自动控制原理课件:第二章 控制系统动态性能分析
自动控制原理及应用课件

控制算法设计
采用位置闭环控制算法,根据位置误 差调节执行机构的输出,实现位置的 精确控制。
抗干扰措施
设计滤波器、隔离电路等抗干扰措施, 提高系统对外部干扰的抵抗能力。
07
现代控制理论在自动控制中应用
状态空间法描述动态系统
01
状态变量的定义与 性质
状态变量是描述系统动态行为的 最小变量集,具有可观测性和可 控制性。
极限环与振荡
研究相平面上可能出现的极限环及其性质, 分析系统的振荡行为。
描述函数法分析非线性系统
描述函数的性质
研究描述函数的幅值、相位等特性,分析非 线性系统的频率响应。
描述函数的概念
用一次谐波分量近似表示非线性环节的输入 输出关系。
描述函数法的应用
利用描述函数法分析非线性系统的稳定性、 自振频率等动态特性。
利用数学表达式描述系统的输入-输出关系,便 于理论分析和计算。
表格描述法
通过列出系统在不同输入下的输出值,形成输入输出对应表,方便查阅和对比。
相平面法分析非线性系统
相平面的概念
在相平面上绘制系统状态变量的轨迹,反映 系统的动态行为。
平衡点与稳定性
通过分析相平面上的平衡点及其性质,判断 系统的稳定性。
03
Z变换在离散系统分 析和设计中的应用
利用Z变换可以分析离散系统的稳定 性、因果性和频率响应等特性,进而 进行系统设计和优化。同时,Z变换 也可以用于数字滤波器的设计和分析 等应用领域。ຫໍສະໝຸດ 05非线性系统分析
非线性特性描述方法
图形描述法
通过绘制系统的输入-输出特性曲线,直观展示 非线性特性。
解析描述法
02
状态空间方程的建 立
自动控制原理教学ppt

在系统的输入端引入一个前馈环节, 根据输入信号的特性对系统进行补 偿,以提高系统的跟踪精度和抗干 扰能力。
复合校正方法
串联复合校正
将串联超前、串联滞后和串联滞 后-超前等校正方法结合起来, 设计一个复合的串联校正环节, 以实现更复杂的系统性能要求。
反馈复合校正
将局部反馈、全局反馈和前馈等 校正方法结合起来,设计一个复 合的反馈校正环节,以实现更全
自适应控制系统概述
简要介绍自适应控制系统的基本原理、结构和特点,为后续内容 做铺垫。
自适应控制方法
详细介绍自适应控制方法,如模型参考自适应控制、自校正控制等, 及其在自动控制领域中的应用实例。
自适应控制算法
阐述自适应控制算法的实现过程,包括参数估计、控制器设计等关 键技术。
鲁棒控制理论应用
鲁棒控制系统概述
自动控制应用领域
工业领域
自动控制广泛应用于工业领域,如自 动化生产线、工业机器人、智能制造 等。
01
02
航空航天领域
自动控制是航空航天技术的重要组成 部分,如飞行器的自动驾驶仪、导弹 的制导系统等。
03
交通运输领域
自动控制也应用于交通运输领域,如 智能交通系统、自动驾驶汽车等。
其他领域
此外,自动控制还应用于农业、医疗、 环保等领域,如农业自动化、医疗机 器人、环境监测与治理等。
提高系统的稳态精度。
串联滞后-超前校正
03
结合超前和滞后校正的优点,设计一个既有超前又有滞后的校
正环节,以同时改善系统的动态性能和稳态精度。
反馈校正方法
局部反馈校正
在系统的某个局部引入反馈环节, 以改善该局部的性能,而不影响 系统的其他部分。
全局反馈校正
自动控制原理第二章 胡寿松ppt课件

4、消去中间变量i(t),整理后得整:理版课件
22
第二章 控制系统数学模型
例2、 设一弹簧、质量块、阻
尼器组成的系统如图所示,
当外力F(t)作用于系统时,系 F(t) 统将产生运动。试写出外力
F(t)与质量块的位移y(t)之间
m
的微分方程。
解:
f
1、确立入-出,入-F(t),出—y(t); 2、根据牛顿定律,∑F=ma;
limsF(s)存在 f(0)lifm (t)lism (F s)
s
t 0
s
(6)终值定理
若: L[f(t)]F(s)
f( )lifm (t)lism (F s)
t
