Microstructure and wear resistance of Ti-3Zr-2Sn-3Mo- 15Nb (TLM) alloy

合集下载

铸造合金铝合金热处理工艺流程

铸造合金铝合金热处理工艺流程

铸造合金铝合金热处理工艺流程1.铸造合金铝合金热处理是一项重要的金属加工工艺。

The heat treatment of cast aluminum alloy is an important metal processing technology.2.该工艺旨在提高铝合金的强度和硬度。

This process aims to improve the strength and hardness of aluminum alloy.3.熔炼后的铸造合金首先需要进行固溶处理。

The cast alloy after melting needs to be solution treated first.4.固溶处理可以使合金元素均匀溶解在铝基体中。

Solution treatment can make alloy elements dissolve uniformly in the aluminum matrix.5.然后进行快速冷却以促进固溶体的形成。

Then rapid cooling is carried out to promote the formation of solid solution.6.冷却后的合金需要进行时效处理。

The alloy after cooling needs to be aged.7.时效处理可以进一步提高合金的硬度和强度。

Aging treatment can further improve the hardness and strength of the alloy.8.合金的时效温度和时间需要精确控制。

The aging temperature and time of the alloy need to be precisely controlled.9.此外,合金的冷却速度也对最终性能有影响。

In addition, the cooling rate of the alloy also affects the final performance.10.合金热处理的工艺参数需要根据具体合金的成分和用途进行调整。

TBM滚刀刀圈材料合金成分对组织和耐磨性能的影响

TBM滚刀刀圈材料合金成分对组织和耐磨性能的影响

第51卷第10期2020年10月中南大学学报(自然科学版)Journal of Central South University (Science and Technology)V ol.51No.10Oct.2020TBM 滚刀刀圈材料合金成分对组织和耐磨性能的影响贾连辉1,尚勇1,龙伟民2,夏毅敏3,薛广记1(1.中铁工程装备集团有限公司,河南郑州,450016;2.郑州机械研究所有限公司,河南郑州,450001;3.中南大学机电工程学院,湖南长沙,410083)摘要:为提高TBM 滚刀刀圈在高磨蚀地层的使用寿命,研究刀圈合金成分和组织中耐磨相种类及状态对耐磨性的影响规律,调配新型TBM 刀圈材料进行微观组织观察,并通过磨粒磨损试验、缩尺滚刀破岩试验及掘进破岩试验进行磨损性能对比。

研究结果表明:C ,Cr 和Mo 等合金元素的增多有助于共晶碳化物耐磨相的形成,对材料的耐磨性有一定的提升作用,而对材料的抗冲击性却是不利的;耐磨相的尺寸和形貌对材料耐磨性能及硬度的影响各不相同,大块的共晶碳化物对耐磨性的贡献比粒状的共晶碳化物的高,大块的共晶碳化物对硬度的贡献比粒状的共晶碳化物的略小。

