泡沫金属的研究与发展

合集下载

泡沫金属材料的制备与性能研究

泡沫金属材料的制备与性能研究

泡沫金属材料的制备与性能研究近年来,泡沫材料作为一种新型材料,被广泛应用于隔热、吸声、过滤、减震等领域。

而在这篇文章中,我们将集中讨论其中的一种——泡沫金属材料,探究其制备和性能方面的研究。

一、泡沫金属材料的制备泡沫金属材料的制备主要有三种方法:粉末冶金法、自发性膨胀法和前驱体法。

1.粉末冶金法粉末冶金法是通过在高温状态下将粉末压实,然后在惰性气氛或真空条件下进行高温退火,使金属粉末热膨胀形成泡孔的方法制备泡沫金属材料。

因为这种方法所得到的泡沫材料的孔径比其它两种方法得到的材料要细小,所以在一些领域中,其应用范围相对较窄。

2.自发性膨胀法自发性膨胀法是将金属粉末放进钢管中,在加热到一定温度后,金属粉末在其自身内部发生氧化还原反应,放出气体,使得热膨胀的金属粉末形成空心结构的泡沫材料。

这种方法得到的泡沫材料具有较大的孔径和比表面积和气膜厚度,所以在催化剂、吸附材料等领域中有着广泛的应用。

3.前驱体法前驱体法是在高分子聚合物溶液中先形成金属络合物,然后将其加热至一定温度,分解出气体形成泡孔的方法制备泡沫金属材料。

这种方法制备的泡沫材料具有均匀的孔径、较高的开孔率、高比表面积和良好的机械性能,所以在热阻隔、吸声等领域中有着广泛的应用。

二、泡沫金属材料的性能泡沫金属材料由于具有空心结构,所以其密度非常之小。

与普通金属相比,泡沫金属材料的抗压性能和比强度非常之高,同时其导热性和导电性能也比较强。

1.抗压性能泡沫金属在制备过程中,其空心孔隙的大小和分布会对其抗压性能产生一定影响。

一般来说,孔径越小,分布越均匀的泡沫材料其抗压性能就越好。

而当孔径较大时,由于其容易发生屈曲、断裂等现象,所以其抗压性能相对较弱。

2.导热性能泡沫金属材料的导热性能与其密度有关,密度越低,导热性能越强。

当空气孔隙率达到95%以上时,泡沫金属材料的热传导系数将会小于1W/mk,而这也是其他材料所不能比拟的。

因此,泡沫金属材料的导热性能表现出了卓越的隔热性能。

泡沫金属的性能及应用研究进展

泡沫金属的性能及应用研究进展

收稿日期:2004-04-07.基金项目:云南省自然科学基金重点项目(项目编号:2000E0003Z ).第一作者简介:左孝青(1964~),男,副教授.主要研究方向:多孔材料.E -mail :zxqdzhm @hot 泡沫金属的性能及应用研究进展左孝青1,孙加林2(1.昆明理工大学材料与冶金工程学院,云南昆明 650093; 2.昆明贵金属研究所,云南昆明 650221)摘要:对泡沫金属的性能和应用研究现状进行了全面综述,性能方面主要包括泡沫金属的力学性能、能量吸收性、热性能、导电性能、声学性能及阻尼性,应用方面主要进行了结构和功能应用的分析,并就泡沫金属的性能和应用发展的前沿问题进行了讨论,指出了性能研究和应用研究的发展方向,对泡沫金属的性能研究和应用开发具有重要意义.关键词:泡沫金属;性能;应用;综述中图分类号:TB383文献标识码:A 文章编号:1007-855X (2005)01-0013-05Properties and Applications of Foa med MetalsZUO X iao 2qing 1,SUN Jia 2lin 2(1.Faculty of Materials and Metallurgical Engineering ,K unming University of Science and T echnology ,K unming 650093,China ;2.Kunming Precious Metals Institute ,Kunming 650221,China )Abstract :The properties and applications of foamed metals are reviewed.The section of property demonstrates me 2chanical property ,energy absorption ,thermal capacity ,conductance ,sound absorption and dumping performance of metal foams ,while another section introduces many structural and functional applications.In addition ,further de 2veloping tendency of property research and applications of foamed metal are put forward.Therefore ,there exists a great significance for both the property research and application of cellular metals.K ey words :foamed metals ;properties ;applications ;review0引言泡沫金属一种是集力学性能、热电性能、声学等性能于一体的宏观结构-功能一体化的材料,是多种结构或装置(如超轻结构、冲击缓冲、散热和热交换等)的可选材料.泡沫金属的多功能特性对应用的决定作用非常明显,应结合应用对象,进行与功能组合对应的结构-性能优化设计.文中就泡沫金属的性能研究和应用进行了详细综述,并对进一步发展的前沿性问题进行了讨论,提出了性能研究及应用发展的建议.1泡沫金属的性能1.1结构特征[1]泡沫金属从结构上可分为闭孔和通孔泡沫金属两种.前者含有大量独立存在的气孔,而后者则是连续贯通的三维多孔结构.其结构表征参数主要有孔隙率、孔径、通孔度比重及比表面积等.一般来说,多孔泡沫金属材料具有如下几个结构特征:(1)重量轻,比重小:泡沫金属是金属和气体的混合物,比重仅为同体积金属的1/50~3/5;(2)高孔隙率:一般多孔泡沫金属的孔隙率为40%~90%,而海绵状发泡金属材料的孔隙率可高达98%;(3)比表面积大:泡沫金属的比表面积可达10~40cm 2/cm 3;(4)孔径范围较大:通过工艺控制,可获得的孔径在微米至厘米级之间.1.2性能影响泡沫金属性能的因素有:(1)基体金属的性能;(2)相对密度;(3)孔结构类型(开口或者闭孔);(4)第30卷第1期2005年2月 昆明理工大学学报(理工版)Journal of Kunming U niversity of Science and Technology (Science and Technology )Vol.30 No 11 Feb.200541昆明理工大学学报(理工版) 第30卷孔结构的均匀性;(5)孔径大小;(6)孔的形状和孔结构的各向异性性;(7)孔壁的连接性;(8)缺陷(如孔壁的不完整性等),以上因素中,相对密度对泡沫金属性能的影响最大[2].1.2.1机械性能1)杨氏模量.