基于单片机的触摸屏控制器的设计与实现
基于单片机的液晶触摸屏的设计

基于单片机的液晶触摸屏的设计随着科技的不断发展和进步,液晶触摸屏作为一种新型的人机交互方式,已经被广泛应用于各种电子产品中。
而基于单片机的液晶触摸屏,更是被广泛应用于各种嵌入式系统中,具有成本低、体积小、性能高等优点。
本文将着重介绍基于单片机的液晶触摸屏的设计过程。
1.硬件设计硬件设计是整个液晶触摸屏的核心部分之一,涉及到电路原理图设计、电路板制作、电路布局等多个方面。
具体的硬件设计流程如下:(1)选择主控芯片和触摸屏芯片在进行硬件设计之前,首先需要对主控芯片和触摸屏芯片进行选择。
一般来说,主控芯片需要具备高性能、低功耗、易于编程等特点,而触摸屏芯片需要具有高精度、高稳定性、响应速度快等特点。
(2)绘制电路原理图在选择好主控芯片和触摸屏芯片之后,需要根据两者的技术手册来绘制电路原理图。
电路原理图是整个电路设计的核心部分,它能体现出整个电路的功能和特点。
(3)制作电路板制作电路板是将电路原理图转化为实际电路的环节,电路板的制作过程包括印制电路板、化学沉铜、钻孔、镀金、焊接等多个步骤。
(4)电路布局在电路板制作完成之后,需要对电路进行布局,保证各个元器件之间的距离、排列顺序等都符合设计要求。
2.软件设计软件设计是液晶触摸屏的另一个重要组成部分,涉及到驱动程序设计、界面设计、通信协议设计等多个方面。
具体的软件设计流程如下:(1)编写驱动程序驱动程序是液晶触摸屏正常工作的关键,因此需要编写稳定、高效的驱动程序,确保触摸屏能够正常响应用户的操作。
(2)设计用户界面用户界面是整个液晶触摸屏的重要组成部分,需要设计出美观、易于操作的界面,同时还需要充分考虑不同用户需求的差异。
(3)通信协议设计液晶触摸屏通常需要与外部设备进行通信,因此需要设计相应的通信协议,确保液晶触摸屏与外部设备之间能够稳定、快速地进行数据交互。
总之,基于单片机的液晶触摸屏的设计是一个相对复杂的过程,需要考虑多个方面的因素,包括硬件选型、电路设计、软件编程等等。
基于51单片机的触摸屏控制器制作

电子制作2009年第9期现代社会随着信息及电子设备产品市场的迅速壮大,以及人们对电子产品智能化、人性化要求的不断提高,触摸屏作为一种便捷的输入接口,得到了广泛的应用。
目前,触摸屏的需求动力主要来自于消费电子产品,如手机、PDA 、便捷游戏机、便携导航设备等。
但随着触摸屏技术的不断发展,它在其他电子产品中的应用也会得到不断延伸。
现在市面上已有的触摸屏控制器普遍价格比较高且性能相对比较固定,一些场合下无法满足用户的实际需求。
本文基于上述考虑,根据电阻式触摸屏的工作原理,选用51系列单片机作为控制核心,设计制作一种实用且低成本的触摸屏控制器。
一、电阻式触摸屏的工作原理目前,在触摸屏领域主要有8种不同的技术:电阻式、表面电容式、投射电容式、表面声波式、红外线式、折射式、主动数字转换式和光学成像式。
其中,电阻式触摸屏凭借低廉的价格以及对于手指及输入笔触摸的良好响应性,涵盖了100多家触摸屏元件制造商中的2/3,成为过去5年中销售量最高的触摸屏产品。
在这里根据要设计应用的触摸屏控制器,重点介绍一下四线电阻式触摸屏。
电阻触摸屏的屏体部分是一块与显示器表面相匹配的多层复合薄膜,由一层玻璃或有机玻璃作为基层,表面涂有一层透明的导电层,上面再盖有一层外表面硬化处理、光滑防刮的塑料层,它的内表面也涂有一层透明导电层,在两层导电层之间有许多细小(小于千分之一英寸)的透明隔离点把它们隔开绝缘。
当手指触摸屏幕时,平常相互绝缘的两层导电层就在触摸点位置有了一个接触,因其中一面导电层接通Y 轴方向的5V 均匀电压场,使得侦测层的电压由零变为非零,这种接通状态被控制器侦测到后,进行A /D 转换,并将得到的电压值与5V 相比即可得到触摸点的Y 轴坐标,同理得出X 轴的坐标,这就是四线电阻式触摸屏基本原理。
二、触摸屏控制器硬件设计由四线电阻式触摸屏的工作原理可以看出,在硬件设计上的主要工作就在于将触摸点所在的X 轴及Y 轴坐标通过控制驱动模块加以精确识别并显示出来。
基于单片机的简易触摸屏手机

摘要本系统是一个基于单片机的简易触摸屏手机。
