运筹学课程设计
运筹课程设计案例

运筹课程设计案例一、课程目标知识目标:1. 让学生掌握运筹学的基本概念,如线性规划、整数规划等,并能够理解其在实际问题中的应用。
2. 使学生了解运筹学中的常用方法与工具,如图表法、单纯形法等,并能运用这些方法解决简单的实际问题。
3. 引导学生理解优化问题的本质,培养他们运用数学语言描述现实问题的能力。
技能目标:1. 培养学生运用运筹学方法分析问题和解决问题的能力,特别是针对实际案例,能够设计出有效的优化方案。
2. 提高学生的数据处理和计算能力,使其能够熟练运用运筹学软件工具解决复杂的优化问题。
3. 培养学生的团队协作和沟通能力,通过小组讨论和报告,共享解决问题的思路和方法。
情感态度价值观目标:1. 培养学生对运筹学学科的兴趣,激发他们探索优化问题的热情,形成积极向上的学习态度。
2. 培养学生具有批判性思维和创新精神,面对复杂问题能够勇于挑战,寻求最佳解决方案。
3. 引导学生认识到运筹学在国家和企业发展中的重要作用,增强社会责任感和使命感。
本课程针对的学生特点是具有一定数学基础和逻辑思维能力的初中生。
在教学过程中,教师应注重理论联系实际,激发学生的兴趣和好奇心,注重培养学生的动手操作能力和实际应用能力。
通过本课程的学习,期望学生能够掌握基本的运筹学知识和方法,提高解决实际问题的能力,同时培养他们的团队合作精神和批判性思维。
二、教学内容1. 运筹学基本概念:介绍运筹学的定义、发展历程及其在现实生活中的应用,重点讲解线性规划和整数规划的基本原理。
教材章节:第一章 运筹学概述,第三节 线性规划2. 运筹学方法与工具:详细讲解图表法、单纯形法等常用优化方法,并通过实例分析展示这些方法在实际问题中的应用。
教材章节:第二章 线性规划的图解法与单纯形法,第四节 整数规划简介3. 运筹学案例分析:选择具有代表性的实际案例,如生产计划、物流配送等,让学生运用所学方法解决实际问题。
教材章节:第三章 运筹学应用案例分析4. 运筹学软件工具介绍:介绍运筹学软件(如Lingo、CPLEX等)的基本功能和使用方法,帮助学生提高优化问题的求解效率。
最优化运筹学课程设计

最优化运筹学课程设计一、课程目标知识目标:1. 学生能理解最优化运筹学的基本概念,掌握线性规划、整数规划等基本模型及其应用。
2. 学生能掌握求解最优化问题的常用方法,如单纯形法、分支定界法等,并能够运用这些方法解决实际问题。
3. 学生能了解最优化运筹学在各领域的应用,如生产计划、物流配送、人力资源等。
技能目标:1. 学生能够运用数学建模方法,将现实问题抽象为最优化模型,并运用相应算法求解。
2. 学生能够使用相关软件工具(如Lingo、MATLAB等)辅助求解最优化问题,提高问题求解的效率。
3. 学生能够通过团队协作,共同分析、讨论并解决复杂的优化问题。
情感态度价值观目标:1. 学生能够认识到最优化运筹学在现实生活中的重要性,培养对优化思维的兴趣和热情。
2. 学生在解决优化问题的过程中,培养严谨、细致的科学态度和良好的逻辑思维能力。
3. 学生能够通过团队协作,培养沟通、协作能力和集体荣誉感。
本课程针对高中年级学生,结合学科特点,注重培养学生的理论联系实际的能力,提高学生的数学建模和问题求解技能。
课程目标既注重知识传授,又强调技能培养和情感态度价值观的塑造,旨在使学生能够运用最优化运筹学的知识解决实际问题,并为未来进一步学习打下坚实基础。
二、教学内容本章节教学内容主要包括以下几部分:1. 最优化运筹学基本概念:介绍最优化问题的定义、分类及其应用领域,解析线性规划、整数规划等基本模型。
2. 最优化问题求解方法:- 单纯形法:讲解线性规划问题的求解过程,包括初始可行解、迭代过程、最优解的判定等。
- 分支定界法:介绍整数规划问题的求解方法,理解其原理和求解步骤。
3. 应用案例分析:结合实际案例,分析最优化运筹学在生产计划、物流配送、人力资源等领域的应用。
4. 软件工具应用:教授如何运用Lingo、MATLAB等软件工具辅助求解最优化问题,提高问题求解效率。
