控制系统仿真课程设计
控制系统MATLAB仿真与应用课程设计

控制系统MATLAB仿真与应用课程设计1. 选题背景现代工业领域,控制系统是自动化生产过程中不可或缺的一部分。
因此,控制系统课程在自动化工程专业中被广泛开设。
其中,MATLAB作为自动化领域常用的仿真软件,能够快速、有效地建立和分析控制系统模型,被广泛应用于自动化工程课程中。
在此基础上,控制系统MATLAB仿真与应用课程设计成为了自动化工程专业不可或缺的一部分。
本文旨在探讨控制系统MATLAB仿真与应用课程设计的内容和方法。
2. 课程设计内容2.1 课程设计的目标控制系统MATLAB仿真与应用课程设计的目标是通过理论学习和实际实践,使学生熟悉控制系统的基本理论和仿真方法,掌握MATLAB仿真软件的基本操作和控制系统建模方法,同时在课程的实践环节中,能够完成基于MATLAB的控制系统仿真设计任务,提高学生的综合能力和实践能力。
2.2 课程设计的内容课程设计主要包括以下内容:2.2.1 控制系统理论基础•控制系统基本概念和分类•控制系统数学模型及其性质•控制系统稳定性和响应特性分析•PID控制器设计方法与参数调整技巧2.2.2 MATLAB基础•MATLAB软件环境介绍•MATLAB基本语法和数据类型•MATLAB常用函数和命令介绍•MATLAB绘图和数据可视化2.2.3 控制系统MATLAB仿真案例设计•基于MATLAB的控制系统建模方法•控制系统仿真设计实例讲解与分析•控制系统故障诊断与调试方法介绍•控制系统实验结果分析和讨论2.3 课程设计的实践环节课程设计中,学生要根据课程设计的要求,完成相应的仿真实验。
实验包括但不限于以下内容:•PID控制器的设计与参数调整•负反馈系统的稳态和暂态响应特性分析与仿真•步进电机控制系统的设计与仿真•直流电机控制系统的设计与仿真•温度控制系统的设计与仿真在实践过程中,学生要能够熟练使用MATLAB仿真软件,根据实验要求完成系统的建模、仿真和实验现场的调试与测试。
控制系统仿真课程设计.

控制系统仿真课程设计(2010级)题目控制系统仿真课程设计学院自动化专业自动化班级学号学生姓名指导教师王永忠/刘伟峰完成日期2013年7月控制系统仿真课程设计(一)——锅炉汽包水位三冲量控制系统仿真1.1 设计目的本课程设计的目的是通过对锅炉水位控制系统的Matlab仿真,掌握过程控制系统设计及仿真的一般方法,深入了解反馈控制、前馈-反馈控制、前馈-串级控制系统的性能及优缺点,实验分析控制系统参数与系统调节性能之间的关系,掌握过程控制系统参数整定的方法。
1.2 设计原理锅炉汽包水位控制的操作变量是给水流量,目的是使汽包水位维持在给定的范围内。
汽包液位过高会影响汽水分离效果,使蒸汽带水过多,若用此蒸汽推动汽轮机,会使汽轮机的喷嘴、叶片结垢,严重时可能使汽轮机发生水冲击而损坏叶片。
汽包液位过低,水循环就会被破坏,引起水冷壁管的破裂,严重时会造成干锅,甚至爆炸。
常见的锅炉汽水系统如图1-1所示,锅炉汽包水位受汽包中储水量及水位下汽包容积的影响,而水位下汽包容积与蒸汽负荷、蒸汽压力、炉膛热负荷等有关。
影响水位变化的因素主要是锅炉蒸发量(蒸汽流量)和给水流量,锅炉汽包水位控制就是通过调节给水量,使得汽包水位在蒸汽负荷及给水流量变化的情况下能够达到稳定状态。
图1-1 锅炉汽水系统图在给水流量及蒸汽负荷发生变化时,锅炉汽包水位会发生相应的变化,其分别对应的传递函数如下所示:(1)汽包水位在给水流量作用下的动态特性汽包和给水可以看做单容无自衡对象,当给水增加时,一方面会使得汽包水位升高,另一方面由于给水温度比汽包内饱和水的温度低,又会使得汽包中气泡减少,导致水位降低,两方面的因素结合,在加上给水系统中省煤器等设备带来延迟,使得汽包水位的变化具有一定的滞后。