最近几年,手机的发展日新月异,特别是android操作系统和触摸屏的便捷性,使触摸屏手机迅速普及,触摸屏手机将是未来手机的主流配置,此系统就是研究触摸屏手机的工作原理及实现方法。
整个系统主要是由STC12C5A60S2单片机,SIM300模块,串口触摸屏及一些外围器件组成的,主要功能的实现方法是:先用触摸屏配套PC组态软件和PS软件提前设置好触摸屏的图标和数字键盘等主要显示界面,然后下载到触摸屏的内部存储器中,供触摸屏内部处理;当按下相应的触摸按键后,把触摸屏的内部处理后的数据通过单片机的串口1发送给单片机,之后单片机进行相应的运算处理和判断,再通过单片机的串口2给SIM300模块发送相应的AT操作指令,驱动SIM300模块发送对应的手机信号。
通过以上模块,可以实现:接、打电话,接、发英文短信,有来电提醒功能,以及实时时钟的功能。
关键词:手机;SIM300模块;串口触摸屏;实时时钟ABSTRACTThis system is a simple microcontroller-based touch screen phone. In recent years, development of mobile phones is very fast. Especially because the android operating system and touch screen is very convenient, touch screen mobile phone is more and more popular. Touch screen mobile phones will be the most mainstream configurationin the future.The whole system is mainly composed by STC12C5A60S2 microcontro ller,Sim300 module, serial touch screen, and some peripheral devices. The realization method of the main function is: firstly use a touch screen supporting PC configuration software and PS software, set touch screen icon and numeric keypad and other display interface in advance. Then download to the internal memory of the touch screen ,let internal touch screen process;If the corresponding touch button is pressed,sent the d ata of processed by the touch screen to the microcontroller via a serial microcontroll er,Then the microcontroller executes the corresponding arithmetic processing and j udgment. Then the controller send the appropriate AT command to SIM300 module through the serial 2.And Drive the SIM300 module sending mobile phone signal. The system also adds a 1302 clock chip, time can be displayed in real time. Through the above module, this system achieves: receive, make a phone call; Receive, send English text messages. There is an incoming