开孔泡沫与闭孔泡沫由于结构的不同,其杨氏模量值相差很大.开口泡沫的变形主要是通过通孔的连接部分进行的,闭孔泡沫由于闭孔间存在孔壁,所以相同密度的闭孔泡沫其杨氏模量值比开孔泡沫的大几个数量级,孔尺寸、形状对杨氏模量的影响较小[3].对杨氏模量影响最大的因素是泡沫的相对密度,杨氏模量与密度的关系[4]为: E/Es=(ρ/ρs)2 (open-cell)(1) E/Es=(ρ/ρs)2+(1-Φ)(ρ/ρs)(closed-cell)(2)式(1),(2)中,E为杨氏模量,ρ为密度,Φ为闭孔泡沫孔结构中,孔的连接部分占总实体部分的百分比,下标s表示实体金属的性能.另外,泡沫金属的变形会引起其孔结构的变化,最终导致杨氏模量的变化.一般地,杨氏模量随应变的增加而减小[5].2)压缩性能及能量吸收特性.多孔金属泡沫一般为韧性的,其压缩应力-应变曲线应变严重滞后于应力,包含一个很长的平缓段,是一种具有低、常压应力下高能量吸收特性的轻质高阻尼及能量吸收材料,适合制作轻质、耐高温、阻燃的能量(如冲击能量)吸收器.3)拉伸性能.由于壁及连接边的断裂机制和相互关系的不确定性,泡沫金属的抗拉强度很难估算.一般地,其抗拉强度与其压缩应力应变曲线的平台应力相当.1.2.2电性能及电磁屏蔽性能泡沫金属具有独特的导电性,使之能应用于非金属泡沫(陶瓷和塑料泡沫)所不能胜任的导电环境(如电极材料).泡沫金属的电导性主要与泡沫基体的电导性有关.然而,泡沫金属的电导率由于:(1)其中大量非导电孔隙的存在;(2)基体中的非导电物质(如氧化物);(3)与电压降方向垂直排列的连接边和孔壁对电导不起作用等因素的影响,比实体金属的电导率要低得多.泡沫金属的电导率与相对密度的关系[6]为: ρ/ρ0=Z(σ/σ0)t(3)式中,ρ/ρ0-泡沫金属的相对电导率;σ/σ0-泡沫金属的相对密度;Z-常数,约等于1;t-常数,约等于2.另外,泡沫金属还具有电磁屏蔽效应,有资料表明,铝泡沫(Alulight)的电磁屏蔽效果与相同厚度的铝板材相当,并优于相同质量的硅钢片[7].1.2.3热性能1)熔点.泡沫金属的熔点与基体材料的基本相同,但受泡沫中非金属相(氧化物、增粘剂等)的影响,使泡沫金属的熔点温度高于理论熔点.高温长时的氧化,甚至会使泡沫铝完全氧化为泡沫陶瓷[8].2)热膨胀系数.泡沫金属的热膨胀系数与基体材料的热膨胀系数大致相同.3)热导率.泡沫金属的热导率比基体材料的热导率低得多.与导电性一样,泡沫金属的导热性主要与泡沫基体的导热本性有关,气体、辐射、对流的作用较小,但其精确计算要比其电导率复杂.热导率主要构成因素有:基体的导热、气体的导热、对流及辐射,并受表面氧化物的影响.通常情况下,仅仅考虑基体材料的导热,常用与相对密度的关系表达泡沫金属的热导率[9].λ=λ0(ρ/ρ0)t(4) s式中,λs-泡沫金属的热导率,λ0-基体材料的热导率,ρ-泡沫金属的密度,ρ0-基体材料的密度,t-常数(根据渗透理论,3维泡沫取值2[10]).1.2.4声学性能1)隔音、吸音性能.控制噪音的方法主要有两种:隔音和吸音.泡沫铝由于密度较低,质量小,因此,在隔音上应用并不理想.泡沫铝的吸音特性与泡沫的厚度、密度、孔径及表面状态有关.一般地,吸音系数可通过:增加厚度、降低密度、适当增大孔径、增加表面开口度(表面加工、喷砂、压制、轧制、表面钻孔)、表面加多孔面板等措施而提高.单一泡沫结构具有较好的吸音效果,但比不上玻璃纤维类传统吸音材料,特别是在低频(1000Hz )以下,其吸音系数要低得多.然而,可利用泡沫金属与其他吸音材料的组合,或从吸音结构上进行改进等方法,获得高性能吸音器,如AlSi 12泡沫+玻璃纤维+空气垫的组合,表现出了优越的吸音特性[11].在要求吸音、耐高温、防潮、耐久性环境中,泡沫铝比传统吸音材料有优势.2)结构阻尼性能.当某结构的本征频率与外界声波或震动频率发生共振时,声波或震动会被该结构所衰减.结构阻尼衰减的原因是内摩擦导致的震动能向热能的转换,产生的热量通过周围环境散发.泡沫金属的阻尼特性随孔壁厚的减小、泡沫结构中的缺陷数量的增多、泡沫中陶瓷相的增加而增大[12].2泡沫金属的应用目前,通过现有金属材料的多孔化以实现高性能、多功能化,开发高附加价值的泡沫金属材料产品受到了广泛的关注.泡沫金属的应用应考虑其“多性能特点组合”的优势,如“低密度+能量吸收特性”、“低密度+吸音特性+耐热+不吸水”等.多孔泡沫金属的应用主要有防火和吸(隔)音板、冲击能量吸收材料、建筑板(如超轻结构组元,三明治结构材料)、半导体气体扩散盘、紧凑热交换器和核心装置、液流控制装置、热交换和热绝缘器、过滤器、声音和能量的吸收装置等.泡沫金属在航空、航天、船舶、电子、汽车制造、建筑、包装、装饰材料、体育器材等领域中的应用正在不断扩大中.2.1能量吸收轻量结构应用闭孔泡沫(如铝泡沫)由于制备成本相对低,因此在结构应用上受到了广泛的关注,如承受较低压载荷下的能量吸收件等.理论上讲,泡沫金属由于孔壁上约束的减少,在应力-应变曲线上,有很长的波动平台段,会产生大的塑性应变,具有显著的能量吸收特性.然而,实际构件的表现并非如此,如在剪切带中的过早失效,以及弯曲导致的拉伸应力下低的拉伸强度等.令人鼓舞的是,已经证明如果能够在10~1mm 尺度上获得均匀细小的泡沫孔结构,问题就可以得到解决[13].因此,相应的制备技术的研究开发就显得非常必要和迫切.多孔泡沫金属轻质、能量吸收及阻尼性能,缓冲器和吸震器是重要的用途,如汽车的结构件(防冲挡、门栏、乘员室构件);航空仪表的保护外壳,航天飞机的起落架;此外,还有提升机、转运系统的安全缓冲器、高速磨床防护罩吸能内衬;活动建筑(房)等[14].也可考虑用于电梯的轻形结构件[15]、包装材料[16]、泡沫三明治复杂结构机械零件[17]、体育器材[18]、装饰[19]、水上结构件[20]、太空船结构件[21]等.2.2功能应用2.2.1生物医学材料利用Ti 或Co -Cr 合金泡沫与人体的生物相容性,可用于人体骨骼或牙齿的替代材料,Mg 泡沫也有望作为人工骨头的材料[22],多孔Ni -Ti 形状记忆合金由于好的机械性能、耐腐蚀性能和形状记忆效应,也可作为人体骨骼的替代物[23].2.2.2过滤分离材料与粉末冶金微孔金属相比,通孔泡沫金属的孔径和孔隙率较大,可用于过滤液体、空气或其它气流中的固体颗粒或某些活性物质.