因此,汽包水位在给水流量作用下,近似于一个积分环节和惯性环节相串联的无自衡系统,系统特性可以表示为()111()()(1)K H S G S W S s T s ==+ (1.1) (2)汽包水位在蒸汽流量扰动下的动态特性在给水流量及炉膛热负荷不变的情况下,当蒸汽流量突然增加时,瞬间会导致汽包压力的降低,使得汽包内水的沸腾突然加剧,水中气泡迅速增加,将整个水位抬高;而当蒸汽流量突然减小时,汽包内压力会瞬间增加,使得水面下汽包的容积变小,出现水位先下降后上升的现象,上述现象称为“虚假水位”。
计算机仿真技术与CAD基于MATLAB的控制系统第四版课程设计

计算机仿真技术与CAD基于MATLAB的控制系统第四版课程设计一、课程设计的背景随着计算技术的发展,越来越多的机电设备采用了控制系统,从而提高了生产力和工作效率。
因此,控制系统的设计和仿真技术也得到了越来越广泛的应用。
为了提高控制系统的性能,提高系统的可靠性和稳定性,需要采用控制系统设计和仿真技术。
在此背景下,本次课程设计旨在通过MATLAB软件对控制系统进行仿真设计,从而提高学生的控制系统设计和仿真技能。
二、课程设计的目的本次课程设计的目的主要包括以下几个方面:1.提高学生的控制系统设计和仿真能力;2.增强学生的MATLAB编程技术;3.帮助学生理解控制系统的基本原理及其应用;4.增强学生团队合作和沟通能力。
三、课程设计的内容和要求本次课程设计主要有以下内容和要求:3.1 选题背景和意义选题需要有明确的背景和意义,可以结合实际应用场景进行选择。
3.2 系统分析与模型建立学生需要对待设计的控制系统进行系统分析,并建立相应的模型。
包括控制系统的框图、信号流图、传递函数、状态空间等。
3.3 控制器的设计与仿真学生需要对设计的控制系统设计相应的控制器,并进行仿真评估。
包括根轨迹法、频域设计法、状态反馈控制、PID控制等。
3.4 性能分析与评价学生需要对仿真结果进行性能分析与评价。
包括阶跃响应,超调量,稳态误差等。
3.5 实验设计与编程实现学生需要将设计的控制系统进行实验设计,并用MATLAB编写程序进行实现与测试。
3.6 结果分析与总结学生需要对实验结果进行分析与总结,从控制效果、系统应用等方面加以评价。
四、课程设计的实施方法本次课程设计的实施方法主要包括以下几个方面:1.采取团队合作的方式进行任务分配和工作安排;2.利用网上资源和实验平台,进行实践学习与实验操作;3.在课程设计的过程中,主要采用课堂授课和实验操作相结合的方式进行;4.通过实验操作和讨论,进行知识交流和实践探索。
五、课程设计的评价方法本次课程设计的评价主要从以下几个方面进行:1.对学生在选题、模型分析、控制器设计、仿真评价等方面的表现和成果进行评价;2.对学生实验操作能力和MATLAB编程水平进行评价;3.对团队合作和沟通能力进行评价;4.对报告和总结的撰写质量进行评价。
基于matlab的pid控制仿真课程设计

这篇文章是关于基于Matlab的PID控制仿真课程设计的,主要内容包括PID控制的基本原理、Matlab的应用、课程设计的目的和意义、课程设计的具体步骤和具体操作步骤。
文章采用客观正式的语气,结构合理,旨在解释基于Matlab的PID控制仿真课程设计的重要性和实施方法。
1. 简介PID控制是一种常见的控制算法,由比例项(P)、积分项(I)和微分项(D)组成,可以根据被控对象的实际输出与期望输出的偏差来调整控制器的输出,从而实现对被控对象的精确控制。
Matlab是一种强大的数学建模与仿真软件,广泛应用于工程领域,尤其在控制系统设计和仿真方面具有独特优势。
2. PID控制的基本原理PID控制算法根据被控对象的实际输出与期望输出的偏差来调整控制器的输出。
具体来说,比例项根据偏差的大小直接调整输出,积分项根据偏差的积累情况调整输出,微分项根据偏差的变化速度调整输出。
三者综合起来,可以实现对被控对象的精确控制。
3. Matlab在PID控制中的应用Matlab提供了丰富的工具箱,其中包括控制系统工具箱,可以方便地进行PID控制算法的设计、仿真和调试。
利用Matlab,可以快速建立被控对象的数学模型,设计PID控制器,并进行系统的仿真和性能分析,为工程实践提供重要支持。