5. 教学实践:- 数学建模:引导学生运用所学知识,将现实问题抽象为最优化模型。
运筹学选课问题课程设计

运筹学选课问题课程设计一、课程目标知识目标:1. 掌握运筹学基本概念,了解其在现实生活中的应用;2. 学习并掌握线性规划、整数规划等基本优化方法;3. 理解选课问题的数学模型,并能运用相关优化方法进行求解。
技能目标:1. 培养学生运用数学知识解决实际问题的能力;2. 提高学生运用运筹学方法进行问题分析、建模和求解的技能;3. 培养学生运用计算机软件(如Excel、Lingo等)进行数据处理和求解的能力。
情感态度价值观目标:1. 培养学生对运筹学学科的兴趣,激发学习热情;2. 培养学生团队协作、共同解决问题的精神;3. 增强学生面对复杂问题时的信心和毅力,培养勇于挑战的精神。
课程性质分析:本课程为选修课,旨在帮助学生掌握运筹学的基本知识和方法,提高解决实际问题的能力。
学生特点分析:学生为高中年级,具有一定的数学基础和逻辑思维能力,但可能对运筹学了解较少。
教学要求:1. 结合实际案例,引导学生理解并掌握运筹学基本概念和方法;2. 注重培养学生的动手实践能力,鼓励学生运用所学知识解决实际问题;3. 关注学生的情感态度,激发学习兴趣,提高学生的综合素质。
二、教学内容1. 运筹学基本概念:介绍运筹学的定义、发展历程、应用领域等,让学生对运筹学有初步的认识。
教材章节:第一章 运筹学概述内容安排:1课时2. 线性规划:讲解线性规划的基本概念、数学模型、求解方法(单纯形法、图形法等)。
教材章节:第二章 线性规划内容安排:3课时3. 整数规划:介绍整数规划的基本概念、特点,以及求解方法(分支定界法、割平面法等)。
教材章节:第三章 整数规划内容安排:2课时4. 选课问题数学模型:分析选课问题的背景,构建数学模型,探讨求解方法。
教材章节:第四章 应用实例内容安排:2课时5. 计算机软件应用:介绍Excel、Lingo等软件在运筹学问题求解中的应用。
教材章节:第五章 运筹学软件应用内容安排:2课时6. 实践环节:设计选课问题的实际案例,让学生动手实践,运用所学知识解决问题。
运筹课程设计摘要

运筹课程设计摘要一、课程目标知识目标:1. 让学生掌握运筹学的基本概念、原理及方法,如线性规划、整数规划等;2. 使学生了解运筹学在现实生活中的应用,如资源配置、路径优化等;3. 帮助学生理解运筹学与其他学科之间的联系,提高跨学科综合运用能力。
技能目标:1. 培养学生运用运筹学方法解决实际问题的能力;2. 培养学生运用数学软件进行运筹问题求解的操作技能;3. 提高学生团队协作、沟通表达及分析解决问题的能力。
情感态度价值观目标:1. 培养学生对运筹学的兴趣,激发其探索精神;2. 培养学生面对问题时积极寻求解决方案的态度,增强自信心;3. 培养学生具备良好的道德品质,如诚信、合作、尊重他人等。
本课程针对高中年级学生,结合学科特点和教学要求,将课程目标分解为具体的学习成果。
在教学过程中,注重培养学生的实际操作能力和团队协作精神,使学生在掌握运筹学知识的同时,提高解决实际问题的能力。
通过本课程的学习,期望学生能够运用所学知识为我国经济发展和社会进步作出贡献。
二、教学内容1. 运筹学基本概念:介绍运筹学的定义、发展历程及研究领域,对应教材第一章内容。
- 定义与性质- 发展历程与现状- 研究领域与应用2. 线性规划:讲解线性规划的基本理论、建模方法及求解技巧,对应教材第二章内容。
- 线性规划模型- 单纯形法- 对偶理论与灵敏度分析3. 整数规划:介绍整数规划的概念、分类及求解方法,对应教材第三章内容。
- 整数规划模型- 分支定界法- 割平面法4. 运筹学应用案例分析:分析实际生活中的运筹学应用案例,培养学生解决实际问题的能力,对应教材第四章内容。
- 资源配置问题- 路径优化问题- 排队论与库存控制5. 数学软件在运筹学中的应用:教授学生运用数学软件(如MATLAB、Lingo 等)求解运筹问题,对应教材第五章内容。