call reminders, and perpetual calendar. Also it can set the alarm clock.Key Words: mobile phone; SIM300 module; serial touch screen; perpetual calendar目录1引言 (1)1.1课题研究的背景 (1)1.2课题研究的目的及意义 (1)1.3课题研究设想 (2)2 系统方案研究 (3)2.1方案论证 (3)2.1.1主控芯片选择 (3)2.1.2 GSM模块选择 (3)2.1.3触摸屏模块选择 (4)2.1.4时钟模块选择 (4)2.2方案最终选定及系统原理框图 (5)3 硬件电路设计 (6)3.1 STC12C5A60S2主控单片机介绍 (6)3.1.1单片机的主要特性 (6)3.1.2单片机引脚说明 (7)3.1.3串行口功能介绍 (8)3.1.4 STC12C5A60S2单片机最小系统 (9)3.2 SIM300模块 (9)3.2.1 SIM300功能简介 (9)3.2.2 SIM300电路原理 (10)3.2.3 SIM300串口调试简介 (11)3.3触摸屏模块 (14)3.3.1串口触摸屏简介 (14)3.3.2触摸屏使用方法 (15)3.4 RTC实时时钟 (16)3.4.1时钟功能简介 (16)4软件设计 (18)4.1 Keil软件介绍 (18)4.2编程总结 (18)4.3迪文触摸屏组态软件介绍 (20)4.4本设计的程序流程图 (22)4.5源程序(见附录2) (23)5系统调试过程 (24)5.1单片机最小系统和时钟模块的调试 (24)5.2时钟模块的调试 (24)5.3 SIM300模块的调试 (24)5.4串口触摸屏的调试 (25)5.5系统联调 (26)结论 (27)参考文献 (29)致谢 (30)附录1:整体电路图 (31)附录2:源程序 ............................................................................. 错误!未定义书签。
单片机与触摸屏的接口技术及实现方法

单片机与触摸屏的接口技术及实现方法一、引言随着科技的不断发展,触摸屏已经成为现代电子设备中不可或缺的一部分。
触摸屏使用起来方便,操作灵活,广泛应用于智能手机、平板电脑、工业控制、医疗设备等领域。
而单片机作为嵌入式系统中的重要组成部分,负责接收、处理和控制各种外设设备,与触摸屏的接口技术及实现方法是我们需要关注和深入了解的内容。
二、单片机与触摸屏的接口技术1. 串行接口串行接口是常见的单片机与触摸屏的连接方式。
其中,常用的有SPI(串行外设接口)、I2C(串行外设接口)等。
串行接口具有简单、灵活、适用于长距离传输的特点。
2. 并行接口并行接口是单片机与触摸屏之间的另一种常用的连接方式。
并行接口通过多根线传输数据,使得数据传输速度更快,但是需要占用更多的引脚和硬件资源。
3. USB接口USB接口(通用串行总线接口)是一种高速、热插拔的接口方式。
通过USB接口连接单片机和触摸屏,可以快速传输数据,适用于需要高速数据传输的场合。
三、单片机与触摸屏的实现方法1. 软件实现在软件实现中,我们可以使用单片机的GPIO(通用输入输出)端口将触摸屏的接口引脚与单片机相连。
通过程序编写,实现单片机对触摸屏的控制和数据读取。
2. 硬件实现硬件实现包括通过外部电路芯片来实现单片机与触摸屏的连接。
常见的外部电路芯片有ADS7843、ADS7846等。
这些芯片可以通过SPI接口或I2C接口与单片机进行通信,实现对触摸屏的控制和数据读取。
四、单片机与触摸屏的典型应用1. 智能手机智能手机是单片机与触摸屏技术最广泛应用的领域之一。
通过单片机与触摸屏的接口技术,实现对手机触摸屏的控制和数据读取,使得用户可以通过触摸屏方便地进行操作和控制。
2. 平板电脑平板电脑是另一个需要单片机与触摸屏技术配合的领域。
通过单片机与触摸屏的接口技术,实现对平板电脑触摸屏的控制和数据读取,使得用户可以通过平板电脑触摸屏进行多点触控操作。
3. 工业控制单片机与触摸屏的结合在工业控制领域也得到了广泛应用。
