微波感应电路
微波感应电路8页

微波感应人体传感器2008-11-12 08:531。
工作原理微波感应控制器使用直径9厘米的微型环形天线作微波探测,其天线在轴线方向产生一个椭圆形半径为0~5米(可调)空间微波戒备区,当人体活动时其反射的回波和微波感应控制器发出的原微波场(或频率)相干涉而发生变化,这一变化量经HT7610A进行检测、放大、整形、多重比较以及延时处理后由白色导线输出电压控制信号。
高可靠微波感应控制器内部由环形天线和微波三极管组成一个工作频率为2.4GHz的微波振荡器,环形天线既做发射天线也可接收由人体移动而反射的回波。
内部微波三极管的半导体PN结混频后差拍检出微弱的频移信号(即检测到人体的移动信号) ,微波专用微处理器HT7610A首先去除幅度太小的干扰信号只将一定强度的探测频移信号转化成宽度不同的等幅脉冲,电路只识别脉冲足够宽的单体信号,如人体、车辆其鉴别电路才被触发,或者两秒内有2~3个窄脉冲,如防范边沿区人走动2~3步,鉴宽电路也被触发,启动延时控制电路工作。
如果是较弱的干扰信号,如小体积的动物,远距离的树木晃动、高频通讯信号、远距离的闪电和家用电器开关时产生的干扰予以排除。
最后输HT7610A 鉴别出真正大物体移动信号时,控制电路被触发,输出2秒左右的高电平,并有LED2同步显示,输出方式为电压方式,有输出时为高电平(4伏以上),没有输出时为低电平。
微波专用的微处理器HT7610A的时钟频率为16KH,当初次加电时,系统将闭锁60秒,期间完成微处理器的初始化并建立电场,这时LED1点亮60秒后熄灭,系统自动进入检测状态,当检测到有效信号时,将有5秒信号输出,并由指示灯LED2同步显示。
控制器的外形上图所示,面板上设置有灵敏度调整孔,可以使监控距离在1~7米范围内可调,顺时针转动距离变远,逆时针转动距离变近, LED1、LED2用于指示TX982的工作状态,1.2米长的双芯屏蔽线用于连接电源和负载,其中红色线用来接正电源,白色线接输出,铜网屏蔽层接电源负极,必要时可以用类似电缆加长至50米以内使用。
微波炉电路工作原理

微波炉电路工作原理引言微波炉是现代厨房中常见的一种烹饪设备,它利用微波能量来加热和烹饪食物。
微波炉的核心是其电路系统,通过复杂的电路工作原理来产生和控制微波能量。
本文将对微波炉电路的工作原理进行详细解析,帮助读者更好地理解微波炉的工作过程。
一、微波炉的基本结构微波炉的主要结构包括高压变压器、微波发生器、微波引导系统和控制电路。
控制电路是微波炉电路的核心部分,它通过对高压变压器和微波发生器的控制来实现对微波能量的产生和加热食物的控制。
整个微波炉电路系统紧密配合,实现了高效的微波加热过程。
二、微波炉的工作原理1. 高压变压器微波炉的高压变压器是将普通市电220V交流电压提升至约2000V以上的高压直流电压的关键部件。
高压变压器的工作原理主要是依靠电磁感应的原理,通过变压器的绝缘绕组和铁芯,将输入的低压交流电转换为高压直流电。
高压变压器的输出接入微波发生器,为其提供足够的高压能量,使其能够正常工作。
2. 微波发生器微波发生器是微波炉电路中最核心的部件,它能够将高压能量转换为微波能量,并将微波能量输送到微波腔。
微波发生器的主要原理是利用磁控管的特性,将高压能量通过磁场和电场的作用转换为微波能量,然后输出到微波腔内。
微波发生器的频率通常为2.45GHz,这是食物分子运动的共振频率,会导致食物分子产生剧烈运动而产生热量,从而实现食物的加热和烹饪。
3. 微波引导系统微波引导系统主要由微波腔、微波发射装置和微波感应器组成,其工作原理是将微波能量传输到食物表面,使食物内部的分子产生热量。
微波腔是一个金属空腔,能够在其中形成驻波场,使微波能够均匀地分布到整个腔内。
微波感应器能够感应到微波照射物体的温度,一旦达到设定的温度就会停止微波能量的输出,以达到控制加热的目的。