- 软件操作方法- 求解线性规划- 求解整数规划本教学内容根据课程目标制定,涵盖运筹学的基本概念、理论、方法及其在实际中的应用。
工程管理运筹学课程设计

工程管理运筹学课程设计一、课程目标知识目标:1. 理解工程管理中运筹学的基本概念、原理及方法;2. 掌握线性规划、整数规划等运筹学模型在工程管理中的应用;3. 了解如何运用运筹学方法解决实际工程管理问题。
技能目标:1. 能够运用运筹学方法建立工程管理问题的数学模型;2. 能够运用线性规划、整数规划等方法求解工程管理问题;3. 能够运用运筹学软件工具进行模型求解和分析。
情感态度价值观目标:1. 培养学生对工程管理运筹学学科的兴趣,激发学习热情;2. 培养学生具备良好的团队合作精神和沟通能力;3. 培养学生运用科学方法解决实际问题的能力,增强社会责任感。
课程性质:本课程为工程管理专业核心课程,旨在通过运筹学的基本理论和方法,培养学生解决实际工程管理问题的能力。
学生特点:学生具备一定的数学基础,对工程管理有一定了解,但可能缺乏实际运用能力。
教学要求:结合学生特点和课程性质,注重理论与实践相结合,提高学生的实际操作能力和解决问题的能力。
通过本课程的学习,使学生能够将所学知识应用于实际工程管理领域,为未来职业生涯奠定基础。
教学过程中,将目标分解为具体的学习成果,以便于后续教学设计和评估。
二、教学内容1. 运筹学基本概念与原理:介绍运筹学的起源、发展及其在工程管理领域的应用,解析线性规划、整数规划等基本模型。
教材章节:第一章 运筹学概述,第二章 线性规划。
2. 运筹学方法与应用:详细讲解线性规划、整数规划、非线性规划等方法的原理及求解过程,并结合实际案例进行分析。
教材章节:第三章 整数规划,第四章 非线性规划。
3. 运筹学软件应用:介绍运筹学常用软件(如LINGO、CPLEX等)的功能、操作及在实际工程管理问题中的应用。
教材章节:第五章 运筹学软件及其应用。
4. 实践案例分析:选取具有代表性的实际工程管理案例,指导学生运用运筹学方法建立模型、求解问题,并进行结果分析。
教材章节:第六章 运筹学在工程管理中的应用案例分析。
运筹课程设计摘要部分

运筹课程设计摘要部分一、课程目标知识目标:1. 让学生掌握运筹学的基本概念和原理,如线性规划、整数规划等;2. 培养学生运用运筹学方法解决实际问题的能力,如优化资源配置、生产计划等;3. 引导学生了解运筹学在生活中的广泛应用,提高学生的学科素养。
技能目标:1. 培养学生运用数学模型描述实际问题的能力;2. 培养学生运用运筹学软件求解优化问题的能力;3. 培养学生运用运筹学方法进行问题分析和决策的能力。
情感态度价值观目标:1. 培养学生对运筹学的兴趣,激发学生主动探索学科知识的热情;2. 培养学生团队合作意识,学会与他人共同解决问题;3. 培养学生严谨、务实的科学态度,树立正确的价值观。
课程性质分析:本课程为学科拓展课程,旨在帮助学生了解和掌握运筹学的基本知识和方法,提高学生解决实际问题的能力。
学生特点分析:学生处于高中阶段,具有一定的数学基础和逻辑思维能力,对新鲜事物充满好奇,具备一定的自主学习能力。
教学要求:1. 结合实际案例,深入浅出地讲解运筹学知识;2. 注重培养学生的动手能力和团队协作能力;3. 关注学生的情感态度,引导他们树立正确的价值观。
二、教学内容根据课程目标,教学内容分为以下三个部分:1. 运筹学基本概念与原理- 线性规划:线性规划模型的建立、单纯形法、对偶问题及灵敏度分析;- 整数规划:整数规划模型的建立、分支定界法、割平面法;- 动态规划:动态规划的基本概念、多阶段决策过程、动态规划的应用。
2. 运筹学方法在实际问题中的应用- 资源优化配置:运用线性规划求解资源优化配置问题;- 生产计划:运用整数规划求解生产计划问题;- 车辆路径问题:运用动态规划求解车辆路径问题。