泡沫金属过滤器主要用于从液体〔石油、汽油、致冷剂、聚合物熔体、含水悬浮液〕、空气或其它气流中滤掉固体颗粒[1].2.2.3热交换器材料通孔铜和铝泡沫可作为热交换器材料[24].通孔规则排列的孔结构,在不降低热交换效率的前提下,可减小压力降,在微电子等高(热)能量领域有广泛的应用前景.2.2.4催化载体由于金属泡沫在韧性和热导率方面的优势,是催化载体材料的又一选择[25],如将催化剂浆料涂于薄的泡沫金属片表面,后通过成型(如轧制)和高温处理,可以用于电厂废气氮氧化物(NO X )等的处理.2.2.5液体的存储与传输[26]与传统的粉末冶金材料(如自润滑轴承)相比,泡沫金属的液体存储量更大,应用范围更广:水的存储51第1期 左孝青,孙加林:泡沫金属的性能及应用研究进展61昆明理工大学学报(理工版) 第30卷和缓慢释放进行湿度控制;香水的存储和缓慢蒸发等;在压力的驱动下,泡沫中的液体还可作毛细运动等.2.2.6消音材料、噪音控制由于成本和效率方面的优势,熔模铸造法或沉积法制备的泡沫可以取代现有的消音器材料,目前已制备出最大直径100mm的泡沫消音器[27].开口刚性泡沫可以用于噪音控制[28],对闭孔金属泡沫的噪音控制作用,也进行了研究[29].半圆柱状的Alporas泡沫铝和钢背或混凝土背组成的吸音装置已开发应用于高速公路桥、地铁的噪音控制[30].泡沫金属克服了石棉、玻璃棉等消音材料长期使用易老化、吸水后消声性能下降的缺点,耐热性好,在高温下不释放有害气体,不吸湿,是一种优良的环保型消音及噪音控制材料.2.2.7电池电极材料开口的铅泡沫作为铅酸蓄电池的骨架,取代现有的铅网格,可以减轻电池的重量[31];Ni泡沫电极在可充电NiCd或NiMe H电池中已有了实际的应用[32,33].2.2.8阻火器高热导率的铝、铜泡沫可以用来阻止火焰的传播.据报道,开口泡沫可以对传播速度为550m/s的火焰进行有效的拦截[27].2.2.9水净化多孔金属可以减少水中溶解的离子浓度.污水通过通孔泡沫时,离子与金属泡沫的骨架发生氧化还原反应.如用铝泡沫对Cr离子(6价)的净化[34].3泡沫金属的性能研究及应用发展3.1结构—性能关系研究泡沫金属是一种结构敏感性材料,其力学性能、电磁性能、热性能都与结构有直接的关系,最近的研究情况及研究方法主要有:1)B.Illerhaus[35]等人用320kV的XRD管,采用3D micro tomograp hy技术对铝泡沫和空心铁球的变形形貌进行了无损测量,可以测量泡沫结构分布、平均孔壁厚等,类似的XC T(Computed X-ray To2 mograp hy)报道还有文献[36]等,为泡沫金属变形过程的实时观察提供了手段.2)从有限元(如ABAQ U S等)、边界元数值模拟角度进行泡沫金属孔结构(含结构分布)和力学性能(如应力-应变关系)的关系、泡沫金属材料器件的优化设计的研究[37].3)从实体金属的变形理论出发,通过参数的变换,用于泡沫金属的力学性能研究[38];4)从分形理论[39]对结构和性能进行研究;5)从微观、介观的不同角度对理想和真实泡沫结构和性能进行研究.因此,从孔结构的个体-孔单元及不同单元组合出发,采用先进的方法手段和理论,结合应用对象,研究孔结构、结构分布及其形貌对材料性能及器件使用性能的影响规律,对泡沫结构进行优化设计,为高性能金属泡沫及其产品的研制提供理论基础和依据,是目前泡沫金属性能研究的必然发展趋势.3.2应用泡沫金属的研究开发已有50多年的历史,但真正的规模化产业应用并不多,国内这一现象尤为明显.除了制备技术、性能、成本等因素外,泡沫金属的应用发展应考虑其“多性能特点组合”的优势,可考虑通过以下方法实现:1)数值模拟分析,进行材料多功能使用性能的综合优化设计;2)材料性能比较,如金属泡沫与有机泡沫的性能比较,进行综合优化设计;3)与实体金属混用(如泡沫铝芯三明治板),可提高金属泡沫的力学性能、材料的性能各向同性性及可靠性.因此,需要开发金属泡沫与实体金属的连接技术,研制低成本一体化制备技术,考虑材料的腐蚀、构件(如汽车构件)的几何尺寸及尺寸精度等问题;4)开发高性能泡沫及其低成本连续化生产技术,提高泡沫金属的性/价比,提高金属泡沫比之于其他非金属泡沫(如有机泡沫)的竞争力;5)采用系统化的新材料新投资评估体系,如材料投资方法学(IMM ,Invest ment Met hodology for new Materials )[40],对可能的应用及投资等进行科学的评估,缩短投资开发周期,降低风险,促进泡沫金属材料产业化的发展.参考文献:[1]赵增典,张勇,李杰.泡沫金属的研究及其应用进展[J ].轻合金加工技术,1998,26(11):1~10.[2]Warren W E ,Kraynik A M.Foam Mechanics :t he Linear Elastic Res ponse of Two -Dimensional Spatially PeriodicCellular Materials.Mechanics of Materials[J ].1988,55(1):341~346.[3]Nieh T G ,Higashi K ,Wadswort h J.Effect of Cell Morphology on t he Compressive Properties of Open -cell Alu 2minum Foams[J ].Mater Sci Eng A ,1999,283:105~110[4]G ibs on L J ,Ashby M F.Cellular S olids :Structure and Properties[M].Cambridge ,U K:Cambridge University Press ,1997.189.[5]K ovacik J ,Simancik F.Metal Foam and Porous Metal Structure[M ].M I T Verlag ,Bremen ,1999.303.[6]Mepura ,Data Sheets ,Mepura Gmbh.Ranshofen[C ].Austria ,1995.[7]Park E S ,Poste S D.Ceramic Foams[P ].U S Patent :4808558,1989.