在掘进高磨蚀、完整性较好的弱冲击岩层时,相比于常规的高韧性C-1材料,C-2新材料的刀圈寿命可提升30%以上,C-3新材料的刀圈寿命可提升70%以上。

3种材料的综合性能能够满足不同岩层的掘进要求,可为刀圈地质适应性选型提供参考。

关键词:滚刀刀圈;合金成分;共晶碳化物;耐磨性能中图分类号:U455.31文献标志码:A开放科学(资源服务)标识码(OSID)文章编号:1672-7207(2020)10-2730-09Effect of alloy composition of materials for TBM cutter rings onmicrostructure and wear resistanceJIA Lianhui 1,SHANG Yong 1,LONG Weimin 2,XIA Yimin 3,XUE Guangji 1(1.China Railway Engineering Equipment Group Co.Ltd.,Zhengzhou 450016,China;2.Zhengzhou Research Institute of Machinery Mechanical Engineering Co.Ltd.,Zhengzhou 450001,China;3.School of Mechanical and Electrical Engineering,Central South University,Changsha 410083,China)Abstract:In order to improve the service life of disc cutter rings in TBM in high erosion lithology,the effects of alloy composition ingredient and type of wear-resistant phase in microstructure on wear resistance were studied.New TBM cutter ring material was blended for microstructure observation.The wear performance was compared through abrasive wear test,scale-reduction rock-breaking test and tunneling rock-breaking test.The results show that the increases of C,Cr,Mo and other alloying elements enhance the formation of wear-resistant phases of eutectic carbides,and have a certain effect on improving the wear resistance of the material,but reduce the impactDOI:10.11817/j.issn.1672-7207.2020.10.005收稿日期:2020−01−25;修回日期:2020−04−29基金项目(Foundation item):国家重点研发计划项目(2017YFB1302601);河南省重大科技专项(181200210100)(Project(2017YFB1302601)supported by the National Research and Development Program of China;Project(181200210100)supported by the Significant Science and Technology Program of Henan Province)通信作者:贾连辉,教授级高级工程师,从事隧道掘进机设计制造研究;E-mail:**********************第10期贾连辉,等:TBM滚刀刀圈材料合金成分对组织和耐磨性能的影响resistance of the material.The effect of the size and morphology of the wear-resistant phase on the wear resistance and hardness of the material is also rge eutectic carbides contribute more to wear resistance than the granular eutectic carbides,and large eutectic carbides contribute slightly less to the hardness than the granular eutectic carbides.In driving high abrasion and weak integrity rock formations,compared with the conventional high toughness C-1material,the life of the cutter ring of the new C-2material can be increased by more than30%, and C-3new material ring life can be increased by more than70%.The comprehensive performance of the three materials can meet the requirements of different rock formations,which provides reference for the geological adaptability selection of cutter ring.Key words:disc cutter ring;alloy composition;eutectic carbide;wear-resisting performance岩石隧道掘进机(tunnel boring machine,TBM)掘进过程中伴随刀盘转动,刀盘上安装的盘形滚刀刀圈直接与岩体相互作用,滚刀贯入岩体滚动挤压,岩石表面产生局部变形并出现微观裂纹,随着挤压力增大,微观裂纹发展成为主裂纹并贯通,形成岩片破碎[1−2]。

激光熔覆技术综述

激光熔覆技术综述

激光熔覆技术综述作者:赵月红赵新红来源:《速读·中旬》2021年第10期◆摘要:激光熔覆主要是通过改进表面性能,如强度、导电性、抗磨性与抗蚀性等,使材料通过激光熔覆技术获得基材所缺少的优异性能,从而使材料的应用更深、更广。

激光熔覆是一种新兴的表面改性技术,论述了激光熔覆技术及其发展过程,从基体材料和熔覆材料两方面研究了激光熔覆技术的研究现状。

◆关键词:激光熔覆;熔覆层;基体激光熔覆是指在基材表面熔覆一层复合涂层,对基体材料表面性质进行改善的新技术,利用的是激光的高能量使熔覆粉末与基体之间形成冶金结合达到性能要求,熔覆后的表面涂层性能可以根据性能要求利用不同的熔覆粉末,最终达到力学性能与物理性能的改进。

激光熔覆具有稀释度低、组织致密性好、涂层与基体达到冶金结合等特点,因此激光熔覆技术应用前景十分广阔。

利用激光熔覆制造新型材料,已成为近年来的研究热点。

一、激光熔覆技术的发展过程激光熔覆技术的发展经历了近半个世纪,早期激光熔覆技术主要集中在激光熔覆特性、不同材料与基体组合的激光熔覆工艺及参数、激光熔覆层的微光组织结构和金相分析、激光熔覆层的性能、熔覆层缺陷以及激光熔覆应用等方面研究;现代激光熔覆主要集中在激光熔覆基础理论和模型,激光熔覆高性能送粉和喷嘴,用激光熔覆制备新材料,基于激光熔覆的快速成形与制造技术等领域的研究。