4. 控制电路微波炉的控制电路对微波加热过程进行精确控制,保证微波能量的稳定输出和食物的均匀加热。
控制电路通常包括电源控制单元、微波发生器控制单元、传感器控制单元等部件,通过这些部件配合工作,实现对微波能量输出和食物加热过程的精确控制。
微波感应人体传感器的典型应用电路

微波感应人体传感器的典型应用电路这里介绍的微波感应控制器和市场上常见的简易型微波感应控制器相比较,因为采用专用的微处理集成电路HT7610A,不但检测灵敏度度高,探测范围宽,而且工作非常可靠,误报率极低,能在-25~+45度的温度范围内稳定工作,最适和在中、高档防盗报警系统中作人体移动检测传感头使用。
1.工作原理微波感应控制器使用直径9厘米的微型环形天线作微波探测,其天线在轴线方向产生一个椭圆形半径为0~5米(可调)空间微波戒备区,当人体活动时其反射的回波和微波感应控制器发出的原微波场(或频率)相干涉而发生变化,这一变化量经HT7610A进行检测、放大、整形、多重比较以及延时处理后由白色导线输出电压控制信号。
高可靠微波感应控制器内部由环形天线和微波三极管组成一个工作频率为2.4GHz的微波振荡器,环形天线既做发射天线也可接收由人体移动而反射的回波。
内部微波三极管的半导体PN结混频后差拍检出微弱的频移信号(即检测到人体的移动信号),微波专用微处理器HT7610A首先去除幅度太小的干扰信号只将一定强度的探测频移信号转化成宽度不同的等幅脉冲,电路只识别脉冲足够宽的单体信号,如人体、车辆其鉴别电路才被触发,或者两秒内有2~3个窄脉冲,如防范边沿区人走动2~3步,鉴宽电路也被触发,启动延时控制电路工作。
如果是较弱的干扰信号,如小体积的动物,远距离的树木晃动、高频通讯信号、远距离的闪电和家用电器开关时产生的干扰予以排除。
最后输HT7610A鉴别出真正大物体移动信号时,控制电路被触发,输出2秒左右的高电平,并有LED2同步显示,输出方式为电压方式,有输出时为高电平(8伏以上),没有输出时为低电平。
微波专用的微处理器HT7610A的时钟频率为16KH,当初次加电时,系统将闭锁60秒,期间完成微处理器的初始化并建立电场,这时LED闪亮60秒后熄灭,系统自动进入检测状态,当检测到有效信号时,将有2秒信号输出,并由指示灯LED同步点亮。
微波感应对人体有危害吗?

微波感应对人体具有危害吗?
微波感应是一种新式感应,它是由主要利用多普勒效应原理,自主研发平面天线发射接收电路,智能检测周围电磁环境,自动调整工作状态,内置集成滤波线路,可有效抑制高次谐波和其他杂波的干扰﹑灵敏度高﹑可靠性强﹑安全方便﹑智能节能,是一种新型实用的节能产品。
微波感应开关可穿透部分非金属物感应,特别适用于隐藏安装在灯具内部;所以应用较为广泛,再加上微功耗﹑感应灵敏﹑应用范围广。
可以搭配各类普通灯具,使之成为微波感应灯具。
由于主动发射微波,是否对人体产生危害呢?答案是否定的。
微波的感应产品的频率为50/60 Hz,和家庭常用的路由器非常接近,所以经常和路由器有“冲突”,
微波感应产品产生的微波强度和普通智能手机相比,仅为智能手机的百分之一,可以说对人体是基本是没有影响的。
比起过去的红外和声控感应,微波感应凭借着更精确的感应灵敏度,更远的感应距离…正是未来感应的共同的前进方向。
微波(雷达)感应模块原理以及应用调试

雷达感应开关原理调试一、原理简介:1. 主要功能与原理:如上图所示,上图是雷达感应开关模块的感应板的电路原理图,由集电极外PCB两层铜箔间的电容、三极管内阻、寄生电容等构成RC震荡电路,该震荡电路震荡产生高频信号,经过三极管放大,再经过围绕PCB三边的天线发射出去。
发射的2.4-3.2GHz的微波信号如果遇到移动物体,则反射波相对发射波就会有相位变化,回型天线接收到反射信号,反射波与发射信号的相位移频就会以3-20MHz左右的低频输出(P4),该信号再由后级运放放大,驱动继电器,从而由继电器控制灯光。