[8]K ovacik J.The T Behaviour of P orous Metals Made by G ASAR Process[J ].Acta Mater.1998,46(15):5413~5422.[9]Stauffer D ,Aharony A.Introduction to Percolation Theory[M ].Taylor and Francis ,London ,1992.1~10.[10]Degischer H P.Handbook of Cellular Metals[M ].W IL E Y -VCH Gerlag GmbH ,2002.235.[11]K ovacik J ,Tobolka P ,Simancik F ,Metal Foam and Porous Metal Structure[M ].M I T Verlag ,Bremen 1999.405.[12]Degischer H P.Handbook of Cellular Metals[M ].W IL E Y -VCH Gerlag GmbH ,2002.Foreword.[13]王祝堂.泡沫铝材:生产工艺、组织性能及应用研究(3)[J ].轻合金加工技术,1999,27(12):1~2.[14]王芳,王录才.泡沫金属的研究与发展[J ].铸造设备研究,2000,(1):51.[15]Ashby M F ,Evans A G,Fleck N A ,et al.Metal F oams :A Design G uide[M].Butterworth -Heinermann ,Oxford ,2000.150.[16]Ashby M F ,Evans A G,Fleck N A ,et al.Metal F oams :A Design G uide[M].Butterworth -Heinermann ,Oxford ,2000.221.[17]Banhart J.Manu facture ,Characterisation and Application of CellUlar Metals and Metal F oams[J ].Progr Mater Sci.2001,46:617.[18]Ashby M F ,Evans A G,Fleck N A ,et al.Metal F oams :A Design G uide[M].Butterworth -Heinermann ,Oxford ,2000.233[19]G iamei A F.Metal foams [C ].In :Banhart J ,Eifert H ,editors.Proc.Fraunhofer U SA Symposium on MetalFoams ,Stanton ,U SA ,7~8October.Bremen :M I T Press -Verlag ,1997.63.[20]Cooks F H.Proc.Conf.Light Metals[C ].New Orleans ,U SA ,2~6March 1986,2:1019.[21]Bende W U ,Guo F H.Advances in Powder Metallurgy and Particulate Materials [M ].Capus J M ,German R M(ends ),Metal Powder Industries Federation ,Princeton ,1992,6:145.[22]ER G Inc.Oakland[EB/OL ].U SA ,http ://.[23]SEAC International B V.K irmpen ,Netherlands ,Product Data sheet of “Recemat ”[E B/OL ].http ://www.seac.nl ,1998.[24]Lida K ,Mizuno K ,K ondo K.Sound Wave Control Device[P ].U S Patent :4726444,1988.[25]王月.压缩率和密度对泡沫铝吸声性能的影响[J ].机械工程材料,2002,26(3):29~31.[26]Ashby M F ,Evans A G,Fleck N A ,et al.Metal F oams :A Design G uide[M].Butterworth -Heinermann ,Oxford ,2000.221.[27]Inco L td ,Canada.Product Data Sheet of “Incofoam ”[EB/OL ].http :// ,1998.[28]Matsumoto I ,Iwaki T ,Yanagihara N.Battery electrode[P ].U S Patent.4251603,1981.[29]Illerhaus B ,J asiuniene E ,K ottar A ,G oebels J.Processing and Properties of Lightweight Cellular Metals and Struc 2tures[C ].Edited by Amit Ghosh ,Tom Sanders and Dennis Claar ,TMS 2002.271~279.[30]Degischer H P ,K ottar A.in Metal Foams and Porous Metal Structures [M ].Banhart J ,Ashby M F ,Fleck N A(ends ),M I T Verlag ,Bremen 1999.213~220.[31]Degischer H P.Handbook of Cellular Metals[M ].W IL E Y -VCH Gerlag GmbH ,2002.286.[32]Ashby M F ,G ibson L J.Metal Foams[M ].Oxford Press ,1988.86.[33]张金娅,左孝青.通孔泡沫金属与分形理论[J ].昆明理工大学学报(理工版),2002,27(4):13~15.[34]Maine E M A.Innovation and Adoption of New Materials[D].PhD Thesis ,Cambridge University ,2000.5~20.71第1期 左孝青,孙加林:泡沫金属的性能及应用研究进展。

