1.2 orcad-PSpice应用举例阻尼振荡器、RLC与RC电路

合集下载

OrCAD-PSpice混合电路仿真与基本使用教程

OrCAD-PSpice混合电路仿真与基本使用教程
OrCAD-PSpice混合电路仿真和基本 使用教程
5.7 绘制总线BUS
绘制总线
OrCAD-PSpice混合电路仿真和基本 使用教程
总线连接线(bus entry)不具有电气意 义; 应用网络标号进行导线连接;
OrCAD-PSpice混合电路仿真和基本 使用教程
总线应用实例
OrCAD-PSpice混合电路仿真和基本 使用教程
OrCAD-PSpice混合电路仿真和基本 使用教程
OrCAD-PSpice混合电路仿真和基本 使用教程
生成新图纸
OrCAD-PSpice混合电路仿真和基本 使用教程
最大化
OrCAD-PSpice混合电路仿真和基本 使用教程
菜单栏 主工具栏
PSpice工具栏
绘图工具栏
OrCAD-PSpice混合电路仿真和基本 使用教程
方法2 Place Part Add Library
OrCAD-PSpice混合电路仿真和基本 使用教程
查找库文件
OrCAD-PSpice混合电路仿真和基本 使用教程
5.3 变更鼠标选取对象部方分选式中、
还是全部选中
OrCAD-PSpice混合电路仿真和基本 使用教程
Select选项卡
OrCAD-PSpice混合电路仿真和基本 使用教程
PAGE1(NEW)
OrCAD-PSpice混合电路仿真和基本 使用教程
OrCAD-PSpice混合电路仿真和基本 使用教程
PAGE1(OLD)
OrCAD-PSpice混合电路仿真和基本 使用教程
PAGE2(OLD)
OrCAD-PSpice混合电路仿真和基本 使用教程
OrCAD-PSpice混合电路仿真和基本 使用教程

Orcad PSpice

Orcad PSpice

Orcad PSpiceOrCAD PSpice培训教材培训目标:熟悉PSpice的仿真功能,熟练掌握各种仿真参数的设置方法,综合观测并分析仿真结果,熟练输出分析结果,能够综合运用各种仿真对电路进行分析,学会修改模型参数。

一、 PSpice分析过程设置仿真参数绘制原理图运行仿真观测并分析仿真结果二、绘制原理图原理图的具体绘制方法已经在Capture中讲过了,下面主要讲一下在使用PSpice时绘制原理图应该注意的地方。

1、新建Project时应选择Analog or Mixed-signal Circuit2、调用的器件必须有PSpice模型首先,调用OrCAD软件本身提供的模型库,这些库文件存储的路径为Capture\Library\pspice,此路径中的所有器件都有提供PSpice模型,可以直接调用。

其次,若使用自己的器件,必须保证*.olb、*.lib两个文件同时存在,而且器件属性中必须包含PSpice Template属性。

3、原理图中至少必须有一条网络名称为0,即接地。

4、必须有激励源。

原理图中的端口符号并不具有电源特性,所有的激励源都存储在Source和SourceTM库中。

5、电源两端不允许短路,不允许仅由电源和电感组成回路,也不允许仅由电源和电容组成的割集。

解决方法:电容并联一个大电阻,电感串联一个小电阻。

6、最好不要使用负值电阻、电容和电感,因为他们容易引起不收敛。

三、仿真参数设置2PSpice能够仿真的类型在OrCAD PSpice中,可以分析的类型有以下8种,每一种分析类型的定义如下:直流分析:当电路中某一参数(称为自变量)在一定范围内变化时,对自变量的每一个取值,计算电路的直流偏置特性(称为输出变量)。