另外,中间也可以加上光敏二极管检测昼夜光线,作为夜间条件下控制输出的前提条件。
2. 发射频率:RC振荡电路的频率f=1/2πRC,公式中的R是原理图中三极管的输入阻抗,C是PCB 上三极管集电极基极引线正反面铜箔之间的电容以及三极管寄生电容组成的总电容。
该电容量公式为C=εS/d,式中ε为介质(在这里就是指的PCB板材的介电常数),S为PCB极板面积,d为极板间距也就是PCB厚度。
3. 接收:通过回型天线接收反射回来的雷达波,如果发射与接收波之间有相位移频,则输出低频信号P4。
4. 发射避开公共频段又不能过高:因为3G和4G手机信号和WIFI信号的频率范围在1.8-2.4GHz,模块的工作频率尽可能避开这个频段,避免相互干扰。
一般的发射频率2.5GHz左右最佳,频率过高,则高频三极管增益降低,感应距离近。
发射频率同天线部分PCB线路板尺寸大小、厚度、布线、三极管输入阻抗与电容等有关。
5. 发射频率与发射信号强度:如果有频谱仪测试发射天线端的发射信号,可以测试到发射频点及其发射信号幅度。
发射信号强度越大,感应距离越远。
但是,高频三极管来说,随着频率的增加,其增益逐渐降低,发射的信号强度也就降低。
另外,同一个频率,三极管的特征频率fT越大,其高频增益就越高,感应距离也就越远,所以,最好设计调整PCB,将频点做到2.4GHz。
微波感应器工作原理

微波感应器工作原理
微波感应器是一种利用微波辐射原理进行人体识别和监测的设备。
它的工作原理基于微波辐射的特性和人体对微波的反射与吸收。
微波辐射是一种电磁波,具有较高的频率和波长短的特点。
微波感应器通常会发射一束连续的微波信号,这些信号由发射器产生并通过天线发射出去。
当微波信号遇到物体时,会产生反射、折射和吸收。
人体作为一个具有较大水分含量的物体,对微波信号具有较高的吸收能力。
因此,当人体进入微波感应器的监测范围内时,微波信号会被人体吸收部分,而剩余的信号则会被反射回来。
微波感应器的接收器会接收到反射回来的微波信号,并分析信号的变化。
当人体靠近或穿过感应器的监测区域时,由于人体对微波的吸收特性,接收到的信号强度会发生变化。
通过监测信号的强弱以及变化的时间来判断是否有人体存在。
微波感应器的工作原理具有很高的灵敏度和准确性。
由于微波信号在大部分物体上具有较高的穿透能力,而且不受光线、温度和湿度等环境因素的影响,因此微波感应器可以在不同的环境中有效地工作。
它广泛应用于安防监控、自动门控制、灯光控制等领域。
微波

微波雷达感应原理剖析原理分析:如上图所示,上图是微波雷达感应信号板的原理图。
1.信号的发射:由PCB两层铜箔间的电容、三极管内阻、寄生电容等构成RC震荡电路,该震荡电路震荡产生高频信号,经过三极管放大,再经过围绕PCB四边的天线发射出2.5-3.2GHz的微波信号。
对于使用上述电路图,设计出的微波感应模块,市面上多说为5.8GHz的发射频率,其实属于误传,实际频率在2.5-3.2GHz之间。
由于3G和4G手机信号和WIFI信号的频率范围在 1.8-2.4GHz之间,而该雷达微波发射的信号频段为2.5GHz-3.2GHz之间,刚好避开了上述生活中常使用的频段2.触发信号产生的原理:微波模块发射的2.55Hz-3.2GHz的频率波,如果遇到固定物体,则反射的频率波形没有相位移动;如果遇到移动的物体,则反射波会有相位移动。
即多普勒效应。
3.信号的接收:回型天线接收反射信号,将其与发射信号进行差频,以3-5MHz左右的低频输出(SIGNAL)。
4.信号的处理:该信号经BISS0001内部的信号放大器和鉴幅器将有效信号以高低电平的方式输出,继而驱动三极管或者MOS。
