图3-1所示,第一部分为4093组成的振荡器(即脉冲产生电路),由于标准时基信号即1KHz在本电路设计中产生于4518的第一次分频,所以由RC振荡电路与4093需要产生10KHz的方波,我们通过电位器调节并用示波器观测可以基本产生10KHz的标准信号。

第二部分为分频电路,主要由4518组成(4518的管脚图,功能表及波形图详见附录),因为标准时基信号是1000Hz的脉冲,也就是其周期是0.001s,而时基信号要求为0.01s、0.1s和1s。

4518为双BCD加计数器,由两个相同的同步4级计数器构成,计数器级为D型触发器,具有内部可交换CP 和EN线,用于在时钟上升沿或下降沿加计数,在单个运算中,EN输入保持高电平,且在CP上升沿进位,CR线为高电平时清零。

计数器在脉动模式可级联,通过将Q3连接至下一计数器的EN输入端可实现级联,同时后者的CP输入保持低电平。

如图3-2所示,4093与RC振荡电路产生的10kHz的信号经过四次分频后得到4个频率分别为1KHz、100Hz、10Hz和1Hz的方波。

图3-2 10kHz的方波分频后波形图3.2闸门电路设计如图3-3所示,通过74151数据选择器来选择所要的10分频、100分频和1000分频。

74151的CBA接拨盘开关来对选频进行控制。

当CBA输入001时74151输出的方波的频率是1Hz;当CBA输入010时74151输出的方波的频率是10Hz;当CBA输入011时74151输出的方波的频率是100Hz;这里我们以输出100Hz的信号为例。

分析其通过4017后出现的波形图(4017的管脚图、功能表和波形图详见附录)。

4017是5位计数器,具有10个译码输出端,CP,CR,INH输入端,时钟输入端的施密特触发器具有脉冲整形功能,对输入时钟脉冲上升和下降时间无限制,INH为低电平时,计数器清零。

100Hz的方波作为4017的CP端,如图3-3,信号通过4017后,从Q1输出的信号高电平的脉宽刚好为100Hz信号的一个周期,相当于将原信号二分频。

也就是Q1的输出信号高电平持续的时间为10ms,那么这个信号可以用来导通闸门和关闭闸门。

.图3-3 闸门电路图3-4 4017输入100Hz信号和Q1、Q2的信号波形3.3控制电路设计通过分析我们知道控制电路这部分是本实验的最为关键和难搞的模块。

其中控制模块里面又有几个小的模块,通过控制选择所要测量的东西。

比如频率,周期,脉宽。

同时控制电路还要产生4029预置数信号(也可以称为清零信号,因为本设计预置数为零,可以达到清零的效果),4511的锁存信号。

图3-5 控制电路设计控制电路。

计数电路和译码显示电路详细的电路如图3-5所示。

当74153的CBA 接001、010、011的时候电路实现的是测量被测信号频率的功能。

当74153的CBA接100的时候实现的是测量被测信号周期的功能。

当74153的CBA接101的时候实现的是测量被测信号脉宽的功能。

图3-6是测试被测信号频率时的计数器CP信号波形、PE端输入波形、4511锁存端波形图。

其中第一个波形是PE的波形图、第二个是CP端输入信号的波形图、第三个是锁存信号。

PE是高电平的时候计数器预置数为零,可以达到清零的效果。

根据图得知在计数之前对计数器进行了预置数为零即起到清零作用。

根据4511(4511的管脚图和功能表详见附录)的功能表可以知道,当锁存信号为高电平的时候,4511不送数。

如果不让4511锁存的话,那么计数器输出的信号一直往数码管里送。

由于在计数,那么数码管上面一直显示数字,由于频率大,那么会发现数字一直在闪动。

那么通过锁存信号可以实现计数的时候让数码管不显示,计完数后,让数码管显示计数器计到的数字的功能。

根据图可以看到,当CP输入的一个周期信号通过之后,此时4511端的输入信号也刚好到达下降沿。

LE的.图3-6 4029计数器PE信号波形、CP端输入波形、4511锁存端波形图图3-6,是测量被测信号频率是500Hz的频率的图。

时基电路产图中电路10K的信号经过分频后选择的是100Hz的信号为基准信号。

那么这个电路实现测量频率的范围是0.01KHz~9.99KHz的信号的频率。

同时控制电路也实现了对被测信号的周期和脉宽的测量。

当CBA的取一定的值,电路实现一定的测量功能。

3.4 小数点显示电路设计在测量频率的时候,由于分3个档位,那么在不同的档的时候,小数点也要跟着显示。

比如CBA接011测量频率的时候,它所测信号频率的范围是0.1KHz~99.9KHz,那么在显示的时候三个数码管的第二个数码管的小数点要显示。

CBA接010测量频率的时候,它所测信号频率的范围是0.01KHz~9.99KHz,那么显示的时候,最高位的数码管的小数点也要显示。

对比一下两个输入的高低电平可以发现CA位不一样,显示的小数点就不一样。

我们可以想到可以通过所示。

相关文档
最新文档