s 0
整理版课件
7
第二章 控制系统数学模型
例2、求下列函数的拉氏变换。
(1)f(t)2(1cot)(s2)f(t)sin5(t() 3)f (t)tnet
L[
d
2
dt
f (t) 2
]
s
2
F
(s)
L [ d n f ( t ) ] s n F ( s )整理版课件
5
dt n
第二章 控制系统数学模型
(2)积分性质
若: L[f(t)]F(s)
L [ f(t)d] t1 sF (s)1 s f(t)dt t0
当初始条件为0,则有:
L[
f
(t )dt ]
1 - 311 1 14 s 2s 1s 2 s 1s 2
f(t) L 1 [f(t) ](t) e t 4 e 2 t
整理版课件
16
第二章 控制系统数学模型
例 6 求F(s)s(s2ss11)的拉氏反变换
自动控制原理课件胡寿松

带宽频率
系统开环幅频特性等于0.707时 的频率。
剪切频率
系统开环幅频特性等于0.707时 的频率。
稳定性与性能的关系
稳定性是控制系统的重要性能指 标,它决定了系统能否正常工作
。
系统的稳定性与其性能指标密切 相关,如系统的超调量、调节时
自动控制原理课件胡 寿松
目录
• 自动控制概述 • 控制系统稳定性分析 • 控制系统的性能指标 • 控制系统的设计方法 • 控制系统的校正与补偿 • 控制系统的应用实例
01
自动控制概述
定义与分类
定义
自动控制是利用控制装置,使被 控对象按照预设规律自动运行的 系统。
分类
开环控制系统、闭环控制系统、 复合控制系统等。
通过分析系统的频率特性 ,研究系统的稳定性、带 宽和阻尼特性。
现代控制理论设计方法
状态空间法
01
基于系统的状态方程进行系统分析和设计,适用于线性时变系
统和非线性系统。
线性二次型最优控制
02
通过优化性能指标,设计最优控制律,适用于多输入多输出系
统。
滑模控制
03
设计滑模面和滑模控制器,使得系统状态在滑模面上滑动,适
无人机飞行控制系统通过自动控制算法,实现无人机的稳定飞行 和精确控制。
卫星姿态控制
卫星姿态控制系统通过传感器和执行机构,实现卫星的稳定指向 和精确姿态调整。
航空发动机控制
航空发动机控制系统通过调节燃油流量和点火时间等参数,实现 发动机的稳定运行和性能优化。
工业自动化控制系统的应用
智能制造
智能制造系统通过自动化设备和传感器,实现生产过程的自动化控 制和优化。
自动控制原理第二章梅森公式-信号流图课件

ABCD
然后,通过分析梅森公式 的各项系数,确定系统的 极点和零点。
最后,将梅森公式的分析 结果转换为信号流图,进 一步明确系统各变量之间 的传递关系。
梅森公式在信号流图中的应用实例
假设一个控制系统的传递函数为 (G(s) = frac{s^2 + 2s + 5}{s^2 + 3s + 2})
在信号流图中,将极点和零点表示为相 应的节点,并根据梅森公式的各项系数 确定各节点之间的传递关系。
02
信号流图基础
信号流图定义与构成
信号流图定义
信号流图是一种用于描述线性动 态系统数学模型的图形表示方法 ,通过节点和支路表示系统中的 信号传递和转换过程。
信号流图构成
信号流图由节点和支路组成,节 点表示系统的动态方程,支路表 示输入输出之间的关系。
信号流图的绘制方法
确定系统动态方程
根据系统描述,列出系统的动态方程。
2
梅森公式与信号流图在描述和分析线性时不变系 统时具有互补性,二者可以相互转换。
3
信号流图能够直观地表示系统各变量之间的传递 关系,而梅森公式则提供了对系统频率特性的分 析手段。
如何使用梅森公式进行信号流图分析
首先,将系统的传递函数 转换为梅森公式的形式。
根据极点和零点的位置, 判断系统的稳定性、频率 响应特性等。
在未来研究中的可能发展方向
随着科技的不断进步和应用需求的不断变化,控制系统面临着越来越多的 挑战和机遇。
在未来研究中,可以利用梅森公式和信号流图进一步探索复杂系统的分析 和设计方法,提高系统的性能和稳定性。