BISS0001的功能亦可以由放大器和MCU组成,从而实现丰富的功能。
5.发射频率的计算:上述介绍中提到,该微波感应模块发射的频率有RC振荡频率经高频管放大而来,因此,设计出合理的RC频率至关重要。
RC振荡电路的频率f=1/2πRC,公式中的R是原理图中发射电路的环路电阻,C是PCB正反面铜箔之间的电容以及其它分布电容组成的总电容。
该电容量公式为C=εS/d,式中ε为介质(在这里就是指的PCB 板材的介电常数),S为PCB极板面积,d为极板间距也就是PCB厚度。
在实际应用中发现,极板的面积S越大,感应的距离可以做的越远,频率覆盖的空间均匀,因此,根据上述公式,S变大的情况下,可以将极板的厚度d减小,从而增大电容量。
关于PCB板材的选择,商业用的微波感应模块,一般的PCB板材就可以满足要求。
微波感应器的原理和应用

微波感应器的原理和应用摘要:微波感应器是一种新型的无线电传感器,其工作原理是利用微波穿透感应物体并反射回来的能量来探测并测量物体的位置、速度、形状等信息。
本文将介绍微波感应器的工作原理,以及其在各个领域的应用。
关键词:微波感应器、无线电传感器、物体探测、位置测量、速度测量、形状测量正文:一、微波感应器的工作原理微波感应器是一种利用微波辐射作为探测信号的无线电传感器。
其原理与雷达较为相似,都是利用微波信号的反射特性进行物体探测。
但是与雷达不同的是,微波感应器是一种被动式无线电传感器,其所用的微波信号一般为10GHz至100GHz的超高频频段,能量较小,不会对物体产生太大的干扰。
微波感应器的工作原理如下图所示:其将发射出去的微波信号洒向探测区域,在探测区域中的任何物体都可以反射这种微波信号,返回到感应器中,被感应器电路所接收。
当物体移动时,感应器可以测量返回的反射信号的频率变化,从而测量物体运动的速度。
当物体形状发生变化时,反射信号的相位也会发生变化,感应器检测到这种变化,并可以计算出物体的形状信息。
二、微波感应器的应用微波感应器在各个领域都有广泛的应用,以下列举几个代表性的应用:1、安防监控领域:微波感应器可以实时监测周围环境中是否有人或物体进出,可以用于室内外的监控系统中,帮助提高安全性。
2、智能家居领域:微波感应器可以用于测量家居中的物体位置和运动状态,如灯光、温度、门窗等,可以实现智能控制。
3、医疗保健领域:微波感应器可以用于身体健康监测,如测量心跳、呼吸等生理参数,实时反馈给医生,帮助提高诊断准确率。
4、交通管理领域:微波感应器可以用于车辆和行人的流量统计、交通状况分析等,可以帮助城市交通管理部门做出更好的决策。
综上所述,微波感应器在无线电传感器领域中有广泛的应用前景,可以在安防监控、集成家居、医疗保健、交通管理等领域发挥重要作用。
三、微波感应器的优点1、测量精度高:微波感应器可以测量物体的位置、速度、形状等信息,精度非常高,可以满足各种场景的实时监测需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微波感应人体传感器
2008-11-12 08:53
1。
工作原理
微波感应控制器使用直径9厘米的微型环形天线作微波探测,其天线在轴线方向产生一个椭圆形半径为0~5米(可调)空间微波戒备区,当人体活动时其反射的回波和微波感应控制器发出的原微波场(或频率)相干涉而发生变化,这一变化量经HT7610A进行检测、放大、整形、多重比较以及延时处理后由白色导线输出电压控制信号。
高可靠微波感应控制器内部由环形天线和微波三极管组成一个工作频率为2.4GHz的微波振荡器,环形天线既做发射天线也可接收由人体移动而反射的回波。
内部微波三极管的半导体PN结混频后差拍检出微弱的频移信号(即检测到人体的移动信号) ,微波专用微处理器HT7610A首先去除幅度太小的干扰信号只将一定强度的探测频移信号转化成宽度不同的等幅脉冲,电路只识别脉冲足够宽的单体信号,如人体、车辆其鉴别电路才被触发,或者两秒内有2~3个窄脉冲,如防范边沿区人走动2~3步,鉴宽电路也被触发,启动延时控制电路工作。