4. 课程设计的目的和意义基于Matlab的PID控制仿真课程设计,旨在帮助学生深入理解PID控制算法的原理和实现方法,掌握Matlab在控制系统设计中的应用技能,提高学生的工程实践能力和创新思维。
5. 课程设计的具体步骤(1)理论学习:学生首先需要学习PID控制算法的基本原理和Matlab在控制系统设计中的应用知识,包括控制系统的建模、PID控制器的设计原理、Matlab的控制系统工具箱的基本使用方法等。
(2)案例分析:学生根据教师提供的PID控制实例,在Matlab环境下进行仿真分析,了解PID控制算法的具体应用场景和性能指标。
(3)课程设计任务:学生根据所学知识,选择一个具体的控制对象,如温度控制系统、水位控制系统等,利用Matlab建立其数学模型,设计PID控制器,并进行系统的仿真和性能分析。
计算机控制技术与系统仿真课程设计

计算机控制技术与系统仿真课程设计课程背景计算机控制技术与系统仿真课程旨在培养学生对计算机控制技术的理解和应用,并通过系统仿真的方式加深对计算机控制系统的认识和理解。
在课程设计阶段,学生需要通过理论学习和实践操作,设计、实现和仿真计算机控制系统,加深对计算机控制技术与系统的认知与理解,为未来从事相关领域的工作做好准备。
课程内容计算机控制技术与系统仿真课程主要包括以下内容:1.计算机控制技术的基本概念和原理;2.计算机控制系统的结构和组成;3.控制系统设计的基本方法和流程;4.程序设计语言的基础;5.计算机控制系统仿真理论和方法;6.计算机控制系统仿真工具的使用。
课程设计任务在完成以上课程内容的学习后,学生需要完成本课程设计任务,设计并实现一个计算机控制系统,然后通过系统仿真工具进行仿真。
具体任务要求如下:任务要求1.设计一个计算机控制系统,能够完成对温度、湿度等环境参数的检测和控制;2.根据需求设计系统的控制算法,编写程序进行控制;3.使用仿真工具进行系统仿真,验证设计的控制算法是否正确;4.提交课程设计报告,包括系统的设计与实现、仿真结果分析和总结等。
设计要求1.设计系统的结构和组成,包括传感器、执行机构、控制器等;2.选择合适的控制算法,保证系统的稳定性和响应速度;3.编写程序代码,实现控制算法;4.使用仿真工具对系统进行仿真,记录仿真结果和分析结果数据。
设计思路在控制系统设计过程中,首先需要设计系统的结构和组成。
根据设计要求,以温度、湿度为控制参数,需要选取合适的传感器进行检测,以及选取合适的执行机构进行控制。
控制器的选取需要考虑控制要求的稳定性和响应速度等特点。
在确定了系统的结构后,需要选择合适的控制算法进行程序设计。
对于温度和湿度控制,最常用的控制算法是比例-积分-微分控制(PID控制),它能够根据检测到的温湿度数据自动调节控制器输出,实现系统的自动控制。
在编写控制程序之后,需要使用仿真工具进行系统仿真,以验证程序的正确性和系统稳定性。
高楼电梯自动控制系统电路课程设计用Multisim仿真

高楼电梯自动控制系统电路课程设计用Multisim仿真高楼电梯自动控制系统的整体结构是将控制器,轿厢系统,电梯机房系统以及外部系统四个部分结合在一起而成。
本次课程设计以Multisim为软件设计平台,仿真实现高楼电梯自动控制系统,使用到的系统原理如下:1)运行系统:由本次仿真中,采用的PLC控制器作为整个控制器,PLC控制器根据参数设定,计算出应该运行的速度并发送给控制电路后,便能开始控制电梯的运行。
2)轿厢系统:轿厢系统主要包括安全门,照明设备,按钮等设备,当电梯处于运行状态时,安全门会处于关闭状态,在轿厢内可以看到电梯状态,按钮可以根据不同情况设定电梯的运行方向。
3)电梯机房系统:电梯机房系统需要实现轿厢与机房之间的位置对比,当相对应位置相同时,就会触发电梯机房系统以此实现电梯移动。
4)外部系统:外部系统包括各种信号接口,用来连接电梯系统与外部系统,使外部控制者可以控制电梯运行,并实现系统的安全性。
在Multisim的拓扑设计上,运行系统、轿厢系统、电梯机房系统和外部系统主要分别由八级可编程软件,PLC控制器,电机控制器以及各种信号接口组成。