我国对激光熔覆技术的研究始于上世纪90年代初期,研究方法不断改进并得到了很大的提高,主要进行的研究方向如下:1.激光工艺参数对熔覆层性能的影响。

2.激光熔覆过程中添加稀土氧化物对涂层组织性能的影响。

3.激光熔覆陶瓷颗粒相增强熔覆层强度。

二、激光熔覆技术的研究现状激光熔覆技术在诸多的材料如钛合金、合金钢、模具钢以及各种有色金属等材料有了广泛的应用。

激光熔覆材料是用于制备涂层的,并制约涂层特性。

材料的改变将直接影响涂层的使用性能,因此熔覆层材料的开发始终是研究的重点。

现在激光熔覆材料主要有自溶性合金粉末、复合粉末和陶瓷粉末。

激光熔覆马氏体

激光熔覆马氏体

第27卷第2期粉末冶金材料科学与工程2022年4月V ol.27 No.2 Materials Science and Engineering of Powder Metallurgy Apr. 2022DOI:10.19976/ki.43-1448/TF.2021090激光熔覆马氏体/铁素体涂层的组织与抗磨耐蚀性能张磊1, 2,陈小明1, 2,霍嘉翔1,张凯1, 2,曹文菁1, 2,程新闯3(1. 水利部产品质量标准研究所浙江省水利水电装备表面工程技术研究重点实验室,杭州 310012;2. 水利部杭州机械设计研究所水利机械及其再制造技术浙江省工程实验室,杭州 310012;3. 绍兴市曹娥江大闸管理局,绍兴 312000)摘要:为提高液压活塞杆的耐腐蚀和抗磨损性能,在45号钢表面采用激光熔覆技术在不同激光功率下制备具有马氏体/铁素体组织的Fe基合金熔覆层。

利用X射线衍射仪、扫描电镜、X射线能谱仪等手段表征涂层的物相组成、微观形貌和元素分布,采用维氏硬度计和干滑动摩擦试验机对涂层的显微硬度和抗磨损性能进行测试,并通过电化学工作站研究熔覆层的耐腐蚀性能。

结果表明:Fe基合金熔覆层的主要物相为α-Fe、Ni-Cr-Fe、γ-(Fe,C)和Fe9.7Mo0.3等,主要组织为马氏体、铁素体和少量残余奥氏体。

熔覆层的枝晶态组织均匀致密,无裂纹和孔隙缺陷,涂层与基体呈冶金结合。

涂层的硬度与耐磨性能随激光功率增大而提高,当功率为2.4 kW时,涂层的平均显微硬度(HV)为647.64,耐磨性能为45号钢的9.37倍,磨损机制为磨粒磨损。

随激光功率提高,Fe基合金熔覆层的耐腐蚀性能先升高后降低,当激光功率为2.0 kW时涂层具有最佳耐腐蚀性能,显著高于活塞杆常用碳钢、不锈钢以及电镀硬铬等材料,可在相关领域替代电镀铬。

关键词:激光熔覆;Fe基合金;组织;磨损;腐蚀;活塞杆中图分类号:TG174.44文献标志码:A 文章编号:1673-0224(2022)02-196-09All Rights Reserved.Microstructure and wear-corrosion resistance performance oflaser cladding martensite/ferrite coatingZHANG Lei1, 2, CHEN Xiaoming1, 2, HUO Jiaxiang1, ZHANG Kai1, 2, CAO Wenjing1, 2, CHENG Xinchuang3(1. Key Laboratory of Surface Engineering of Equipment for Hydraulic Engineering of Zhejiang Province, Standard &Quality Control Research Institute, Ministry of Water Resources, Hangzhou 310012, China;2. Water Machinery and Remanufacturing Technology Engineering Laboratory of Zhejiang Province, HangzhouMechanical Research Institute, Ministry of Water Resources, Hangzhou 310012, China;3. Shaoxing Municipal Cao’e River Floodgate Construction Administration Committee, Shaoxing 312000, China)Abstract: To improve the corrosion resistance and wear resistance of piston rod, Fe-based coatings with martensite andferrite structure were prepared on 45# steel by laser cladding. The phase compositions, microstructure and elementsdistribution of the coatings were characterized by X-ray diffractometer, scanning electron microscope and X-ray energydispersive spectrometer. The microhardness and wear resistance of the coatings were tested by Vickers hardness testerand dry sliding friction wear tester. Furthermore, the corrosion resistance of laser cladding Fe-based coatings was studiedby electrochemical workstation. The results show that the phase of laser cladding Fe-based alloy coating is mainlycomposed of α-Fe, Ni-Cr-Fe, γ-(Fe,C), Fe9.7Mo0.3. The main microstructure is martensite, ferrite and a small amount ofresidual austenite. The dendritic structure of coating is uniform, compact, without cracks or pores. The coating and thesubstrate are bonded metallurgically. The hardness and wear resistance of the coatings increase with increasing基金项目:浙江省“一带一路”国际科技合作项目(2019C04019);浙江省公益性技术应用研究计划资助项目(GC22E017317,LGC19E090001,2018C37029)收稿日期:2021−11−02;修订日期:2021−12−23通信作者:张磊,工程师,硕士。