泡沫铝的应用及研究进展

泡沫铝的应用及研究进展

泡沫铝的应用及研究进展泡沫铝是一种由铝金属制成的多孔材料,具有轻质、高强度和良好的阻隔热性能等特点。

它的应用广泛,包括汽车、航空航天、建筑、电子等领域,并且在研究和开发方面有一系列的进展。

首先,泡沫铝在汽车领域有着广泛的应用。

泡沫铝可以用于汽车散热器和减震器等部件,其具有良好的导热性能和吸能能力,能够提高汽车的散热效果和行驶的稳定性。

此外,泡沫铝还可以用作汽车内饰材料,例如中控台等,具有较高的强度和轻质化的特点。

其次,泡沫铝在航空航天领域也有广泛的应用。

由于泡沫铝具有良好的轻质和高强度特性,能够减轻航空航天器的重量,提高其载荷能力和燃油效率。

泡沫铝可以用于制造航空航天器的结构件、隔热层、减振材料等,在提高航空航天器性能的同时降低了整体成本。

此外,泡沫铝在建筑领域也有一定的应用。

泡沫铝可以用作建筑隔热层,具有良好的阻隔热性能,能够有效减少建筑物内外温差,节能环保。

此外,泡沫铝还可以用作建筑装饰材料,例如墙板、天花板等,因为它具有轻质、易加工等特点,能够满足建筑物的外观要求。

另外,泡沫铝在电子领域也有一定的应用。

由于泡沫铝具有良好的导电性能和导热性能,能够用于制造电子器件和电子散热器,提高电子设备的性能和可靠性。

泡沫铝可以用于制造手机散热片、电脑散热器等,解决电子设备散热问题。

在研究和开发方面,目前泡沫铝的研究主要集中在材料性能的改进和制造工艺的优化上。

研究人员正在尝试通过改变泡沫铝的孔径、孔隙率和孔壁厚度等结构参数,以及掺杂适量的其他元素,提高泡沫铝的机械性能、导热性能和阻隔性能。

此外,研究人员还在探索新的制造工艺,如电解合金化方法、化学沉积法等,以提高泡沫铝的制备效率和产品质量。

总的来说,泡沫铝具有广泛的应用前景和研究潜力。

随着技术的不断革新和改进,相信泡沫铝在各个领域的应用将会更加广泛,为相关行业的发展带来更多的创新和机遇。

泡沫金属的制备及其在航空航天领域的应用研究

泡沫金属的制备及其在航空航天领域的应用研究

泡沫金属的制备及其在航空航天领域的应用研究泡沫金属是由金属膜片之间的空隙组成的一种多孔材料,具有低密度、高强度和优异的吸能性能。

因此,泡沫金属已经成为航空航天领域中的重要材料之一。

本文将介绍泡沫金属的制备方法和在航空航天领域的应用研究进展。

一、泡沫金属的制备方法泡沫金属制备的基本原理是用脱模剂将预制的金属膜片分隔开来,并在其表面形成底部保护层。

然后,通过各种方法加入金属的孔道,形成连通的泡沫状结构。

常用的泡沫金属制备方法有以下几种:1. 模板法:模板法是通过将金属液浸渍在导电或非导电模板中,通过氧化、还原或电解反应,将纳米、微米或毫米级金属颗粒均匀沉积到模板孔洞中,然后再通过退火、烧结或溶解模板的方式获得泡沫金属。

2. 溶液法:溶液法是将金属盐溶解在有机或无机溶剂中,再加入还原剂或沉淀剂,使金属离子还原成原始金属,并在待反应的工艺条件下形成泡沫金属。

3. 反渗透法:反渗透法是将金属膜片置于内部受到压缩气体的反渗透区域内,然后将水分子透过膜片发生膨胀,其气泡成为抗剪切的靠拢和相互支撑的力,最终形成多孔泡沫金属。

以上方法各有其特点,对于不同金属材料,选择不同的制备方法具有一定的优劣之处。

例如,模板法相对简单,控制精确度高,但仅适用于制备薄壁泡沫金属;溶液法制备速度快,成品密度低,但安全性有待提高。

二、泡沫金属在航空航天领域的应用研究进展1. 引擎隔板泡沫金属具有低密度和高强度等特性,已广泛用于航空发动机的隔板。

其可阻隔来自不同部位的工作介质,拥有优异的隔音和隔热效果,还可热回收,降低燃料消耗量和减少工作环境污染。

2. 飞行器结构泡沫金属还可用于航空器结构的轻量化设计中,如飞机梁、机翼材料和飞行器隔板等部位。

采用泡沫金属制造的轻量化飞机构件,可以降低金属消耗,提高载荷能力,减轻飞机自重负担。

3. 航天器外壳泡沫金属还可用于航天器热控制外壳。

由于泡沫金属具有良好的吸热能力和隔热能力,因此可将热传递限制在特定区域,避免航天器表面温度过高或过低,提高航天器的使用寿命。

泡沫金属—从基础研究到应用

泡沫金属—从基础研究到应用

泡沫金属—从基础研究到应用John Banhart材料科学部,哈恩-迈特纳研究所,柏林,德国材料科学部,柏林科技大学,柏林,德国Email:banhart@hmi.de1 前言固态金属泡沫,特别是基于轻金属,有许多不同性能的有趣组合,比如在联结中具有高强度的同时还具有低比重,或者高抗压强度与良好的能量吸收特性相结合。

基于这个原因,人们对这些材料的兴趣仍然在不断增长中。

泡沫金属的发展在评论文章和会议记录中有介绍[1-5]。

有一个专门的网页提供最新的信息[6]。

本文仅局限于闭孔铝合金泡沫的研究,其具有良好的市场推广潜力。

我们将首先回顾不同的制造路线,讨论基础研究的重要性,然后再讨论其应用。

表1泡沫金属基本发泡路线和铝基泡沫制造商直接发泡合金融化合金发泡产生气泡泡沫收集泡沫固化间接发泡制备发泡预制品预制品再熔化泡沫生成泡沫固化制造商(产品) Cymat, 加拿大(SAF)Foamtech, 韩国(Lasom)Hutte Kleinreichenbach(HKB), 奥地利(Metcomb)Shinko-Wire, 日本(Alporas)(Distributor:Gleich, 德国)制造商(产品)alm, 德国(AFS)Alulight, 奥地利(alulight)Gleich-IWE, 德国Schunk, 德国2 制备工艺泡沫铝的制备主要有两种方法(见表1)。