交流分析:作用是计算电路的交流小信号频率响应特性。

噪声分析:计算电路中各个器件对选定的输出点产生的噪声等效到选定的输入源(独立的电压或电流源)上。

即计算输入源上的等效输入噪声。

OrCAD PSpice培训资料

OrCAD PSpice培训资料

2024/1/27
47
案例二:振荡器电路设计与仿真分析
• 设计振荡电路和反馈网络,确保起振和稳定振荡。
2024/1/27
48
案例二:振荡器电路设计与仿真分析
2024/1/27
01
仿真分析
02
使用PSpice进行电路仿真,观察振荡波形。
03
分析振荡频率、幅度稳定性、相位噪声等性能指标 。
仿真分析
支持多种仿真类型,如直流分析、交流分析、 瞬态分析等。
结果查看
提供多种结果查看方式,如波形图、数据表等。
2024/1/27
17
基本操作与快捷键使用
新建文件
选择菜单栏中的“文件”->“新建 ”命令。
打开文件
选择菜单栏中的“文件”->“打开” 命令。
2024/1/27
18
基本操作与快捷键使用
优化方法
为了提高模型的仿真精度和效率,可以采用以下优化方法
1. 采用更精确的模型
对于某些关键元器件,可以采用更精确的模型进行仿真, 以提高仿真精度;
2024/1/27
2. 优化算法
采用更高效的算法进行仿真计算,以提高仿真速度;
3. 并行计算
利用计算机的多核处理器进行并行计算,缩短仿真时间;
4. 减少仿真步长
性和稳定性。
2024/1/27
电路设计流程
掌握电路设计的基本流程,包括需 求分析、原理图设计、PCB布局布 线、电路测试与验证等步骤。
电路设计工具
熟悉常用的电路设计工具,如 OrCAD Capture、Altium Designer等,提高设计效率和质量 。
8
仿真技术在电路设计中的应用
仿真技术概述

电容三点式振荡电路详解及Multisim实例仿真

电容三点式振荡电路详解及Multisim实例仿真

L C6
8
C5
All rights reserved, NO Spreading without Authorization
Author: Jackie Long
谐振回路的总电容即克拉波电路中的总电容与 C6 的并联,再次将三极管寄生极间 电容的接入系数降低。 总之就是不断地降低晶体管极间电容对谐振频率的影响, 此时电 路的谐振频率如下所示:
3
C4 480pF
R4 100Ω 0
克拉波振荡 我们可以更 荡电路的稳定 定性很好, 但其 其频率可调范 范围比较小, 更进一步改进 进克拉 波振 振荡电路,如 如下图所示:
7
All rights reserved, NO Spreading without Authorization
+ + Q1 C2
+ L RC
uo
RE
C1 +
从图上可以看出,基极输入(假设有输入)经过三极管放大后的输出电压 uo,再经过 电容 C2 与 C1 分压后施加在三极管的 BE 结之间形成正反馈,因此其反馈系数如下式:
F
Байду номын сангаас
C1 C1 C2
反馈系数一般取值 0.1~0.5,太小不容易起振,太大则容易使电路放大倍数与回路有载 Q 值下降,这样容易使振荡波形产生失真,输出频率稳定度也会相应地降低。 我们用下图所示电路参数进行仿真:
+ + C1 Q1 + L
从上图可以看出,电容三点式 LC 正弦波振荡电路的重要特性是:与三极管发射极相连 的两个电抗元件为相同性质的电抗元件,而与三极管集电极(或基极)相连接的电抗元件是 相反性质的。如果合理设置电路参数使其满足起振条件,则电路将开始振荡,如果忽略分布 电容、三极管参数等因素,此电路的振荡频率 f0 如下式:

OrCAD-pspice使用说明

OrCAD-pspice使用说明

图6
结束放置可用快捷方式,即点击鼠标由键,出现图 7 所 示菜单。执行“End Mode”即结束放置。若元件需要旋转, 则选中要旋转的元件,执行图 7 中的“Rotate”命令,元件旋 转 90°,依次执行该命令可继续旋转。也可从 Capture 主菜单 中执行 Edit\Rotate。
(2) 放置 VCVS 和 CCVS:可从图 6 元件列表中分别选元 件 E 和 H。放置操作与放置电阻元件相同。
计算机辅助设计(Computer-Aided Design-CAD) 电子设计自动化(Electronic Design Automation-EDA) CAD 技术是一种通用技术,在各行各业均得到了广泛的应用。尤其是在电子行业中, 其应用不仅面广,而且发展迅速。在设计自动化(DA:Design Automation)方面更是取得 了突破性的进展。目前,在电子设计领域,设计技术正从 CAD 向 DA 过渡,一般统称为电 子设计自动化(EDA)。 OrCAD 公司是开发 EDA 技术的突出代表。OrCAD 开发的软件是一个完整的 EDA 系统, 其主要构成如图 1 所示。
下面以图直流电阻电路为例说明绘制方法:
4U2