表面纳米化与离子渗氮对304不锈钢的影响

表面纳米化与离子渗氮对304不锈钢的影响

表面纳米化与离子渗氮对304不锈钢的影响王引真;冯雅;孙永兴;冯涛【摘要】为解决304不锈钢硬度低、耐磨性差的问题,本文采用预先表面纳米化,温度400、450℃,保温时间4、6 h,氮氢比1∶3的离子渗氮工艺对试样进行处理,研究纳米化以及渗氮工艺对304不锈钢渗氮层形貌和深度、硬度以及摩擦磨损性能的影响.利用金相显微镜、电子探针显微分析仪(EPMA)、能谱仪(EDS)、显微硬度计和磨损试验机对样品的显微组织、微观形貌、硬度及耐磨性进行了表征.结果表明:304不锈钢经表面纳米化与离子渗氮工艺处理后,渗氮层为0.1~0.2 mm,表面硬度约为1 200 HV0.1,比基体硬度提高了6~7倍,耐磨性也大大增强;但渗氮温度越高,保温时间越长,材料表面耐磨性越差.综合各种影响因素得出在本实验条件下最佳处理工艺为:预先表面纳米化,渗氮温度400℃、保温时间6 h.%To solve the problem of low hardness and poor wear resistance of 304 stainless steel, this research applied the surface nanocrystallization mechanism and treated the sample by plasma nitriding at 400 ℃and 450 ℃ with hol ding time 4 h and 6 h and nitrogen and hydrogen ratio of 1∶3. Influence of the nanocrystallization and nitriding process on the morphology, depth, hardness, and friction, and wear properties of nitrided layer of 304 stainless steel was studied. The microstructure, micro morphology, hardness, and wear resistance of the sample were measured and characterized by using metallographic microscope, EPMA, EDS, micro-hardness tester, and wear testing machine. Results show that after being treated by surface nanocrystallization and plasma nitriding composite process, the nitrided layer of 304 stainless steel was about 0.1~0.2 mm,the microhardness values reached 1 200 HV0.1, which is 6~7 times higher than that of the matrix, and the wear resistance was greatly improved. However, the higher the nitriding temperature was, the longer the holding time was, and the worse the wear resistance of the material surface became. Considering multiple factors, the optimum treatment process was obtained under the experimental condition when the nitriding temperature is 400 ℃ and the holding time is 6 h after surface nanocrystallization.【期刊名称】《材料科学与工艺》【年(卷),期】2019(027)001【总页数】6页(P59-64)【关键词】304不锈钢;表面纳米化;离子渗氮;硬度;耐磨性【作者】王引真;冯雅;孙永兴;冯涛【作者单位】中国石油大学(华东) 材料科学与工程学院, 山东青岛 266580;中国石油大学(华东) 材料科学与工程学院, 山东青岛 266580;中国石油大学(华东) 材料科学与工程学院, 山东青岛 266580;中国石油大学(华东) 材料科学与工程学院, 山东青岛 266580【正文语种】中文【中图分类】TG156.8奥氏体不锈钢具有很强的防锈、耐腐蚀性[1]和良好的可塑性、韧性,被广泛应用于工业、家具装饰行业和食品医疗行业等领域,但其较低的硬度和极差的耐摩擦磨损性能会导致设备因磨损而失效[2-3].