为此,本次课程设计采用Multisim来仿真实现高楼电梯自动控制系统,并以此方式实现电梯各个部件之间正确的控制与协调。
本次课程设计采用Multisim来仿真高楼电梯自动控制系统,使用到的电路原理是:将PLC控制器、轿厢系统、电梯机房系统以及外部系统等做拓扑设计,使电梯各个部件之间正确的控制与协调,以实现电梯的自动控制功能。
本次课程设计能够让我们更加深入理解电梯自动控制系统,并能够实践让学生掌握控制系统的设计和实现技巧。
通过本次课程设计,我们通过Multisim软件,实现了高楼电梯自动控制系统的仿真,在此基础上,我们可以更好地理解电梯自动控制系统的原理,并能够实践掌握自动控制系统的设计与实现技巧,从而提升实际应用能力。
控制系统设计课程设计

控制系统设计 课程设计一、课程目标知识目标:1. 学生能够理解控制系统的基本概念、原理及分类。
2. 学生能够掌握控制系统的数学模型及其建立方法。
3. 学生能够掌握控制系统的性能指标及其计算方法。
4. 学生能够了解不同类型控制器的设计方法和应用场景。
技能目标:1. 学生能够运用所学知识对简单的控制系统进行数学建模。
2. 学生能够运用控制理论对系统性能进行分析和评价。
3. 学生能够运用设计方法,完成针对特定需求的控制系统设计。
4. 学生能够通过实验或仿真,验证控制系统设计的有效性。
情感态度价值观目标:1. 学生培养对控制系统设计和分析的浓厚兴趣,提高解决实际问题的热情。
2. 学生培养严谨的科学态度,注重实验数据和理论分析的结合。
3. 学生培养团队协作精神,学会与他人共同探讨、解决问题。
4. 学生增强创新意识,敢于尝试新方法,勇于面对挑战。
本课程旨在使学生在掌握控制系统基本知识的基础上,提高解决实际问题的能力,培养创新意识和团队协作精神。
针对高中年级学生的认知特点,课程内容将从理论到实践,由浅入深地进行教学。
在教学过程中,注重启发式教学,引导学生主动探索,将所学知识应用于实际问题中。
通过课程学习,使学生能够具备控制系统设计和分析的基本能力,为后续学习打下坚实基础。
二、教学内容1. 控制系统基本概念:控制系统定义、分类、组成部分及其功能。
- 教材章节:第1章 控制系统概述2. 控制系统数学模型:传递函数、状态空间表示、数学建模方法。
- 教材章节:第2章 控制系统的数学模型3. 控制系统性能指标:稳态性能、动态性能、性能指标计算方法。
- 教材章节:第3章 控制系统的性能指标4. 控制器设计方法:PID控制、状态反馈控制、最优控制等。
- 教材章节:第4章 控制器设计方法5. 控制系统仿真与实验:利用MATLAB/Simulink进行控制系统仿真,开展实验验证。
- 教材章节:第5章 控制系统仿真与实验6. 应用案例分析:分析典型控制系统的设计过程及其在实际工程中的应用。
控制系统课程设计报告--- 控制系统设计与仿真

本科课程设计报告目录控制系统课程设计报告 (1)课程设计题目 (3)实验设备 (3)实验目的 (3)实验背景 (3)实验内容 (3)任务一: (3)了解MATLAB的使用环境,掌握基本的MATLAB编程语法和语句 (3)任务二: (5)了解Simulink的使用环境,掌握Simulink的模块化编程步骤 (5)任务三: (5)对所有过程控制系统对象进行分析,分析所有参数的变化情况 (5)1.一阶系统 (6)2.二阶系统 (7)3.多阶系统 (9)任务四-六: (10)单回路控制系统仿真,PID控制原理,PID参数对控制系统性能的影响 (10)1.被控对象特性在系统中的仿真分析研究 (10)2.执行器在系统中的仿真分析研究 (12)3.控制器特性在系统中的仿真分析研究 (13)4.变送器特性在系统中的仿真分析研究 (15)任务七-八: (17)根轨迹法的基本原理;根轨迹的绘制方法、增益的选择、稳态误差的消除措施 (17)1.根轨迹理论的仿真分析 (17)2.