+I
+
3Ω 10V
12Ω U2


12Ω
+ 6I −
图5 (1) 放置电阻:由图 4 中选择执行 Place\Part,从 Labraries 中选中 ANALOG,再从显示 的元件列表中选择电阻元件 R,然后按 OK 按钮即可在 Schematic1 窗口中放置元件 R 了(见 图 6)。点击鼠标左键,一个电阻元件便放置完成,重复按鼠标左键可继续放置第 2 个,第 3 个,…,电阻元件。

第二讲ORCAD之PSPICEAD数模混合仿真模块-文档资料

第二讲ORCAD之PSPICEAD数模混合仿真模块-文档资料

请看演示…….
PSpice 交流分析
运行仿真程序,放置电压探针在out端(或者在 Probe 演示窗口中加入V(out)波形 ) 仿真结果如下:

PSpice 中的噪声分析


噪声分析是针对电路中固有噪声(如电阻和半导体的工作 噪声)所做的分析,它的计算结果时所求节点相对于输入 独立源的等效噪声。 伴随AC交流分析而进行 所涉及的噪声种类:
PSpice 中的噪声分析

V(INOISE)和V(ONOISE) (菜单 Trace>Add Trace…或 快捷 键 ) INOISE 即INPUT NOISE ONOISE 即OUTPUT NOISE
5.确定后,运行仿真。在PSpice A/D窗口中加入波形
噪声的计算方法: 输出节点的总噪声除 以相对输入激励源的 电路的总增益

编写VHDL (EXPRESS) 绘制电路图 (CAPTURE) 进行电路混合仿真 (PSPICE A/D) 设计电路板 (LAYOUT)
VHDL仿真 (EXPRESS)
运用 PSpice 的基本条件
1.待仿真的元器件模型必须是PSpice的仿 真模型 2.电路中应该含有激励源,并且符合相应 的电路特性分析类型的要求 3.必须设置好合适的电路特性分析类型
热噪声: 电子的无序运动引起 散弹噪声:单位时间通过PN结的载流子数目变化造成 闪烁噪声: 能量主要集中在低频段,由于生产工艺的缺陷而引起


等效噪声:将整个电路中的噪声源都集中折算到选定的独 立源处,然后计算在等效的噪声源的激励下,所求节点处 产生的噪声。 PSpice可以分析每个频率点上指定节点的等效输出噪声电 压和指定输入端的等效输入噪声电压。噪声电压的单位是 V A 或 Hz ,即把噪声电平对噪声带宽的均方根进行归 Hz 一化

电路原理仿真练习 OrCADPSpice 软件使用方法简介

电路原理仿真练习OrCAD/PSpice软件使用方法简介一、直流电阻电路的仿真直流仿真包括直流工作点(bias point)、直流扫描(DC sweep)和灵敏度(sensitivity)分析。

以OrCAD Demo 9.0为例,仿真步骤如下:1.运行Capture CIS Demo。

2.创建新项目(Project)。

执行File\New\Project,出现“New Project”对话框。

在“Name”处输入设计项目名称;中间的四个选项中点击选中“Analog or Mixed-Signal Ciecuit”;在“Location”处指定项目有关文件所放路径;点击Ok,出现“Analog Mixed-Mode Project Wizard”对话框。