如果是较弱的干扰信号,如小体积的动物,远距离的树木晃动、高频通讯信号、远距离的闪电和家用电器开关时产生的干扰予以排除。
最后输HT7610A鉴别出真正大物体移动信号时,控制电路被触发,输出2秒左右的高电平,并有LED2同步显示,输出方式为电压方式,有输出时为高电平(4伏以上),没
有输出时为低电平。
微波专用的微处理器HT7610A的时钟频率为16KH,当初次加电时,系统将闭锁60秒,期间完成微处理器的初始化并建立电场,这时LED1点亮60秒后熄灭,系统自动进入检测状态,当检测到有效信号时,将有5秒信号输出,并由指示灯LED2同步显示。
控制器的外形上图所示,面板上设置有灵敏度调整孔,可以使监控距离在1~7米范围内可调,顺时针转动距离变远,逆时针转动距离变近, LED1、LED2用于指示TX982的工作状态,1.2米长的双芯屏蔽线用于连接电源和负载,其中红色线用来接正电源,白色线接输出,铜网屏蔽层接电源负极,必要时可以用类似电缆加长至50米以内使用。
高可靠微波感应控制器电源电压为12~16V的整流变换器供电,静态耗电量在5MA左右。
输出形式为电压方式,有输出时为高电平(4V以上),静态时为低电平,使用请参考下图
这是微波人体传感器驱动继电器的电路图:
高可靠微波感应控制器工作非常可靠,一般没有误报,是以往红外线、超声波、热释电元件组成的报警电路以及常规微波电路所无法比拟的,是目前用于安全防范和自动监控的最佳产品。
所以非常适合在仓库、商场、博物馆或者金融部门使用,具有安装隐蔽、监控范围大、系统成本低的
优点。
2。
典型应用
注意:早期的高可靠微波感应人体传感器采用的是三极管开漏下拉输出,应用可以参考下面的图纸,最新的高可靠微波感应人体传感器采用的是电平输出,使用稍做变化!
下面介绍运用高可靠微波感应控制器制作的两例实用电子装置,它们的共同特点是线路新颖简
单,实用性强,制作容易,性价比高。
一、自动感应灯
该自动灯可以自动识别周围环境光的亮度,能够实现人来灯亮,人走灯灭,不会误动作,可靠性高,而且电路的工作状态不会受自身灯光的干扰,可以广泛地运用在走廊、卫生间、庭院等场合实现自动照明。
自动感应灯的电路如图1所示:由C1、C2、R1、DW、D1组成典型的电容降压电路,向高可靠微波感应控制器和CD4011提供11V直流工作电压, CD4011BP是COMS四与非门集成电路,当高可靠微波感应控制器检测到有人活动时,白线输出下拉电平10秒,A点变成低电
平经F1反相后变成高电平,R3和光敏电阻GM组成光控电路,白天GM阻值较小,B点经分压后低于1/2电源电压为低电平,与非门F2封锁输出高电平通过R4使C3上的电压充至电源电压,夜晚GM的阻值较大,B点为高电平,此时如果有人在监控范围内活动,F1输出高电平,共同使F2开通输出低电平,经F3、F4反相后变成高电平,通过R5使双向可控硅BCR导通,灯泡点亮。
如果人员离开监控范围,TX982停止输出A点重新变成高电平,经F1反相后变成低电平,F2封锁,输出高电平通过R4向C3缓慢充电,约30秒后C3上的电压大于1/2电源电压实F3、F4翻转,BCR截至灯泡熄灭。
该电路的可靠性较高,站长用该电路制作的走廊灯已经可靠工作了近一
年。
二、遥控型入侵报警器
遥控型入侵报警器如图2所示:电源部分由12V/1.2Ah的铅酸蓄电池和LM317组成恒压、限流浮充电不间断电源,可以确保蓄电池随时处于充足电状态,能够使报警器在市电停电的情况下正常工作。
铅酸蓄电池的浮充电压为14.2V。
LM317接成恒压源,通过调整W可以使输出端A点输出稳定的14.9V直流电压。
电阻R4可以限制充电电流过大,D2可以防止市电停电后蓄电池反向放电。