减小消除稳态误差的措施 (18)任务九-十一: (21)频域响应法的基本原理;Bode图的绘制、带宽频率的选择;频率法校正 (21)1.利用伯德图观察幅频与相频特性 (21)2.基于bode图对系统相关指标分析 (22)任务十二-十四: (25)串级控制系统、前馈控制系统、比值控制系统设计,与单回路比较 (25)1.串级控制系统 (25)2.前馈控制系统 (26)3.比值控制系统 (28)任务十五: (29)数字PID控制算法的实验研究 (29)实验总结 (29)参考文献 (29)课程设计题目: 控制系统设计与仿真实验设备:含有MATLAB R2008a 的HP计算机一台.实验目的:通过实验,深入了解MATLAB矩阵实验室的操作,simulink仿真的使用以及各种控制系统的特性,从而为接下来的实体实验打下坚实的基础.有利于学习通过仿真对不能很轻易实现的实验进行分析研究,理解仿真与实际实验的密切关系.实验背景:一学期的自动控制原理课程修习;一学期的过程控制课程修习;一学期的控制系统设计与仿真课程修习;简单的MA TLAB程序应用.实验内容:任务一:了解MATLAB的使用环境,掌握基本的MATLAB编程语法和语句;MATLAB简介:MATLAB是矩阵实验室(Matrix Laboratory)的简称,是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
内蒙古科技大学本科生课程设计论文题目:基于SIMULINK的载热体前馈-反馈控制系统仿真研究学生姓名:蒙龙华学号:1067112303专业:测控技术与仪器班级:测控3班指导教师:李琦2013年12月9日内蒙古科技大学课程设计任务书摘要前馈控制系统和反馈控制系统都属于单回路控制系统,它们有各自的优缺点。
诸如前馈控制能根据干扰值的大小在被调参数偏离给定值之前进行控制,使被调量始终保持在给定值上,但这种控制方式也存在局限,首先表现在前馈控制系统中不存在被调量的反馈,即对于补偿的结果没有检验手段。
反馈控制是根据被调量与给定值的偏差值来控制的,反馈系统的特点是在干扰作用下,必须形成偏差才能进行调节(或偏差即将形成),如果干扰已经发生,而被调参数还没变化时,调节器是不会动作的,即反馈控制总是落后于干扰动作,因此称之为不及时控制。
因此把它们结合起来就产生了前馈—反馈复合控制系统,这种系统能把前馈与反馈的优点结合起来,既能发挥前馈调节控制及时的优点,又能保持反馈控制对各种扰动因素都有抑制作用的长处,较好地解决了控制过程中的问题,通过仿真可以得出这种系统既能获得较好的稳定性,又有较好的抗扰性能。
关键词:计算机应用软件换热器仿真分析仿真建模SIMULINK目录目录 (5)引言 (6)1 概述 (7)1.1 SIMULINK (7)1.2 换热器 (8)1. 换热器概述 (8)2.换热器的特性 (9)1.3 前馈-反馈控制系统 (10)2 控制方案 (11)2.1 载热体流量的控制方案 (11)2.2 控制系统仿真设计 (13)2.3 参数整定 (14)3 载热体流量控制系统仿真实验 (16)3.1 载热体流量控制系统仿真框图 (16)3.2载热体流量控制系统仿真响应曲线 (17)4 结语 (18)参考文献 (19)引言生产过程中必须保证产品满足一定的数量和质量的要求,同时也要保证生产的安全和经济,这就要求生产过程在预期的工况下进行。
但是,生产过程往往受到各种扰动而偏离正常工况,必须通过自动控制随时消除各种干扰,保证正常运行。
更为严重的是有时自动控制系统本身也要发生故障,这就要求在设计自动控制系统时,考虑各种可能发生的故障,并加以保护。
因此,现代的自动控制系统往往包含自动保护、自动检测、自动报警、顺序控制等内容。
有时,它们有机的组合成一个不可分割的整体,以确保控制系统的安全可靠。
以往人们对换热器控制系统进行仿真,大多采用Basic、 Fort ran、 C、C + + 等算法语言来编制仿真程序,编程复杂,而且受上述算法语言的绘图功能的限制,要绘出仿真曲线就得调用相应的软件包来作进一步的处理,使得编制、调试程序更复杂。