3. 运筹学软件及应用- 运筹学软件介绍:介绍常用的运筹学软件及其功能;- 软件操作实践:运用软件求解线性规划、整数规划和动态规划问题;- 实际案例应用:结合实际案例,运用运筹学软件进行问题分析和决策。
教学大纲安排:第1-2周:运筹学基本概念与原理;第3-4周:运筹学方法在实际问题中的应用;第5-6周:运筹学软件介绍与操作实践;第7-8周:实际案例应用及总结。
运筹学课程设计总结
运筹学课程设计总结一、教学目标本课程的教学目标分为三个维度:知识目标、技能目标和情感态度价值观目标。
1.知识目标:通过本课程的学习,学生将掌握运筹学的基本概念、方法和应用,包括线性规划、整数规划、动态规划、概率论和统计学等。
2.技能目标:学生将能够运用运筹学的方法解决实际问题,提高问题分析和解决的能力。
具体包括:(1)能够运用线性规划解决最大(小)化问题;(2)能够运用整数规划解决组合优化问题;(3)能够运用动态规划解决多阶段决策问题;(4)能够运用概率论和统计学方法分析不确定性问题。
3.情感态度价值观目标:通过本课程的学习,学生将培养严谨的科学态度、团队合作精神和创新意识,提高综合素质。
二、教学内容本课程的教学内容主要包括以下几个部分:1.运筹学基本概念和方法:线性规划、整数规划、动态规划、概率论和统计学等;2.线性规划:图解法、单纯形法、灵敏度分析等;3.整数规划:分支定界法、动态规划法等;4.动态规划:多阶段决策问题、最优化原理等;5.概率论和统计学:随机事件、随机变量、数学期望、方差、协方差、假设检验等。
三、教学方法本课程采用多种教学方法,以激发学生的学习兴趣和主动性:1.讲授法:用于传授基本概念、理论和方法;2.案例分析法:通过实际案例,让学生学会运用运筹学方法解决问题;3.实验法:上机实验,巩固理论知识,提高实际操作能力;4.讨论法:分组讨论,培养学生的团队合作精神和沟通能力。
四、教学资源本课程的教学资源包括:1.教材:《运筹学导论》、《线性规划与应用》、《整数规划》等;2.参考书:相关领域的研究论文、书籍等;3.多媒体资料:课件、教学视频等;4.实验设备:计算机、投影仪等。
以上教学资源将有助于实现本课程的教学目标,提高学生的综合素质。
五、教学评估本课程的评估方式包括平时表现、作业、考试等,以全面客观地评价学生的学习成果。
1.平时表现:通过课堂参与、提问、讨论等环节,评估学生的学习态度和理解能力;2.作业:布置适量作业,检验学生对知识的掌握和运用能力;3.考试:包括期中考试和期末考试,全面测试学生的知识水平和运用能力。
运筹学动态规划课程设计
运筹学动态规划课程设计一、课程目标知识目标:1. 理解动态规划的基本概念、原理和应用场景;2. 学会建立动态规划模型,掌握动态规划的核心要素:状态、决策、状态转移方程和边界条件;3. 掌握解决实际问题时运用动态规划方法的能力,如最短路径问题、背包问题等。
技能目标:1. 能够运用动态规划思想分析和解决相关问题,提高问题求解效率;2. 培养逻辑思维能力和数学建模能力,通过编写代码实现动态规划算法;3. 提高团队协作能力,通过小组讨论、分享心得,共同解决复杂问题。
情感态度价值观目标:1. 培养学生对运筹学及动态规划的兴趣,激发学习热情;2. 树立正确的价值观,认识到运筹学在优化决策、资源分配等方面的重要意义;3. 培养学生面对困难时保持积极态度,勇于克服挑战,不断提高自身能力。
本课程针对高年级学生,结合运筹学动态规划部分的知识点,注重理论与实践相结合。
课程性质为理论与实践并重,要求学生具备一定的数学基础和编程能力。
通过本课程的学习,旨在使学生掌握动态规划的基本原理和方法,培养其在实际问题中的应用能力,提高解决复杂问题的综合素质。
同时,注重培养学生的团队协作精神和积极向上的情感态度。
二、教学内容本章节教学内容主要包括以下几部分:1. 动态规划基本概念与原理:介绍动态规划的定义、特点和应用场景,讲解动态规划的基本原理,如最优子结构、无后效性等。
2. 动态规划模型建立:学习如何建立动态规划模型,包括定义状态、决策、状态转移方程和边界条件,分析实际问题时如何抽象为动态规划模型。