同时,随着人工智能和大数据技术的应用,可以结合这些技术对控制系统 进行智能化分析和优化设计,提高系统的自适应和学习能力。
自动控制原理实验二系统的动态性能与稳态研究

自动控制原理实验二系统的动态性能与稳态研究系统的动态性能与稳态是自动控制原理中的重要概念,对于系统的分析和设计具有重要意义。
本实验将通过实际的控制系统,研究动态性能与稳态的相关特性。
实验目的:1.理解系统的动态性能和稳态的概念。
2.通过实验研究不同参数对系统动态性能和稳态的影响。
3.掌握如何调节参数以改善系统的动态性能和稳态。
实验器材:1.控制系统实验装置。
2.控制器。
3.传感器。
4.计算机及相关软件。
实验步骤:1.将控制系统实验装置连接好,包括传感器和执行器。
2.设置基本的控制系统参数,如比例增益、积分时间和微分时间。
3.对系统进行稳态分析,记录输出信号的稳定值。
4.通过改变控制器的参数,观察系统的动态响应特性。
例如,改变比例增益,观察系统的超调量和调节时间的变化。
5.改变积分时间和微分时间,观察系统的超调量和调节时间的变化。
6.对不同参数组合进行实验,总结参数与系统性能之间的关系。
实验结果:通过实验可以得到一些重要的结论:1.比例增益的增大可以减小超调量,但同时也可能引起系统的震荡。
2.积分时间的增大可以减小偏差,但也可能导致系统的不稳定。
3.微分时间的增大可以提高系统的稳定性,但也可能引起系统的震荡。
实验结论:本实验通过实际的控制系统,研究了动态性能和稳态的相关特性。
通过改变控制器的参数,可以调节系统的动态性能和稳态。
在实际应用中,需要根据具体的控制要求,选择合适的参数组合,以达到系统的稳定性和性能要求。
实验结果对于掌握自动控制原理中的动态性能和稳态概念,以及参数调节方法具有重要意义。
自动控制原理:第二章--控制系统数学模型全

TaTLma KJe K
dMdML m dtdt
L
Tm
Ra J K eKm
——机电时间常数(秒);
Ta
La Ra
—电动机电枢回路时间常数 (秒)
若输出为电动机的转角q ,则有
TaTm
d 3q
dt 3
Tm
d 2q
dt 2
dq
dt
1 Ke
ua
Tm J
ML
TaTm J
dM L dt
—— 三阶线性定常微分方程 9
(1)根据克希霍夫定律可写出原始方程式
((23))式消LuLCcdd中去(titd)i中2d是utRc间2(中Cti1)变间C1量iR变dCti量idd后udt,ct,(t它)u输r与u(入tc输)(输t)出出uu微rc((tt)分)有方如程下式关系
或
T1T2
d 2uc (t) dt 2
T2
duc (t) dt
扰动输入为负载转矩ML。 (1)列各元件方程式。电动机方程式为:
TaTm
d 2w
dt 2
测输T速Km出发td为d电wt电测压机速w 反 K馈1e系ua数
Tm J
M反L馈 电TaJT压m
dM L dt
ua Kae ut Ktw e ur ut 12
(2)消去中间变量。从以上各式中消去中间变
量ua,e,ut,最后得到系统的微分方程式
线性(或线性化)定常系统在零初始条件下, 输出量的拉氏变换与输入量的拉氏变换之比 称为传递函数。
令线C性(s定)=常L[c系(t统)],由R下(s)述=Ln阶[r(微t)]分,方在程初描始述条:件为零
时[[aab,nnmbssdmdn进mt+ndn+dt行acmmbn(tm拉-r1)-(s1t氏ns)-am1变n+-1b1+…m换dd…1t+,nndd+1a1t得mm1bcs1(11到+ts)r+a关(t0b)]于0C]的RD(sM的s的a(()分s1s(分))=代sdbd为母)t1子为数cd传d多(tt多传方)r递项(项t程递函)式a式0函数c。b(0数tr) (t)
自动控制原理_卢京潮_二阶系统的时间响应及动态性能

自动控制原理_卢京潮_二阶系统的时间响应及动态性能3.3 二阶系统的时间响应及动态性能3.3.1 二阶系统传递函数标准形式及分类常见二阶系统结构图如图3-,所示其中,为环节参数。