直接发泡法是通过向熔融金属中注入气体而产生泡沫,以使其中包含均匀分散的非金属颗粒。

另外,钛金属氢化物可以被添加到熔体中,其分解后具有相同的效果。

间接发泡法是通过加入均匀分散的发泡剂颗粒,大多为钛或锆的氢化物,而形成由铝混合物组成的固体预制品。

通过熔化,使预制品膨胀并形成泡沫。

2.1 熔体注气直接发泡法通过注入气体使铝或者铝合金发泡的技术,已经进入了商业开发阶段[7]。

碳化硅,氧化铝或其他陶瓷颗粒需要与合金混合而使之发泡。

增强颗粒的体积分数一般为10%至20%,平均粒径为5至20微米。

泡沫金属的制备,力学性能及其应用

泡沫金属的制备,力学性能及其应用
控制温度和时间
在制备过程中,控制好温度和时间,可以提 高泡沫金属的性能。
优化发泡剂的类型和浓度
通过调整发泡剂的类型和浓度,可以控制泡 沫金属的孔径和孔隙率。
控制压力和气氛
在某些制备方法中,控制好压力和气氛,可 以提高泡沫金属的性能。
02 泡沫金属的力学性能
抗压性能
总结词
泡沫金属具有优异的抗压性能, 能够承受较大的压力而不会发生 变形或破裂。
复合技术
通过与其他材料的复合,可以发 挥泡沫金属和复合材料各自的优 点,制备出具有优异性能的复合
材料。
未来发展方向和挑战
拓展应用领域
泡沫金属作为一种功能材料,应积极探索其在新能源、生物医学、 航空航天等新兴领域的应用。
提高性能
继续优化制备工艺,提高泡沫金属的各项性能指标,以满足更广泛 的应用需求。
详细描述
由于其独特的结构和孔隙率,泡 沫金属在压缩载荷下展现出良好 的塑性和稳定性,可以有效地分 散压力,防止局部应力集中。
抗拉性能
总结词
泡沫金属的抗拉性能较弱,容易在拉 伸载荷下发生断裂。
详细描述
泡沫金属的抗拉强度较低,主要原因 是其孔隙结构在拉伸过程中容易产生 应力集中,导致材料断裂。
抗冲击性能
不同类型的发泡剂和浓度对泡 沫金属的孔径和孔隙率有显著 影响。
制备温度和时间
温度和时间是影响泡沫金属性 能的重要因素,温度和时间的 控制对制备高质量的泡沫金属 至关重要。
压力和气氛
在某些制备方法中,压力和气 氛也是重要的影响因素。
制备过程的优化策略
优化原料的粒度和纯度
选择合适的粒度和纯度的原料,可以提高泡 沫金属的性能。
渗流法
通过控制金属基体的孔径和孔隙率,使液体或气体渗入到基体中,然 后通过加热或加压使渗入的物质释放出气体,形成泡沫金属。

2024年泡沫铝市场发展现状

2024年泡沫铝市场发展现状

2024年泡沫铝市场发展现状引言泡沫铝是一种具有轻质、可折叠、吸音隔热性能优良的新型材料,在建筑、汽车、航空等领域得到了广泛的应用。

本文旨在分析当前泡沫铝市场的发展现状,探讨其市场规模、应用领域、竞争态势以及发展趋势。

市场规模泡沫铝市场在过去几年中呈现出快速增长的态势。

据市场调研数据显示,2019年全球泡沫铝市场规模达到XX亿美元,并预计在未来几年中将以X%的年均增长率持续增长。

亚太地区是目前泡沫铝市场的主要消费地区,占据了全球市场份额的XX%。

同时,随着建筑和汽车行业的发展,泡沫铝在北美和欧洲市场也呈现出良好的增长势头。

应用领域泡沫铝具有良好的吸音、隔热、抗震、防火等性能,使其在多个领域具有广阔的应用前景。

建筑领域泡沫铝在建筑领域中有着重要的应用场景。

它可以用于建筑墙体、屋顶、地板的保温隔热,使建筑物具备良好的节能性能。

此外,泡沫铝由于其轻质、可折叠的特点,还可以用于制作建筑装饰材料,如天花板、墙面板等。

汽车行业泡沫铝在汽车行业中也有着广泛的应用。

由于其轻质且具备较高的强度,泡沫铝可以用于汽车车身、车门、座椅等部件的制造,有效降低汽车自重,提高燃油经济性能。

此外,泡沫铝还具有较好的吸能性能,能够有效减轻碰撞时对乘客的伤害。

航空航天泡沫铝在航空航天领域中也有广泛的应用。

航空器结构要求轻量化,而泡沫铝由于其轻质、高强度的特点,成为制造航空器零部件的理想材料。

泡沫铝可以用于制造飞机的外壳、隔音板、舱内装饰等部件。

竞争态势泡沫铝市场目前存在着一定程度的竞争。

主要的竞争厂商包括美国公司ABC、德国公司DEF以及中国公司GHI等。

这些公司在技术研发、市场渗透以及品牌推广方面都投入了大量资源。

同时,由于泡沫铝市场的潜力巨大,还存在一些新进入者。

市场竞争激烈,企业需要不断提升产品质量和技术水平,不断创新以保持竞争力。

发展趋势未来几年,泡沫铝市场将继续保持快速增长的趋势。

这主要得益于以下几个方面的发展趋势:•技术创新:随着科技的进步,泡沫铝的生产技术将不断改进和创新,使其性能更加优越。

泡沫铝的应用及研究进展

泡沫铝的应用及研究进展
泡沫铝的应用及研究进展
泡沫铝的性能及应用 泡沫铝的制备方法 氢化钛的热力学动力学研究 泡沫铝技术的国内外进展
在传统的工程材料中,孔洞常被认为是一种结 构上的缺陷,因为它往往是裂纹形成和扩展的 中心,对材料力学性能产生不良的影响。但是 当材料中的孔洞的数量增加到一定的程度并且 有规律地分布时,就会因为这些孔洞的存在而 具有一些特殊的性能,从而形成一个新的化学 材料门类,这就是所谓的泡沫材料。泡沫金属 的历史不长,在其发展的历程中,研制和开发 大都以轻金属铝为主要对象,这是由于铝及其 合金具有熔点低、铸造性能好等特点。


将铝粉或铝合金与一 种发泡剂粉末混合, 将这种混合物压制成 密实的金属基体,然 后对其加热升温。
铸造法
熔体发泡法
喷溅沉积法
采用喷溅技术,把加有 惰性气体的粉末均匀的 喷射到铝合金金属上, 并加热到金属熔点,使 夹在金属基体中的气体 膨胀成孔,待冷却后即 得到具有致密网状的泡 沫铝。
熔体发泡法
粉末冶金法
运动器材-----能量吸收性
过滤材料-----透过性能 发散冷却材料-----稳定且良好的隔热性 催化剂-----高孔隙率使其具有大的表面积 消音材料-----吸能性能 自发汗冷却材料-----多孔骨架、吸能性能 阻燃、防爆材料------流体穿透性、耐火能力
值得一提的是,阿波 罗11号的LM在月球 表面着陆时起落架下 用的就是这种材料, 适应着陆时月面的凸 凹,并以泡沫铝的破 坏来缓和震动
铝熔体泡沫化的过程的动力源于TiH2的热分解,TiH2的 分解行为直接关系到熔体中气泡的形成、生长,以及泡
孔直径大小和孔壁厚度等制备泡沫铝的功能和性能参数,
因此在研究泡沫铝之初,首先要进行TiH2分解反应的热 力学和动力学方面的研究。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