3. 动态规划算法及应用:- 最短路径问题:讲解Dijkstra算法、Floyd算法等动态规划方法解决最短路径问题;- 背包问题:介绍0-1背包问题、完全背包问题等,分析动态规划求解方法;- 其他应用:如最长公共子序列、最大子段和等问题的动态规划求解。
4. 动态规划编程实践:结合实际问题,编写代码实现动态规划算法,提高编程能力。
5. 动态规划案例分析:分析典型动态规划案例,让学生了解动态规划在实际问题中的应用。
运筹学专业课程设计要求及题目
《运筹学》课程设计要求及题目要求:分组: 共7组——各位同学和学习委员协商分组(7-8人/组);1.题目: 每组可在给定题目中任选一题, 也能够经过网络查询自行设置题目;(注意: 各组题目不能反复, 其中要求最少有一组做排队论问题)提交形式——提交课程设计汇报(含纸质和电子版), 提交时需答辩2.电子版发至:3.课程设计汇报格式字体及行间距: 小四号宋体1.5倍行距 (表格中数据为5号宋体)一、提交课程设计汇报内容由以下部分组成:二、问题描述三、问题分析四、假设及符号说明五、建立模型六、软件求解结果七、结果分析4.封面格式《运筹学》课程设计设计题目: 某厂排气管车间生产计划优化分析设计时间: .7.4 - .7.8所在院系: 机电工程学院工业工程系专业年级: 级工业工程组员姓名: 洪俊华(310367)阳明(310268)供选题目【案例C.1】某厂排气管车间生产计划优化分析1. 问题提出排气管作为发动机关键部件之一, 极大地影响发动机性能。
某发动机厂排气管车间长久以来, 只生产一个四缸及一个六缸发动机排气管。
因为其产量一直徘徊不前, 致使投资较大排气管生产线, 一直处于吃不饱状态, 造成资源大量浪费, 全车间设备开动率不足50%。
为了充足发挥车间潜力, 该车间在厂部大力帮助下主动出击, 首先争取到了工厂自行开发特殊机型排气管生产权, 其次瞄准国际市场以较低价格和较高质量赢得了世界两大著名汽车企业—CUMMINS和FORD信任, 成为其8种型号排气管最具竞争实力潜在供给商。
假如这8种排气管首批出口进入国际市场畅销话, 后续订单将会成倍增加, 而且两大企业有可能逐步降低其它企业订单, 将其它型号排气管全部转移到该车间生产。
针对这种情况, 该车间组织工程技术人员对8种排气管产品图纸进行了评审, 进行了工艺设计和开发(编排工艺步骤图、进行PFMEA分析和编制控制计划), 进行样品试制, 同时对现生产能力和成本进行了认真细致核实和估计工作。
运筹学下篇课程设计
运筹学下篇课程设计一、课程目标知识目标:1. 理解运筹学基本概念,掌握线性规划、整数规划、非线性规划等核心模型;2. 学会运用运筹学方法解决实际问题,分析问题的约束条件和目标函数,建立数学模型;3. 了解运筹学在实际应用领域的案例,如生产计划、物流配送、项目管理等。
技能目标:1. 能够运用运筹学软件(如Lingo、CPLEX等)求解数学模型,并进行结果分析;2. 培养逻辑思维和解决问题的能力,提高团队协作和沟通表达能力;3. 学会运用运筹学方法进行数据分析和决策,提高数据敏感度和决策能力。
情感态度价值观目标:1. 培养对运筹学的兴趣,激发学生探索运筹学在实际生活中的应用;2. 树立正确的价值观,认识到运筹学在优化资源配置、提高效率等方面的重要性;3. 培养严谨、务实的学习态度,提高学生的自主学习能力和终身学习能力。
本课程针对高年级学生,结合学生特点和教学要求,注重理论与实践相结合,以培养学生解决实际问题的能力为核心。
课程目标旨在使学生在掌握运筹学基本知识的基础上,提高解决实际问题的能力,培养具备创新精神和实践能力的优秀人才。
通过本课程的学习,学生将能够更好地应对未来学习和工作中的挑战。
二、教学内容本课程教学内容主要包括以下几部分:1. 运筹学基本概念与理论:介绍线性规划、整数规划、非线性规划等基本概念、原理及求解方法,涉及课本第1-3章内容。