基于单片机的触摸屏技术研究及实现

基于单片机的触摸屏技术研究及实现概述:触摸屏技术作为一种直观、方便的人机交互方式,已经广泛应用于各领域的电子产品中。
基于单片机的触摸屏技术是其中一种常见的实现方式。
本文将对基于单片机的触摸屏技术进行深入研究,包括原理、常用的触摸屏类型、控制方式和实现过程等,并通过实例演示如何实现一个简单的触摸屏控制系统。
一、原理介绍:基于单片机的触摸屏技术主要基于电容或电阻的原理实现。
电容触摸屏通过对用户手指带来的电容变化进行检测来实现触摸操作,而电阻触摸屏则是通过两层导电层之间的接触产生电阻变化来检测触摸操作。
二、常用的触摸屏类型:1. 电容触摸屏:电容触摸屏分为感应和投射两种类型。
感应电容触摸屏通过感应电场变化来检测触摸操作,常见的有表面声波电容触摸屏、面板电容触摸屏等。
投射电容触摸屏则是利用玻璃和电容板之间的投射电容来检测触摸操作,常见的有电容玻璃触摸屏、电容膜触摸屏等。
2. 电阻触摸屏:电阻触摸屏通过对两层导电层之间的电阻变化进行检测来实现触摸操作,常见的有四线电阻触摸屏、五线电阻触摸屏等。
三、触摸屏的控制方式:1. 串口(UART)方式:串口方式是一种简单且常用的触摸屏控制方式。
单片机通过串口与触摸屏进行通信,通过发送指令和接收数据来实现对触摸屏的控制和数据读取。
2. 并口方式:并口方式是另一种常见的触摸屏控制方式。
单片机通过引脚直接与触摸屏进行连接,通过设定引脚状态来实现触摸屏的控制和数据读取。
四、基于单片机的触摸屏实现:下面以一个基于单片机的电阻触摸屏实现为例,演示触摸屏的基本控制和数据读取过程。
步骤一:硬件连接将电阻触摸屏的数据线连接到单片机的引脚上,并确保引脚连接正确无误。
步骤二:初始化设置在单片机上设置相关引脚为输入或输出,并对用于触摸屏控制的引脚进行初始化设置。
步骤三:数据读取单片机通过读取触摸屏的电阻值来获取触摸操作的位置信息。
通过定时器或中断的方式,定时读取触摸屏的电阻值并进行处理。
步骤四:触摸事件处理根据读取到的触摸屏数据,判断触摸操作的类型(点击、滑动、放大缩小等),并进行相应的处理。
基于单片机的EMS液晶显示触摸屏设计方案

基于单片机的EMS液晶显示触摸屏设计方案
摘要:本文提出一种基于STM32F103单片机的用于电动车电池能量管理系统(EMS)的液晶显示触摸屏的设计方案,该方案以STM32F103作为核心控制器。
STM32F103通过I/O口与四线电阻触摸屏相连,利用自带的A/D 转换功能检测触摸并计算触点坐标实现触摸功能,并通过自身的I/O接口与TFT液晶屏模块实现通信,控制实现显示的功能,具有不错的应用前景。
0 引言
电动车一直以清洁环保而备受关注,加上能源危机加剧、油价不断上涨,电动车也越来越受到用户的青睐。
电动车一般采用锂电池供电,由多个单体电池串联成电池组作为动力电源。
但由于各个串联单体电池特性不能保证完全一致,因此相同的电流下充电放电速度也会不同,如果不进行均衡干预,电池寿命会大大缩短,因此需要实时监控各个单体电池的状态、总电压、总电流,根据状态适时进行电池充放电均衡,并且充放电均衡时,均衡状态也要实时进行检测,所以就有了电动车电池能量管理系统(EMS)。
实践证明EMS可以有效延长电动车电池使用寿命,是电动车中十分重要的管理系统。
EMS主要包括:信息采集模块、充放电均衡模块、信息集中处理模。
基于单片机的触屏电机控制系统的设计与实现

Ke y wo r d s : S T C8 9 C5 4 RD+ ; M CU; t o u e h p a n e l ; mo t o r
直流 电机具有在转速调节 上 比较灵活易于实现 , 调节方法
2软硬 件 系统 设计
软 件设计部 分包括 触摸屏初 始化 、 触摸 屏的校 正 、 用户登 录界面和控 制系统设 计等 内容 。根 据相应 的触屏 电机 控制 系 统 面板 按键操作 , 可以控制 电子 的启动 、 加速和停止 等操 作 馈 给单 片 机, 单 片机进 行运算处 理将测得 的速度 实时显示在 触摸屏 上 。 触屏 电机控 制系统的工作 流程图如图 2 所示 :