泡沫金属的研究与发展1泡沫金属的概念及特点泡沫金属指孔隙度达到90%以上,具有一定强度和刚度的多孔金属材料。

含有泡沫状气孔的金属材料与一般烧结多孔金属相比,泡沫金属的气孔率更高,孔径尺寸较大,可达7毫米。

由于泡沫金属是由金属基体骨架连续相和气孔分散相或连续相组成的两相复合材料,因此其性质取决于所用金属基体、气孔率和气孔结构,并受制备工艺的影响。

通常,泡沫金属的力学性能随气孔率的增加而降低,其导电性、导热性也相应呈指数关系降低。

当泡沫金属承受压力时,由于气孔塌陷导致的受力面积增加和材料应变硬化效应,使得泡沫金属具有优异的冲击能量吸收特性。

多种金属和合金可用于制备泡金属材料,如青铜、镍、钛、铝、不锈钢等。

由于泡沫金属的密度小、孔隙率高、比表面积大从而使其具有非泡沫金属所没有的优异特性:例如阻尼性能好,流体透过性强,声学性能优异热导率和电导率低等等。

作为一种新型功能材料,它在电子、通讯、化工、冶金、机械、建筑、交通运输业中,其至在航空航天技术中有着广泛的用途。

2泡沫金属的用途2.1电极材料随着高档电器(便携式计算机、无绳电话等)的迅速发展,可重复使用的高体积比容量、高质量比容量的充电电池的消耗也越来越大。

高孔隙率(>95%)的泡沫金属对提高电池的这些性能提供了用武之地。

例如用电沉积法生产的泡沫镍作为电极材料用于N i-Cd电池的电极时,电极的气液分离好、过电压低,能效可提高90%,容量可提高40%,并可快速充电,在电池行业中,镍镉电池、镍氢电池、可充电碱性电池一致趋向于采用泡沫镍作为正负极板以提高容量,这是电池行业的一个突破。

对电池电极用泡沫镍的性能参数要求已有较为深入的研究。

2.2催化剂化学反应尤其是有机化学反应中,催化剂常常起着非常重要的作用,催化剂的表面积也是越大越好,高孔隙率使得泡沫金属具有大的比表面积,化工行业中可直接使用泡沫镍作镍催化剂,或将泡沫镍制成催化剂载体,高孔隙率的泡沫金属作为支撑物有可能使催化剂高度分散发挥更大的作用,其性能远远优越于陶瓷催化剂载体。

2.3流体压力缓冲材料泡沫金属可装在气体或液体管道中,当其一侧的流体压力或流速发生强烈波动时,泡沫金属材料可以通过吸收流体的部分动能和阻缓流体透过的作用,从而使泡沫金属体另一侧的波动大大减小,此效应可用于保护精密仪表。

2.4机械振动缓冲材料在将泡沫金属垫在振动部位的接合部时,利用多孔泡沫材料的弹性变形可吸收一部分机械冲击能。

据报道,密度比为0.05〜0.15的泡沫铝可吸收的能量为20〜180M J m,强大的能量吸收能力使得它有可能用于汽车的保险杠甚至于航天器的起落架,也可用作制造升降运输系统的缓冲器、磨矿机械的能量吸收衬层、汽车乘客坐位前后的可变形材料以改善安全性,优异的减振性能也使泡沫技术有可能用作火箭和喷气发动机的支护材料。

2.5消音材料因为声波也是一种振动,故声音透过泡沫金属时,可在材料内发生散射、干涉,声能被材料吸收,所以泡沫金属也可用于声音的吸收材料,即消音材料。

这种消音材料在气体管道和蒸汽管道中都可获得应用。

2.6阻燃、防爆材料泡沫金属既有很好的流体穿透性又可有效地阻止火焰的传播且自身有一定的耐火能力,于是可放置在输运可燃性液体或气体的管道中以防止火焰的传播,因为流体在输运速度增加时可能会着火(声速在接近爆炸限时会产生约150 x iO5Pa的压力),实验表明:6mm厚泡沫金属就可阻止碳氢化合物燃烧速度为210m sec的火焰,其作用机理可以解释为当火焰中的高温气体或微粒穿过泡沫金属材料时,由于发生迅速地热交换,热量被吸收和散失,致使气体或微粒的温度降到引燃点以下,于是火焰的传播被阻止。

2.7自发汗冷却材料把固体冷却剂熔化渗入由耐热金属制成的多孔骨架中,在经受高温时这种材料内部的冷却剂会发生熔化和气化而吸收大量的热能,从而使材料在一定时间内保持冷却剂气化温度的水平,逸出的液体和气体会在材料表面形成一层液膜或气膜,可把材料与外界高温环境隔离,此过程可一直进行到冷却剂耗尽为止,由于冷却机理相当于材料本身“发汗”故有自发汗冷却材料之称。

2.8发散冷却材料发散冷却是一种先进的冷却技术,它是迫使气态或液态的冷却介质通过多孔材料,使之在材料表面建立一层连续、稳定的隔热性能良好的气体附面层,将材料与热流隔开,得到非常理想的冷却效果。

以液氢一液氧发动机推力室喷注器面板为例:采用发散冷却后,它的一面为-150C的氢气,另一面为3500r的燃气,而材料的热面温度仅在80〜200C之间,用于发散冷却的多孔材料,渗透量必须能够准确地控制在合理的范围内,透气均匀,孔道曲折小,介质流动通畅,并且要满足作为防热结构材料的基本要求,具有一定的强度、刚度和韧性,选用抗氧化性能好的材质,以防止意外氧化堵孔,烧结金属丝网多孔泡沫材料是其最佳选择。

2.9过滤材料把泡沫金属制备成适当的形状,它就可以作为过滤材料从流体(如水、溶液、汽油、润滑油、冷冻剂、聚合物熔体)中滤出固体或悬浮物。

常用的泡沫金属的材质为青铜或不锈钢。

在腐蚀性很强的流体中,则需采用贵金属(如A u)。

3泡沫金属材料的制备方法按照制备工艺,可以将泡沫金属材料的制备方法进行分类:真空气相沉积、气相分解、电沉积、含有机支撑物烧结、简单烧结、粒状物料周围浇铸、熔模铸造、溅射法、金属沉积法、烧结法、铸造法、熔融金属发泡法。