奥氏体不锈钢不能同时兼顾耐磨和耐腐蚀特性,使其使用范围受到不小的影响[4].因此,迫切需要改善304不锈钢的耐磨损性能.优化材料表面的组织结构和性能可有效地提高零件的可靠性[5].近年来,常用的表面强化手段有压力扭转、等通道用挤压和表面机械研磨(SMAT)等[6].王少杰等[7]对304不锈钢采用SMAT与离子渗碳复合处理,发现处理后的材料组织内部发生了马氏体转变,渗层晶粒细化,材料的力学性能大为改善,复合处理也显著提高了材料的耐磨性.卢柯课题组[8]利用SMAT和气体渗氮复合技术对纯铁进行表面处理,结果显示,渗氮9 h后采用SMAT处理的材料渗氮层达10 μm,而未采用SMAT 处理的相同材料渗氮效果不佳.该组成员也探究了SMAT与渗氮复合处理对304不锈钢的影响,结果表明,材料的综合机械性能得到提升[9],得到了良好的效果.目前,对304不锈钢进行单一的纳米化处理或者渗氮处理的工艺研究已经比较纯熟,但关于304不锈钢表面纳米化与离子渗氮复合工艺的探索相对较少.本文首先采用超声冲击表面处理技术对304不锈钢进行表面纳米化处理,随后对纳米化工件和未纳米化工件同时进行渗氮处理,研究纳米化及渗氮工艺对304不锈钢渗氮层的形貌、深度、硬度以及摩擦磨损性能的影响.1 实验1.1 试样材料试样材料为304 奥氏体不锈钢,化学成分见表1.选用外径102 mm、管厚6 mm、长度260 mm的奥氏体不锈钢圆管,将其线切割成30 mm×10 mm×4 mm的长方体试样,然后用水砂纸由粗至细将试样打磨平整,随后用酒精冲洗去污.表1 304奥氏体不锈钢化学成分(质量分数/%)Table 1 Chemical composition of 304 austenitic stainless steel (wt.%) CSiMnCrNiMoTiFe0.050.81.517.59.50.0130.011Bal.1.2 试样制备1.2.1 表面超声处理材料表面超声处理采用HK30G型豪克能镜面加工设备,辅助设备为30M70数控加工中心,加工过程中豪克能加工设备的冲击装置代替加工中心原普通刀具加工试样.超声冲击频率为27.2 kHz,电流0.8 A,预压力0.3 MPa,进给速度1 700 mm/min,步距 0.2 mm.1.2.2 低温离子渗氮处理将未纳米化的试样和纳米化的试样同时放入LDMC-15A脉冲离子渗氮设备进行渗氮.氮气与氢气的气流量分别为40、120 mL/min,电压800 V,占空比0.7,温度450、400 ℃,保温时间4、6 h,随炉冷却.为方便分析说明,将不同工艺参数处理的试样标号,如表2所示.表2 304奥氏体不锈钢不同处理工艺的试样编号Table 2 Sample numbers of different processes of AISI 304 austenitic stainless steel编号工艺1#表面纳米化2#渗氮(400 ℃、4 h)3#渗氮(400 ℃、6 h)4#渗氮(450 ℃、4 h)5#渗氮(450 ℃、6 h)6#表面纳米化+渗氮(400 ℃、4 h)7#表面纳米化+渗氮(400 ℃、6 h)8#表面纳米化+渗氮(450 ℃、4 h)9#表面纳米化+渗氮(450 ℃、6 h)1.3 试样表征采用MDJ200 金相显微镜观察组织形貌,选用Marble溶液(CuSO4 4 g,HCl 20 mL,H2O 20 mL)为腐蚀液;采用JXA-8230型电子探针EPMA观察纳米化对试样表面的影响;通过EDS和WDS对渗氮层截面进行元素分布及含量分析;使用MH-3 型显微维氏硬度计测量硬度以及渗氮层深度,条件为试验力0.98 N,保荷15 s;在干摩擦条件下,采用M-2000A型磨损试验机考察基体与渗氮层的摩擦磨损性能,法向载荷50 N,转速360 r/min,时间60 min,摩擦副为GCr15滚动轴承钢,磨损实验前后使用精度为0.0001 g的FA2204B型电子天平测量样品质量,计算磨损量.2 结果与讨论2.1 组织分析2.1.1 表面纳米化对试样组织的影响图1为纳米化前后304不锈钢的表面显微组织形貌,其中图1(a)、(b)分别为母材和1#试样的金相组织形貌,图1(c)、(d)分别为母材和1#试样经电子探针扫描的组织形貌.由图1(a)、(b)可见,表面纳米化处理后晶粒尺寸明显减小,晶粒数量明显增多.这是因为表面纳米化使材料表面产生塑性变形,形成孪晶组织,同时塑性变形也使得晶粒破碎,细化了晶粒,增加了晶粒数量.由图1(c)、(d)可见,母材表面呈分散分布的犁沟,且朝向混乱.