3.添加元件库。

在2中出现的对话框中,用鼠标左键双击左边方框中要用到的元件库名(或先用鼠标选中元件库名,再按Add),则该元件库名出现在右边方框内;按完成按钮。

即出现电路图绘制窗口Schematic。

4.放置元件。

点击Place\Part,出现“Place Part”对话框;在“Libraries”下面方框中选择所要用的元件库。

R, L, C元件及受控源在Analog库中,独立源在Source 库中。

独立电压源元件以V开头,独立电流源元件以I开头,例VDC表示直流电压源,IAC表示交流电流源等。

在Libraries上面的方框中选中元件,按OK,元件就会出现在绘图窗口,按鼠标左键即可将元件放置在所需位置。

若还需再加该种元件,则可再按鼠标左键放置即可。

若要结束该种元件的放置,则按鼠标右键,选“End Mode”。

其它元件可按同样方法绘制。

激活元件按鼠标右键选“rotate”可改变元件方向。

5.设置元件参数。

每个电路元件均有默认值,元件放置后可根据要仿真的的电路设置其参数。

像RLC元件和直流电源,可直接用鼠标点击元件一侧的元件值,在对话框中输入元件值即可。

振荡器仿真分析与设计(EDA软件PSPICE仿真)☆

3.7 电路参数的调整 34
结 论 37
致 谢 38
参考文献 39
附录A 硬件电路测试方法 40
Tags:振荡 仿真 分析 设计 软件
4、压控灵敏度 压控灵敏度是指单位控制电压变化所能产生的频率偏移
5、最大频率偏移 最大频率偏移是指调角信号瞬时频率偏离载频的最大值,它与调制指数和带宽都有密切的关系。
本设计要达到的技术指标是:中心频率6.5MHz,输出电压大于200mV,最大频率偏移50KHz,调制频率500Hz-10KHz,调制灵敏度大于50KHz/V。
2、调谐范围 调谐范围是指振荡频率的调节变化范围,我们一般用相对调谐范围来描述调谐范围,相对调谐范围定义为
式中 ——控制电压最低时的最低频率;
——控制电压最高时的最高频率;
——中心频率;
——绝对调谐范围, 。
3、输出振幅 对于振荡器的频率输出,需要它的波形有一定的幅度,能达到大的输出振幅是再好不过的,这样会使输出波形对噪声不敏感。振幅的增加可以通过牺牲功耗、电源电压甚至是调节的范围来得到,同时,要求输出振幅在整个频率范围内是恒定的。
3.1.2 电路仿真分析流程 17
3.2 压控振荡电路的仿真分析 19
3.2.1 主振电路的仿真分析 19
3.2.2 调频电路的仿真分析 26
3.3 静态工作点对电路的影响 28
3.4 反馈系数对电路的影响 31
3.5 变容二极管接入系数对电路的影响 31
3.6 调制频率对电路的影响 33
振荡器仿真分析与设计(EDA软件PSPICE仿真)☆
摘 要
振荡器自其诞生以来就一直在通信、、航海航空航天及医学等领域扮演重要的角色,具有广泛的用途。随着移动通信的广泛应用,通信与测试设备都使用基于频率合成的频率控制技术,调制、发射、接收和解调中涉及到很多频率的组合与变换。而锁相环作为主流的无线电频率合成技术,压控振荡器是其核心部件。本论文熟练掌握了EDA软件PSPICE,并将其应用于压控振荡器的仿真设计。首先,根据电路的性能指标要求,对压控振荡器的电路参数进行工程估算;然后,基于估算的电路参数,利用仿真软件做进一步的精确模拟分析,在观测、分析压控振荡器的静态工作点、反馈系数、变容二极管接入系数对电路性能的影响的基础上,调整电路的参数,从而达到优化电路参数的目的,以使电路的各项性能指标满足预期的设计要求。

利用OrCAD电路设计软件分析RLC电路频率特性

利用OrCAD电路设计软件分析RLC电路频率特性作者:郭旭凯来源:《电子技术与软件工程》2017年第12期摘要本文利用OrCAD/Pspice电路设计软件研究RLC串、并联电路中由于参数的改变对电路的频率特性造成的影响。

通过软件仿真得到结果:当中心频率f0=1.59kHz时与通过理论计算的值相近。

在R LC电路中,电阻R的值越小,则通频带就越窄;而且中心频率f0的值和电路参数R无关,但当LC的乘积减小时,中心频率f0的值增大。

【关键词】OrCAD电路仿真RLC串并联电路电路参数1 引言伴随着大规模集成电路以及计算机技术的快速发展,特别是互联网+提出之后,利用计算机软件对电子电路进行分析与设计的方法越来越广泛的应用。

目前OrCAD/Pspice电路设计软件是一个应用广泛的对电子线路进行分析设计的软件,它有强大的电路设计与仿真能力的能力,对电子线路进行直流、交流和瞬态分析,以及更为复杂的傅里叶分析、谐波失真分析操作简单,易于得到仿真结果。