系统闭环传递函数为 KT K ,s, ()2Ts,s,K1化成标准形式2,n (首1型) (3-5) ,(s),22s,2,,s,,nn1,(s), (尾1型) (3-6) 22Ts,2T,s,111T1K1式中,,,。
,,,,,,Tn2KTTTK11、分别称为系统的阻尼比和无阻尼自然频率,是二阶系统重要的特征参数。
二阶系统的首,,n1标准型传递函数常用于时域分析中,频域分析时则常用尾1标准型。
二阶系统闭环特征方程为22 D(s),s,2,,s,,,0nn其特征特征根为2,,,,,,,,,1 nn1,2若系统阻尼比取值范围不同,则特征根形式不同,响应特性也不同,由此可将二阶系统分类,见,表3-3。
表3-3 二阶系统(按阻尼比)分类表 ,分类特征根特征根分布模态,t1e ,,12,,,,,,,,,1 nn 1,2,t2e过阻尼,,tn ,,1e,,,, 1,2n,,tnte临界阻尼,,t,2n,,esin1,t0,,,1 n2,,,,,,j,1,, nn1,2t,,,2necos1,,,t欠阻尼 n57,sint ,,0n ,,,j, 1,2ncos,tn零阻尼数学上,线性微分方程的解由特解和齐次微分方程的通解组成。
通解由微分方程的特征根决定,,t,t,tn12代表自由响应运动。
如果微分方程的特征根是,,且无重根,则把函数,,eee,,,?,?,12n称为该微分方程所描述运动的模态,也叫振型。
,t2,t,如果特征根中有多重根,则模态是具有,形式的函数。
tete,?(,,j,)t(,,j,)t如果特征根中有共轭复根,则其共轭复模态与可写成实函数模态ee,,,,j,,t,t与。
esin,tecos,t每一种模态可以看成是线性系统自由响应最基本的运动形态,线性系统自由响应则是其相应模态的线性组合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例: 考虑系统的响应 C1 Vi(t) ± 应用电路理论: i(t) C2 V0(t)
1 t 1 vi = idt + iR + ∫ c1 − ∞ c2 1 t v0 = iR + idt ∫ c2 − ∞
∫
t
−∞
idt
dv0 dvi 1 c1 + c2 + + v0 = vi dt Rc1c2 dt Rc2
如果系统的特征根相等,系统的响应:
k1 k2 Ynat ( s ) = Yzero − state ( s ) = + s − s1 ( s − s1 ) 2
ynat (t ) = y zero − state (t ) = k1e + k 2te
s1t
s1t
欠阻尼响应 如果系统的特征根是复数根,s1 , s2
二阶系统的响应
dr d 2r dy d2y b b a a y + + = + + b0 r 1 0 2 1 2 2 dt dt dt dt
上式的拉氏变换:
s 2 y ( s) − sy (0 − ) − y ' (0 − ) + a1sy ( s) − a1 y (0 − ) + a0 y ( s) = b2 s R( s) − b2 sr (0 ) − b2 r ' (0 ) + b1sR( s) − b1r (0 ) + b0 R( s)
s1 , s2 = − a1 ±
2 a1 − 4 a0 2
现考虑如下的二阶系统
dr dy d2y + a1 + a0 y = b1 + b0 r 2 dt dt dt
上式的拉氏变换:
Y (s) =
sy (0 − ) + y ' (0 − ) − b1r (0 − ) Y ( s) = T ( s) R( s) + s 2 + a1s + a0
= − ± jω
分子 分子 = Ynat ( s ) = Yzero − state ( s ) = s2 + a1s + a0 ( s + a − jω )( s + a + jω ) 分子 = ( s + a) 2 + ω 2