2. 运筹学方法与应用:分析运筹学在生产计划、物流配送、项目管理等领域的实际应用,结合课本第4-6章案例,使学生了解运筹学在实际问题中的运用。
3. 运筹学软件操作与模型求解:学习运用运筹学软件(如Lingo、CPLEX等)进行数学建模与求解,涵盖课本第7-8章内容。
4. 运筹学案例分析与实践:分析典型运筹学案例,引导学生运用所学知识解决实际问题,提高学生解决实际问题的能力,涉及课本第9-10章内容。
5. 运筹学前沿与发展趋势:介绍运筹学领域的前沿动态和发展趋势,激发学生探索未知、追求创新的兴趣,涵盖课本第11章内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要运筹学是一门以人机系统的组织、管理为对象,应用数学和计算机等工具来研究各类有限资源的合理规划使用并提供优化决策方案的科学。
通过对数据的调查、收集和统计分析,以及具体模型的建立。
收集和统计上述拟定之模型所需要的各种基础数据,并最终将数据整理形成分析和解决问题的具体模型。
此题研究的主要内容是根据食品的价格和使营养成分达到标准进行合理规划。
目的是依据各种食品的成本、标准要求规划各种食品的使用情况,考虑每种食品如何搭配才能达到标准,如何搭配才能使总费用最低,当食品的量需要满足一定的量时,又如何使总费用最低,这完全符合运筹学线性规划的理论。
按照线性规划求解模式计算出既科学又合理的最优搭配方案:在使营养成分达到标准的情况下,用食品单价乘以餐配量计算出总花费,根据各种限定性因素得出目标函数和各个约束条件,运用运筹学计算软件(主要是指Lindo软件)求解所建立的运筹学模型。
所以对基本情况的分析,经过抽象和延伸,建立起了食品搭配研究的线性规划模型。
结合模型的特点,对模型的求解进行了讨论和分析,将模型应用于案例的背景问题,得出相应的最优解决方案,就可以对问题一一进行解答。
关键词:线性规划 Lindo软件最优搭配数据分析目录1.问题的提出 (1)1.1 研究的背景 (1)1.2研究的主要内容与目的 (2)1.3 研究的实际意义 (2)2.问题的分析 (2)2.1问题的特点 (2)2.2问题实验的主要方法 (2)3.数学模型的建立 (3)3.1基础数据的确立 (3)3.2变量的设定 (3)3.3目标函数的建立 (3)3.4限制条件的确定 (3)3.5模型的建立 (4)4.模型的求解与解的分析 (6)4.1模型的求解 (6)4.2模型的分析与评价 (10)5.结论与建议 (11)5.1研究结论 (11)5.2建议与对策 (11)附录 (12)参考文献 (13)1 问题的提出某幼儿园膳食搭配的优化1.1 研究的背景某幼儿园为了保证孩子们的健康成长,要求对每天的膳食进行合理科学的搭配,以保证孩子们对耕种营养的需要。
从营养的角度,假设共有米、鱼、牛奶和苹果四种食品可供选择,每种食品都含有蛋白质、脂肪、碳水化合物、钙和维生素五种不同的营养成分而且每单位的食品含有营养成分含量如下(如表1-1所示)表1-1 各营养成分的需求量和食品单价营养食品米鱼苹果牛奶营养成分的最低要求量碳水化合物蛋白质脂肪钙维生素18%15%8%0.06%0.1%20%17%10%0.12%0.11%19%14%8%0.09%0.15%16%16%9%0.1%0.09%366.5克/天95.9克/天52.6克/天0.96克/天0.2克/天食品单价0.0024元/克0.076元/克0.003元/克0.004元/克(1)如果要求每人每天对营养成分的最低要求量已知,而且已知食品的单价.问如何合理科学地制定配餐方案,既可以保证孩子们的营养需要,又使每人每天的费用最低?(2)除了如上的要求之外,如果还按要求各种食品的合理搭配,及要求每人每天对每种食品的摄入量不少于一定的量,问配餐方案又如何?1.2 研究的主要内容与目的此项研究的主要内容是根据所有种类的食品和其所含营养成分进行合理规划。
目的是依据各食品的成本、合理规划的食品使用情况,以使总费用最低。
1.3 研究的实际意义通过科学、合理的计算与规划,使幼儿园食品所需费用达到最低,有利于幼儿园资金的有效使用,促进幼儿园全面发展。