本文借助OrCAD/Pspice电路设计软件,通过分析RLC串、并联电路的频率响应对电路的频率特性的影响,调整RLC电路的元器件参量,进而对电路进行优化。

2 OrCAD/Pspice在RLC电子线路仿真中的优势作用因为在RLC电路中有电容元件和电感元件,所以当给定得激励源的频率f发生改变时,RLC电路中的感抗和容抗相应的也会发生改变,进而影响电路的工作状态。

严重的时候,RLC 电路将不能正常工作,并对其他电路模块造成影响。

例如当激励源的频率f的改变超过正常工作的范围时,RLC电路将会偏离其应该正常的工作范围,从而出现电路失效的状况,甚至电路被损坏。

因此通过对电路的频率特性进行分析从而保证电路能正常工作就很重要。

通过对OrCAD电路进行仿真,观察仿真图,对电路中的的重要功能和特性指标进行分析,这样就能找到合适的L、C的值,进而保证电路能正常工作。

3 RLC串联电路分析3.1 RLC串联电路的交流扫描分析交流扫描分析的输出波形图横纵轴分别表示的是激励源的频率和对应的电流大小。

电路仿真软件PSPICE的应用

Pspice仿真教程目录1.PSPICE简介 12.PSPICE使用说明 73.PSPICE的应用实例Ⅰ 174.PSPICE的应用实例ⅠI 35PSPICE简介随着电子计算机技术的发展,计算机辅助设计已经逐渐进入电子设计的领域。

模拟电路中的电路分析、数字电路中的逻辑模拟,甚至是印制电路板、集成电路版图等等都开始采用计算机辅助工具来加快设计效率,提高设计成功率。

而大规模集成电路的发展,使得原始的设计方法无论是从效率上还是从设计精度上已经无法适应当前电子工业的要求,所以采用计算机辅助设计来完成电路的设计已经势在必行。

同时,微机以及适合于微机系统的电子设计自动化软件的迅速发展使得计算机辅助设计技术逐渐成为提高电子线路设计的速度和质量的不可缺少的重要工具。

一、PSPICE软件在电路设计工作方面,最初使用的是Protel公司DOS版本的Tango软件,在当时这一软件被看作是多么的先进,因为在这以前没有人能像电脑那样快速、准确的画出电路图,制出电路板。

如今,随着Windows95/98及NT操作系统的出现,一些更方便、快捷的电路设计软件应运而生。

如:Tango、Protel、OrCAD、PSpice、Electronics Workbench、VeriBest、PAD2000等。

PSpice是较早出现的EDA(Electronic Design Automatic,电路设计自动化)软件之一,也是当今世界上著名的电路仿真标准工具之一,1984年1月由美国Microsim公司首次推出。

它是由Spice发展而来的面向PC机的通用电路模拟分析软件。

Spice(Simulation Program with Integrated Circuit Emphasis)是由美国加州大学伯克利分校开发的电路仿真程序,它在众多的计算机辅助设计工具软件中,是精度最高、最受欢迎的软件工具。

随后,版本不断更新,功能不断完善。

基于DOS操作系统的PSpice5.0以下版本自80年代以来在我国得到广泛应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.12.5 瞬态分析参数设置
F X C
简单的RC电路
图2.12.6 电容器两端的Spice应用举例 阻尼振荡器、RLC与RC电路
浙江大学电工电子教学中心
F X C
阻尼振荡器
V1:分段线性源
图2.5.1 阻尼振荡器电路图
图2.5.2 分段线性源
F X C
阻尼振荡器
阻尼振荡器瞬态分析参数设置
F X C
阻尼振荡器
图2.5.3 电容器两端的波形曲线
F X C
简单的RLC电路
V1:正弦源(VSIN)
图2.12.1 RLC电路图
F X C
简单的RLC电路
2.12.2 瞬态分析与参数分析的参数设置
F X C
简单的RLC电路
图2.12.3 电容器两端的波形曲线
F X C
简单的RC电路
图2.12.4 RC电路图
F X C
简单的RC电路
注:电容器未 设初始条件需 在瞬态分析设 置选项中设置 Skip initial transient solution (忽 略初始瞬态 解) ,若电 容器设置了初 始条件 (IC=0)可 不选此项。
相关文档
最新文档