3.1熔体发泡法该法的原理是在金属液中加入发泡剂,使其受热产生分解,在溶液中形成气泡,然后冷却凝固。

其缺点是发泡过程难以控制,溶液中的发泡剂分解产生气泡,气泡逐渐上浮并在上浮过程中合并长大,引起制品中气泡分布不均匀且局部气泡尺寸过大。

解决此问题的方法有:(1)高速搅拌,使发泡剂充分分布在金属液中;(2)增加溶体粘度,阻止气泡的上浮运动,进而提高发泡剂在熔体中的均匀分布。

增加粘度的方法有非金属粒子分散法、加入合金元素法和熔液氧化法。

熔液氧化法是向熔融金属液中吹入空气、氧气或水蒸气并搅拌,使在短时间内生成氧化物,此方法效率较高,得到的粘度也大。

目前最常用的方法是向熔液中加入合金元素,搅拌使熔体中生成大量细微的氧化物固相质点,从而增加熔体粘度,此方法比熔液氧化法简单。

熔体发泡法对发泡剂的一般要求是:发泡剂与熔液混合均匀前应尽可能少分解,在停止混合至开始凝固前的一定时间间隔内要充分分解并有足够的发气量。

熔体发泡法制备泡沫金属的过程有:熔体增粘处理、泡沫化、均匀化和凝固过程。

后三个过程同时进行,受许多工艺因素的影响,在实际操作中很难控制。

3.2渗流铸造法将液态金属渗入可去除的填料颗中的渗流铸造法是制备泡沫金属的重要方法。

渗流铸造法中预制型的制作对最终产品的质量有着直接的影响,填料颗粒能否被除去是制得通孔的关键,要顺利除去填料颗粒,必须使其处于连续的状态,通常采用两种方法:(1)将填料颗粒松散装入型腔中,加压使颗粒联结。

(2)将颗粒加粘结剂和水混匀后填入石墨中紧实,然后焙烧,此工艺得到的预制块孔隙形状圆滑,互相连通,但工艺较复杂。

渗流铸造法采用加压的方式使熔液渗入,加压方式有:固体压头加压法、气体加压法、差压法、真空吸铸法。

差压法和真空法可以得到咼质量的泡沫金属,因为在压力下金属液的渗流距离比较长,结晶出的金属骨架比较致密,使得泡沫金属具有较高的机械性能,缺点是需要一套抽气/真空系统及一套上下罐体。

3.3烧结法简单烧结:就是于较高温度时物料产生初始液相,在表面张力和毛细管现象的作用下,物料颗粒相互接触,相互作用,冷却后物料发生固结而成为泡沫金属,为了使物料易于成型,可采用粘结剂,但粘结剂必须在烧结时除去,为了提高泡沫金属的孔隙率,可采用填充剂,填充剂同样也需发生升华、溶解或分解,氯化铵和甲基纤维素均可作为填充剂。

在制备高孔隙率的泡沫金属时,可以采用含有机支撑物烧结的方法,先把天然海绵或人造海绵切成所需要的形状,使其充分吸收含有金属粉末的浆液,干燥后加热使海绵分解,继续加热使有机金属化合物分解和使物料烧结,冷却后可得到孔隙率很高的泡沫金属。

3.4金属沉积法金属沉积法就是采用化学的或物理的方法把欲得泡沫金属的金属物沉积在易分解的有机物上,有电沉积和气相沉积两种。

电沉积是用电化学的方法实现制备,它主要由四个步骤组成:(1)以泡沫有机物为基体,由于它不导电,故须在酸性条件下用强氧化剂对有机物进行腐蚀,使其表面变得易于被水润湿并产生微痕,常用的氧化剂为H 2C r2O 7 H 2SO 4 H 3PO 4的混合物,这一步骤常称为粗化。

(2)粗化后用PdCI2溶液中的Pd2+对表面进行催化,称为活化。

(3)放入镀液进行化学镀得到均匀地附着于与有机物表面导电的金属层,镀液中含有金属离子和还原剂,常见的镀层有Cu、N i、Fe、Co、A g、A u和Pd,以前两种最为常用。

(4)经过化学镀处理的有机物最后进行电镀得到所需要种类的金属和厚度。

必要时可把有机物在高温下进行处理使其分解。

鉴于Pd较为昂贵,活化时加入PdCl2导致泡沫金属的生产成本较高,此外Pd2+离子吸附在高分子材料表面又具有催化作用,会加速化学镀液的分解使其稳定性变差,故可采用Pd的代用品或进行无Pd活化工艺的研究,有的已取得了较为理想的效果。

气相沉积有化学分解和物理沉积,以泡沫镍的制备为例,把CO-N i(C0)4混合气体导入反应器内,使其通过经过表面特殊处理的高分子泡沫体,在一定波长的红外光照射下,可使N i(C0)4分解为金属N i和CO,N i沉积在泡沫体表面上即为所要制备的产物。

真空气相沉积则是用物理的方法实现泡沫金属的制备,它同样是采用泡沫有机物作为基体,在真空设备中使金属镍挥发沉积到泡沫有机物上面,作为加热手段的有电子束或直流电弧。

3.5溅射法溅射法就是在反应器内维持可控的惰性气体压力,在等离子的作用下,通过电场的作用将金属沉积在基体上,与此同时,惰性气体的原子也一并沉积,升高温度,金属熔化时惰性气体发生膨胀形成一个一个空穴,冷却后即为泡沫金属。

溅射法可有效地保留泡沫金属中的惰性气体,并且可用于泡沫非金属的制备。

4关于制备方法的几点认识综上所述,泡沫金属材料的优异特性无疑会使其在许多领域发挥越来越大的作用,泡沫金属应用的推广程度取决于材料性能对使用目的的适应程度和泡沫金属的制备成本,泡沫金属的制备工艺不同,所得到的泡沫金属的产品质量和成本也有差别。

一般说来,电沉积制备出的泡沫金属的孔隙率高且非常均匀,但工序长,操作繁琐,成本稍高;用化学分解法制备的泡沫金属对于泡沫镍而言存在封孔问题和残碳问题;真空气相沉积制备泡沫金属的操作条件严格,沉积速度慢,投资大,生产成本高;发泡法的技术一般则比较复杂,难于掌握,且主要于低熔点金属泡沫的制备上;熔模铸造法仅适用于低熔点的金属和合金(如 A l,Pb,Sn等);粒状物料周围浇铸法可以得到形状非常复杂的浇铸件,如果利用金属纤维而不是金属粉末进行烧结以得到泡沫金属,则可制备出尤其适用于筛网制造的材料。

相关文档
最新文档