流 电机 速度 的测 量 。该 系统实现 的基本 功能为点 击触摸屏 上 相应的按钮 , 带动 电机做相应 的响应 。触屏 电机控制 系统基本
t o u c h p a n e l e a s i l y f o r t h e r e i s a c l e a r a n d f r i e n d l y ma n — ma c h i n e i n t e r f a c e . T e s t r e s u l t s s h o we d he t s y s t e m ha s a g o o d p e r f o r —
T h e De s i g n a n d I mp l e me n t a t i o n o f a T o u c h P a n e l Mo t o r Co n t r o l S y s t e m Ba s e d o n M CU S UN Yu e - y u e, WANG F e n g
( H e n a n Un i v e r s i t y o f T e c h n o l o g y , Z h e n g z h o u 4 5 0 0 0 1 , C h i n a )
基于单片机的液晶显示触摸屏控制设计

基于单片机的液晶显示触摸屏控制设计来源:大比特半导体器件网摘要:在分析液晶触摸屏的工作原理基础上,分析触摸屏专用控制器ADS7846 的工作原理与控制方式。
通过ADS7846 与MCU 的SPI 接口,给出AT89S51 的测量子程序流程图,提出触摸屏触点坐标的获得方法与液晶屏显示实现同步的算法,以提高设计触摸屏与液晶屏的效率,满足控制精度。
1 引言嵌入式触摸屏装置是人机交互设备,一般将触摸屏安装在液晶显示屏上面,利用微处理器对触摸屏与液晶显示屏进行控制,实现触摸屏对液晶显示屏的控制,方便、直观,取代了传统的键盘输入,成为嵌入式计算机系统的输入设备,广泛应用于电子产品与工业控制中。
由于触摸屏边缘电阻不均匀,不易找到变化规律,难于实现触摸屏坐标与点阵式液晶显示屏相互对应,会出现触摸点与液晶显示屏显示信息错位,造成触摸控制信息不灵敏。
本文基于AT89C51 单片机和ADS7846芯片,辅以点阵式液晶显示屏,进行嵌入式触摸屏输入与显示系统的软硬件设计,实现触点测量与液晶屏上像素相对应,实现预期的控制功能,提高触摸控制的灵敏度。
2 液晶显示触摸屏的硬件设计液晶触摸屏包含图形液晶显示模块和附着在显示屏上的触摸屏两部分,借助于触摸屏控制器ADS7846 与微处理器A T89S51 实现软硬件接口,通过检测用户在触摸屏上的触摸位置,实现显示与控制功能。
2. 1 触摸屏的工作原理触摸屏从工作原理上可以分为电阻式、电容式、红外线式、声表面波式、矢量压力传感器式等多种形式,本文采用目前使用最为普遍的四线电阻式触摸屏。
电阻式触摸屏由4 层透明的复合薄膜组成,底层是玻璃或有机玻璃构成的基层,顶层则是经过硬化处理的光滑防刮塑料层,底层、顶层内表面间为两层铟锡氧化物( ITO) 透明导电层,形成触摸屏的两个工作面,在每个工作面的两端各涂有一条银胶,称为该工作面的一对电极,若在一个工作面的电极对上施加电压,则在该工作面上就会形成均匀连续的平行电压分布。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于单片机的触摸屏控制器的设计与实现
摘要:由于触摸屏的轻便、方便灵活、占用时间少等优点,其被广泛用于各种消费类电子产品中,渐渐的取代了键盘作为为嵌入式的系统的输入设备。
本文首先对单片机和触摸屏做简单的介绍,然后介绍触摸屏的类型及其工作原理,最后通过使用ADS7843模块设计基于单片机的触摸屏控制器系统。
关键词:单片机触摸屏
一、绪论
(1)触摸屏介绍
触摸屏亦称触控屏,是一种可通过简单的触摸来获取输入输出信号的液晶显示装置。
控制器通过触摸屏输入的信号来控制相应的外设,其已成为目前最方便、简单、自然的人机交互方式。
触摸屏作为一种个性化的输入输出设备,使得人们极易使用计算机,促进了其在电子行业的极大发展。
触摸屏有三个特征:其一是透明,其直接影响触摸屏的视觉效果。