另外,过去建立仿真模型往往是以系统的状态方程为基础的,在仿真前需要手工求出系统的状态方程。
而换热器控制系统是一个比较复杂的系统,求取状态方程有一定的难度,若系统结构发生变化, 则需要重写状态方程,仿真程序的修改工作量很大,仿真模型的利用率低。
本文采用MATLAB下的Simulink作为仿真平台,对换热器控制系统进行建模,采用各种模型对换热器控制系统进行仿真实验。
并将仿真实验与现场试验相比较,验证仿真模型和算法的正确性,体现了模块化建模在仿真计算中的优势。
1 概述1.1 SIMULINKSIMULINK是一种强有力的仿真工具,它能让使用者在图形方式下以最小的代价来模拟真实动态系统的运行。
SIMULINK准备有数百种福定义的系统环节模型、最先进的有效积分算法和直观的图示化工具。
依托SIMULINK强健的仿真能力,用户在原型机制造之前就可建立系统的模型,从而评估设计并修复瑕疵。
SIMULINK具有如下的特点:(1)建立动态的系统模型并进行仿真。
SIMULINK是一种图形化的仿真工具,用于对动态系统建模和控制规律的研究制定。
由于支持线性、非线性、连续、离散、多变量和混合式系统结构,SIMULINK几乎可分析任何一种类型的真实动态系统。
(2)以直观的方式建模。
利用SIMULINK可视化的建模方式,可迅速地建立动态系统的框图模型。
只需在SIMULINK元件库中选出合适的模块并施放到SIMULINK建模窗口,鼠标点击连续就可以了。
SIMULINK标准库拥有超过150中,可用于构成各种不同种类的动态模型系统。
模块包括输入信号源、动力学元件、代数函数和非线性函数、数据显示模块等。
SIMULINK模块可以被设定为触发和使能的,用于模拟大模型系统中存在条件作用的子模型的行为。
(3)增添定制模块元件和用户代码。
SIMULINK模块库是可制定的,能够扩展以包容用户自定义的系统环节模块。
用户也可以修改已有模块的图标,重新设定对话框,甚至换用其他形式的弹出菜单和复选框。
SIMULINK允许用户吧自己编写的C、FORTRAN、Ada代码直接植入SIMULINK模型中。
(4)快速、准确地进行设计模拟。
SIMULINK优秀的积分算法给非线性系统仿真带来了极高的精度。
先进的常微分方程求解器可用于求解刚性和非刚性的系统、具有时间触发或不连续的系统和具有代数环的系统。
SIMULINK的求解器能确保连续系统或离散系统的仿真速度、准确地进行。
同时,SIMULINK还未用户准备一个图形化的调试工具,以辅助用户进行系统开发。
(5)分层次的表达复杂系统。
SIMULINK的分级建模能力使得体积庞大、结构复杂的模型构建也简便易行。
根据需要,各种模块可以组织成若干子系统。
在此基础上,整个系统可以按照自定向下或自底向上的方式搭建。
子模型的层次数量完全取决于所构建的系统,不受软件本身的限制。
为方便大型复杂结构系统的操作,SIMULINK还提供了模型结构浏览的功能。
(6)交互式的仿真分析。
SIMULINK的示波器可以动画和图像显示数据,运行中可调整模型参数进行What-if分析,能够在仿真运算进行时监视仿真结果。
这种交互式的特征可以帮助用户快速的评估不同的算法,进行参数优化。
由于SIMULINK完全集成于MATLAB,在SIMULINK下计算的结果可以保存到MATLAB 工作空间之中,因而就能使用MATLAB所具有的众多分析、可视化及工具箱工具操作数据。
1.2 换热器1. 换热器概述换热器(热交换器)是一股或几股流体(辅助流体)加热或冷却另一股或几股流体(目标流体),使目标流体出口温度达到工艺要求的热交换设备,特别是被加热介质是水的换热器,在供热系统中得到广泛使用。
热水换热器按参与换热器的介质分类,分为汽-水换热器和水-水换热器;按换热器的换热方式分类,分为表面式换热器和混合式换热器。
表面式换热器是冷热两种流体被金属壁面割开,而通过金属壁面高温介质将热量传给低温介质。
混合式换热器是冷热两种流体直接接触进行混合而实现换热的换热器。