2 − − −
b2 s 2 + b1s + b0 初始条件项 y(s) = 2 R( s) + 2 s + a1s + a0 s + a1s + a0 初始条件项 = T ( s) R( s) + 2 s + a1s + a0
系统的特征多项式
s 2 + a1s + a0 = ( s − s1 )( s − s2 )
b0 A b0 A − a0t − + y (0 ) − y (t ) = u (t ) e a0 a0
1 τ = a0
y(t)
b0A/a0
y(0-)
5/a0
例: 设系统的传递函数为
3 T (s) = s+3
求系统的响应
r (t ) = 6u (t )
y (0 − ) = 10
y (0 − ) − b1r (0 − ) Y ( s) = T ( s) R( s) + s + a0
3 6 10 6 4 Y (s) = = + ( )+ s+3 s s+3 s s+3
y (t ) = (6 + 4e −3t )u (t )
a b c
控制系统的运动分析
过阻尼响应 如果系统的特征根 s1 , s2 是不等实数,系统的响应:
k1 k2 Ynat ( s ) = Yzero − state ( s ) = + s − s1 s − s2
ynat (t ) = y zero − state (t ) = k1e s1t + k 2 e s2t
临界阻尼响应
这里:
R= 1 10
c1 = c2 = 1F
vi (t ) = u (t )
dv0 + 20v0 = δ (t ) + 10u (t ) dt
a0 = 20
b1 = 1
b0 = 10
b1s + b0 v0 (0 − ) − b1vi (0 − ) v0 ( s) = R( s) + s + a0 s + a0 1 1 s + 10 1 2 ( )= + 2 = s + 20 s s s + 20
1/sC1 V0(s) Vi(s) ± R 1/sC2
1 1 R+ s+ V0 ( s ) sc2 Rc2 T (s) = = = c1 + c2 Vi ( s ) R + 1 + 1 s+ sc1 sc2 Rc1c2 s + 10 T ( s) = s + 20 1 1 s + 10 1 V0 ( s) = T ( s ) R( s ) = ( )= 2 + 2 s + 20 s s s + 20
1 1 − 20t V0 (t ) = ( + e )u (t ) 2 2
考虑如下一阶系统
dy + a0 y = b0 r dt
r (t ) = Au (t )
问: Y ( s ) ?
R( s) =
A s
b0 A y (0 − ) Y ( s) = + s ( s + a0 ) s + a0 b0 A b0 A − y (0 ) − a0 a0 = + s + a0 s
控制系统的运动分析
一阶系统的响应
dy dr + a0 y = b1 + b0 r dx dt
sY ( s ) − y (0 − ) + a0Y ( s ) = B1sR ( s ) − b1r (0 − ) + b0 R ( s )
b1s + b0 y (0 − ) − b1r (0 − ) y (0 − ) − b1r (0 − ) R( s) + Y (s) = = T ( s) R( s) + s + a0 s + a0 s + a0
1 1 − 20t v0 (t ) = ( + e )u (t ) 2 2
验证
dv0 + 20v0 = δ (t ) + 10u (t ) dt
1 1 − 20t ( + e )δ (t ) − 10e − 20t u (t ) + (10 + 10e − 20t )u (t ) 2 2 10e − 20t 10e − 20t = δ (t ) − + 10u (t ) + u (t ) u (t ) = δ (t ) + 10u (t )