其二是绝对坐标系统,触摸屏物理上必须满足具有一套独立完整的坐标定位系统。
其三是检测触摸和定位。
(2)单片机简介
单片机是一种嵌入式微控制器,其将中央处理器CPU、存储器(RAM\ROM)、中断控制系统、定时器、脉宽调制器、A/D、D/A、看门狗、串行口等各种功能的外设集成在一个芯片上。
二、触摸屏类型和工作原理
(1)触摸屏类型
按照触摸屏的特点和传输信息的介质,大致可分为四大种类型:电阻式触摸屏、红外线式触摸屏、电容式触摸屏以及表面声波式触摸屏。
各类触摸屏都有其各自的特点和适用场合,要很好的使用哪种触摸屏,必须弄清楚每一类触摸屏的工作原理和特点。
其中电阻式触摸屏和电容式触摸屏是比较常用的两种触摸屏类型。
(2)电阻式触摸屏工作原理
电阻式触摸屏是利用压力感应来控制的。
电阻式触摸屏最主要的部分是一块电阻薄膜屏,其与显示器表面非常配合。
其工作原理是当我们用手指或其他东西触摸屏幕时,内外两层导电层在触摸点位置就发生了接触,进而引起了电阻的变
化,在X和Y两个方向上产生信号,然后把信号传给触摸屏控制器。
控制器通过传感器检测到这一接触并根据其信号计算出绝对坐标位置,最后模拟鼠标的方式进行控制。
(3)电容式触摸屏工作原理
电容式触摸屏是利用人体的电流感应来控制的。
其工作原理是当我们用手指触摸到屏上时,人和触摸屏表面就形成了一个耦合电容,于是一部分很小的电流就从触摸屏流进了手指。
该电流是分别分从触摸屏的四个角上的电极中流出的,并且从这四个电极流出的电流与手指到四角的距离成正比,控制器然后通过对这四个电流的精确计算,进而得出了触摸点的位置。
三、基于单片机的触摸屏控制器系统设计
(1)总体结构设计
本系统主要是基于单片机AT89C2051设计四线电阻式触摸屏的软硬件控制系统。
本系统整体的设计方案是通过4线电阻触摸屏转换接口芯片ADS7843接受触摸屏上得到的信号,然后把该信息传递给单片机AT89 C2051,单片机根据信息做出相应的控制。
单片机通过把相应的信息发送到ADS7843,进而控制相应的触摸屏显示。
我们这里为了检测相关的信息是否正确,通过串口把单片机和计算机连在一起。
(1)硬件设计
该系统为了实现与上位机通讯,我们必须进行电平转换,用的是MAX232芯片,其中的ADS7843实现对触摸屏的控制,还包括了51单片机的最小系统,即:复位电路,时钟产生电路等。
通过对其内部结构的分析可知控制信号通过三极管来驱动四线电阻式从触摸屏。
其工作时序如下:
1.检测是否有触摸,具体为:
①YCT+为1,YCT-为0,三极管V2、V3为断开状态。
②XCT+为0,XCT-为1,三极管V1、V4为开通状态。
③启动单片机A/D,读取ADC的电压值,若大于阀值,则有有触摸。
2.读取X坐标
①YCT+为1,YCT-为0,三极管V2、V3为断开状态。
②XCT+为0,XCT-为1,三极管V1、V4为开通状态。
③启动单片机A/D,读取ADC的电压值做为X坐标值。
3.读取Y坐标
①XCT+为1,XCT-为0,三极管V1、V4为断开状态。
②YCT+为0,YCT-为1,三极管V2、V3为开通状态。
③启动单片机A/D,读取ADC的电压值做为Y坐标值。
(2)软件设计
通过对硬件电路的详细设计,我们知道我们关键的是需要根据ADS7843芯片的控制时序获得X、Y的坐标,然后把坐标信息通过RS232串口发送到计算机上。
四、总结
传统的触摸屏控制器存在高成本、低可控性等问题,本系统采用ADS7843触摸屏控制模块,通过单片机软件编程进行控制,并通过RS232串行通信把数据信息传递到计算机上。
通过设计和调试,该系统灵敏度高,精度高、结构简单、体积小、可控性强且设计成本低等特点,具有很好的市场应用价值。
参考文献:
[1]郑建彬.基于ADS7846动态签名认证的数据采集和预处理[J]. 单片机与嵌入式应用, 2004, (11)
[2]王晖.基于触摸屏控制器ADS7846的触点坐标和压力的测量与计算[J]. 电子设计与应用,2003, (9)
[3]李广第.单片机基础. 北京航天航空大学出版社2010.
[4]胡冰,吴升艳. ADS7843触摸屏控制器[J]. 国外电子元器件, 2002.。