2 问题的分析2.1 问题的特点该问题的目标函数是:用各种食品的单价乘以使用量,结果为每人每天所需的总费用。
目标实现必须符合其限定条件,即在满足营养成分的最低要求量中使总费用最低。
2.2问题实现的主要方法该研究问题符合运筹学线性规划理论,因此可以按照线性规划求解模式计算出最有搭配方案。
<1>总成本=∑食品单价×用量<2>根据各种限定因素得出目标函数和各个约束条件<3>运用运筹学计算软件(主要是指Lindo软件)求解所建立的模型3 数学模型的建立3.1基础数据的确定根据市场行情得到食品单价(如表1-1)3.2 变量的确定每人每天对各种食品的配参量:米:x1克;鱼:x2;苹果:x3;牛奶:x43.3 目标函数的建立根据上述基础数据和变量,可得到如下目标函数:Minz=0.0024x1+0.076x2+0.003x3+0.004x43.4限定条件的确定对于问题(1),变量约束:x1≥0x2≥0x3≥0x4≥0营养成分保证约束:18%x1+20%x2+19%x3+16%x4≥366.515%x1+17%x2+14%x3+16%x4≥95.98%x1+10%x2+8%x3+9%x4≥52.60.06%x1+0.12%x2+0.09%x3+0.1%x4≥0.96 0.1%x1+0.11%x2+0.15%x3+0.09%x4≥0.2 对于问题(2),变量约束:x1≥300x2≥200x3≥200x4≥500营养成分保证约束:18%x1+20%x2+19%x3+16%x4≥366.515%x1+17%x2+14%x3+16%x4≥95.98%x1+10%x2+8%x3+9%x4≥52.60.06%x1+0.12%x2+0.09%x3+0.1%x4≥0.96 0.1%x1+0.11%x2+0.15%x3+0.09%x4≥0.23.5 模型的建立综合以上各步工作,可以得出该问题的具体模型如下:问题(1):Minz=0.0024x1+0.076x2+0.003x3+0.004x4 s.t.x1≥0x2≥0x3≥0x4≥018%x1+20%x2+19%x3+16%x4≥366.515%x1+17%x2+14%x3+16%x4≥95.98%x1+10%x2+8%x3+9%x4≥52.60.06%x1+0.12%x2+0.09%x3+0.1%x4≥0.96 0.1%x1+0.11%x2+0.15%x3+0.09%x4≥0.2问题(2):Minz= 0.0024x1+0.076x2+0.003x3+0.004x4 s.t.x1≥300x2≥200x3≥200x4≥50018%x1+20%x2+19%x3+16%x4≥366.515%x1+17%x2+14%x3+16%x4≥95.98%x1+10%x2+8%x3+9%x4≥52.60.06%x1+0.12%x2+0.09%x3+0.1%x4≥0.960.1%x1+0.11%x2+0.15%x3+0.09%x4≥0.24 模型的求解与解的分析4.1 模型的求解利用线性规划计算软件Lindo进行求解,结果如下: 问题(1):LP OPTIMUM FOUND AT STEP 1OBJECTIVE FUNCTION VALUE1) 5.786842VARIABLE VALUE REDUCED COSTX1 0.000000 0.040358X2 0.000000 0.072842X3 1928.947388 0.000000X4 0.000000 0.001474ROW SLACK OR SURPLUS DUAL PRICES2) 0.000000 -0.0157893) 174.152634 0.0000004) 101.715790 0.0000005) 2.693421 0.0000006) 0.776053 0.0000007) 0.000000 0.0000008) 0.000000 0.0000009) 1928.947388 