目前常用的几种换热器有:容积式换热器、壳管式换热器、板式换热器、等离子体改性强化换热器等。
容积式换热器既是换热器又是贮热水罐,在未加热前在罐体存有大量冷水,热效率低,换热时间长,浪费能源,多用于生活热水和用水不均匀的工业用热水系统,主要为罐体及加热排管两部分组成。
壳管式换热器是应用最广泛的传统换热器,其最基本的构造是在圆形壳体内加许多热交换用的小管,当加热的热媒为蒸汽时为壳管汽-水换热器,加热的热媒为高温水时称为壳管水-水换热器,水-水换热器由于热交换水管内外都是水,由于小管两侧水的流速比较接近,圆形外壳直径不能太大,当加热面积不能太大,当加热面积要求较大时,常常将几段连接起来,故又称为分段式水-水热交换器,常用于热水采暖系统。
板式换热器是发展中的新型高效换热设备之一。
结构上采用特殊的波纹金属板为换热板片,使换热液体在板间流动时,能够不断改变流动方向和速度,形成激烈的湍流,以达到强化传热的效果,且传热板片采用厚度为1.2mm 左右的薄板,这就大大提高了其传热能力。
等离子体改性强化换热器,其构造基本上同壳管式换热器,蒸汽在壳程,被加热水在管程,是一种新型高效强化汽水换热器。
它比一般换热器具有以下特点:(1)换热效率高,是同体积其他换热器换热量的2倍以上。
(2)设备结构紧凑,占地面积和占用空间小,安装使用方便。
(3)由于换热管经过等离子体改性处理,换热管表面不易结垢,换热效率稳定。
(4)金属耗量低,比普通产品节约三分之一以上。
2.换热器的特性图1.1所示为换热器的换热原理,其中G1、G2分别为工艺介质及载热体的流量;T1i 、T2i 分别为工艺介质及载热体的入口温度;T1o 、T2o 分别为工艺介质及载热体的出口温度;c1、c2分别为工艺介质及载热体的比热容。
图1.1 换热器换热原理根据换热器两侧不发生相变,可得到热量平衡方程式为G2c2(T2i-T2o)=G1c1(T1o-T1i)换热器的传热速率为式中 K ——传热系数,单位是kcal/(℃*㎡*h);F ——传热面积,单位是㎡;——平均温度差,单位是℃。
对数平均值为(T2i-T1o)-(T2o-T1i)T= T2i-T1iT2o-T1i在多数情况下,当(1/3)<(T2i-T1o)/(T2o-T1i)<=3时,可采用算术平均值,其误差小于5%T=(T2i-T1o)-(T2o-T1i),2 1整理可得换热器的静态特性方程为T1o-T1i= G1c1 + 1 1+ G1c1流体出口温度为1.3 前馈-反馈控制系统工程实际中,为克服单纯前馈控制的局限性,获得良好的控制品质,产生了前馈-反馈控制系统,即在反馈控制系统的基础上附加一个或几个主要扰动的前馈控制,又称复合控制系统。
这样,依靠反馈控制来使系统在稳态时能准确的使被调量等于给定值,而在动态过程中则利用前馈控制有效地减少被调量的动态偏差(对于主要是由于扰动引起的)。
其原理框图如图1.2所示,R(s)图1.2前馈-反馈控制系统原理框图N-扰动(在此例中为料液流量D);Y-被调量(在此例中为料液温度错误!未找到引用源。
);错误!未找到引用源。
d(s)前馈调节器的传递函数;错误!未找到引用源。
1(s)-控制通道对象的传递函数;错误!未找到引用源。
f(s)-扰动通道对象的传递函数;错误!未找到引用源。
c(s) -反馈调节器的传递函数;2 控制方案根据上述分析,换热器出口温度与工艺介质入口温度、工艺介质流量、载热体入口温度、载热体流量有关。
其中,工艺介质入口温度、工艺介质流量、载热体入口温度都是有前一道工序确定,因此可测量但不可控的。
为此,换热器控制的操纵变量可选择为载热体的流量或工艺介质的旁路控制。
2.1 载热体流量的控制方案根据热量平衡方程和传热方程,在传热面积足够大时,改变载热体的流量,可有效的控制工艺介质出口温度。
当载热体压力波动不大时,可以采用工艺介质出口温度为被控变量、载热体流量为操纵变量的单回路控制系统,如图2.1所示,该方案适用于载热体流量的变化对出口温度影响较灵敏的场合。