TWH9236/9238是遥控发射、接收组件。
当按下发射机TWH9236的A、B、C、D中的任意一个键时,接收机TWH9238的A、B、C、D输出端也会对应输出高电平,并且锁住保存输出时的状态。
这里将A键设定为入侵报警器工作按钮,其它的三个键设定为入侵报警器解除按钮。
所以只要按下发射机A键,接收机的A输出端就会输出4伏左右的高电平并保持,再按发射机B、C、D按键的任意一个时接收机的A输出端又会变成低电平并保持。
当A输出端输出高电平时,通过电阻R1使三极管T1导通,继电器J吸合, 12V正电源通过继电器触点加至高可靠微波感应控制器的电源端,此时发光二极管LED点亮,指示入侵报警器已经工作,经过60秒高可靠微波感应控制器初始化结束后,入侵报警器正式工作,这时只要有人员进入监控区域,高可靠微波感应控制器的白线输出端就会输出10秒左右的下拉信号,使T2导通,高响度报警器 TWH11C就会发出120dB 刺耳的公安警报警声。
当A输出端输出低电平时,继电器J断开,高可靠微波感应控制器得不到
工作电压所以不工作。
3。
使用注意事项
高可靠微波感应控制器产生的微波信号在传输、反射接收以及放大处理过程中可能引起微量噪波,过分提高灵敏度将引起噪波误触发,在7米处人体移动3~4步被触发的灵敏度已达到使用
极限,应调至在5米处移动3~4步被触发最佳。
高可靠微波感应控制器尽量安装在室内靠墙角上方,轴向对准门窗部位安装,室外应注意
抗风防水并降低灵敏度使用。
高可靠微波感应控制器应采用12V 100mA直流电源供电,并保证任何时候供电电压不低于10伏,以使电路稳定工作,如果高响度报警器和高可靠微波感应控制器公用电源时电源容量不应小于
500mA。
高可靠微波感应控制器的输出端属于一种“下拉”控制方式,正电源通过继电器由白色线进入微波感应控制器内部,使继电器流入电流而工作,因此用电压测量法无法测出是否有输出。
200米遥控模块性能的详细介绍网页
S966微波感应器采用微波专用处理器,检测到有人或者物体移动时,由三芯插座的中间脚输出低电平,其余时间输出为高电平,输出端也可以直接驱动继电器,方便用户使用. prefix = o ns = "urn:schemas-microsoft-com:office:office"
微波专用微处理器初次加电时,系统自检,延时一分钟左右,一分钟后,当检测到有物体或者人体移动时,将有3秒到5秒的低电平信号输出,如果检测到人或者物体一直在活动,将持续输
出低电平。
S966微波感应器的接线图如图1所示,印制板上设置有灵敏度调节电位器RP1,可以使监控距离在0.5~prefix = st1 ns = "urn:schemas-microsoft-com:office:smarttags"7米范围内可调,顺时针转动距离变近,逆时针转动距离变远,三芯插座的接法见下图,两端连接电源的正极和负
极,中间脚接输出,可以直接外接继电器输出.
S966微波感应器工作非常可靠,一般没有误报,是以往红外线、超声波、热释电元件组成的报警电路以及常规微波电路所无法比拟的,是目前用于安全防范和自动监控的最佳产品。
所以非常适合在仓库、商场、博物馆或者金融部门使用,具有安装隐蔽、监控范围大、系统成本低的
优点。
2、使用注意事项
S966微波感应器产生的微波信号在传输、反射接收以及放大处理过程中可能引起微量噪波,过分提高灵敏度将引起噪波误触发,在7米处人体移动3~4步被触发的灵敏度已达到使用极限,
应调至在5米处移动3~4步被触发最佳。
S966微波感应器尽量安装在室内靠墙角上方,轴向对准门窗部位安装,室外应注意抗风防
水并降低灵敏度使用。
给模块加+12V直流,一分钟后,检测到物体或者人体移动时,用万用表测量中间输出端到地,应输出3秒到5秒的低电平,无信号时输出端为+12V高电平.。