0.00000010) 0.000000 0.000000NO. ITERATIONS= 1RANGES IN WHICH THE BASIS IS UNCHANGED:OBJ COEFFICIENT RANGESVARIABLE CURRENT ALLOWABLE ALLOWABLE COEF INCREASE DECREASE X1 0.043200 INFINITY 0.040358 X2 0.076000 INFINITY 0.072842 X3 0.003000 0.001750 0.003000 X4 0.004000 INFINITY 0.001474RIGHTHAND SIDE RANGESROW CURRENT ALLOWABLE ALLOWABLE RHS INCREASE DECREASE2 366.500000 INFINITY 163.8333283 95.900002 174.152634 INFINITY4 52.599998 101.715790 INFINITY5 0.200000 2.693421 INFINITY6 0.960000 0.776053 INFINITY7 0.000000 0.000000 INFINITY8 0.000000 0.000000 INFINITY9 0.000000 1928.947388 INFINITY10 0.000000 0.000000 INFINITY 问题(2):LP OPTIMUM FOUND AT STEP 0OBJECTIVE FUNCTION VALUE1) 20.58000VARIABLE VALUE REDUCED COSTX1 1158.333374 0.000000X2 200.000000 0.000000X3 200.000000 0.000000X4 500.000000 0.000000ROW SLACK OR SURPLUS DUAL PRICES2) 0.000000 -0.0133333) 219.850006 0.0000004) 121.066666 0.0000005) 1.928333 0.0000006) 0.655000 0.0000007) 858.333313 0.0000008) 0.000000 -0.0733339) 0.000000 -0.00046710) 0.000000 -0.001867NO. ITERATIONS= 0RANGES IN WHICH THE BASIS IS UNCHANGED:OBJ COEFFICIENT RANGESVARIABLE CURRENT ALLOWABLE ALLOWABLE COEF INCREASE DECREASEX1 0.002400 0.000442 0.002400X2 0.076000 INFINITY 0.073333X3 0.003000 INFINITY 0.000467X4 0.004000 INFINITY 0.001867RIGHTHAND SIDE RANGESROW CURRENT ALLOWABLE ALLOWABLERHS INCREASE DECREASE2 366.500000 INFINITY 154.5000003 95.900002 219.850006 INFINITY4 52.599998 121.066666 INFINITY5 0.200000 1.928333 INFINITY6 0.960000 0.655000 INFINITY7 300.000000 858.333313 INFINITY8 200.000000 772.499939 200.0000009 200.000000 813.157837 200.00000010 500.000000 965.625000 500.0000004.2模型的分析与评价有以上的求解结果可知,当各种食品取解出的对应值时,可使总费用达到最小值5.786842元。