表面纳米化处理使得材料表面比母材更平整,且犁沟分散均匀,朝同一方向分布.图1 纳米化前后试样表面显微组织形貌Fig.1 Cross sectional microstructures of the sample before and after surface nanocrystallization: (a) Metallographic structure of the base metal;(b) Metallographic structure of sample 1#; (c) Micro morphology of base metal; (d) Micro morphology of sample 1#2.1.2 离子渗氮工艺参数对渗层组织的影响图2为不同渗氮工艺处理的渗层金相组织形貌.图2(a)、(b)分别为 2#和4#试样的渗层金相组织,可以明显看出,当渗氮时间相同时,450 ℃的白亮层比400 ℃时的厚,但存在较多的灰黑色物质.这是由于当渗氮温度升高时铬元素的扩散速率增加,并与氮原子形成CrN化合物.Cr是使不锈钢拥有耐蚀性的主要元素,铬含量的下降会使不锈钢耐蚀性下降,当被腐蚀剂腐蚀时,耐蚀性弱的区域就呈现出比基体更深的灰黑色.图2 不同渗氮工艺处理后的渗层金相组织Fig.2 Metallographic structure of nitrided layer treated by different nitriding processes: (a) sample 2#; (b) sample 4#图3为4#试样的表面经电子探针扫描的组织形貌.试样表面出现大量的点状凸起.氮原子的渗入和扩散致使周围的Cr向表面扩散,并与氮结合形成CrN;铬是体心立方结构,原子间隙较大,同时由于氮原子较小,所以,氮会固溶于铬形成固溶体.这些点状凸起是离子渗氮后形成的氮化物或者是氮的固溶体.图3 4#试样表面的微观形貌Fig.3 Micro morphology of the surface of sample 4#2.1.3 纳米化与离子渗氮复合工艺对试样组织的影响图4为6#试样的渗层金相组织形貌.可见预先进行表面纳米化处理后的渗层组织出现了缺陷.这是由于在离子渗氮过程中,由于工件是阴极,会经受氮氢阳离子的冲击,从而形成刻蚀痕[10].图4 6#试样渗层金相组织Fig.4 Metallographic structure of the nitrided layer of sample 6#图5为9#试样的表面经电子探针扫描的组织形貌.对比图3和图5可见,复合处理的试样表面比仅渗氮试样有更明显的点状凸起,且呈直线间断分布.这是因为纳米化促进氮扩散,使材料表面的氮固溶物增加;纳米化使材料表层形成朝同一方向分布的孪晶组织,氮在孪晶界的扩散速率高,形成了近似呈直线分布的点状凸起.图5 9#试样表面的微观形貌Fig.5 Micro morphology of the surface of sample 9#2.2 硬度及渗氮深度分析2.2.1 硬度分析图6为不同工艺处理后试样的硬度梯度分布.母材硬度171.8 HV0.1,纳米化后试样表面硬度340.4 HV0.1.渗氮温度对硬度的影响很大,450 ℃渗氮的表面硬度约是400 ℃的2倍,是基体硬度的5~6倍;保温时间对硬度的影响较小,随着保温时间的延长,硬度增加缓慢;渗氮后的表面硬度随距离的增加迅速下降,0.1 mm往后硬度变化曲线趋于与基体硬度持平;纳米化后硬度在0.05~0.5 mm时高于未纳米化50 HV0.1左右,纳米化产生的加工硬化提高了基体硬度.图6 不同工艺处理后试样的硬度梯度分布Fig.6 Microhardness gradient distribution of the sample after different treatments2.2.2 渗氮深度分析图7为不同渗氮工艺处理后的渗层深度分布.由图7可知:温度越高、保温时间越长,渗层越厚;当渗氮工艺参数相同时,纳米化使渗氮深度增加.温度影响氮原子的扩散速率,温度越高,氮原子扩散速率越大,渗氮层深度也就越高.氮扩散需要时间,随着时间的延长,氮扩散更充分,因此渗层越厚.纳米化使试样表面产生塑性变形,晶粒得到细化,形成了很多孪晶、位错等缺陷[11],为氮的扩散增加了额外的通道.此外,纳米化导致材料进行马氏体转变[12].因此,纳米化试样比未纳米化试样渗氮层更深.图7 不同渗氮工艺处理后的渗层深度分布Fig.7 Depth distribution of the nitrided layer after different nitriding processes2.3 摩擦磨损分析图8为不同工艺处理后的试样磨损失重.由图8可知:表面纳米化后摩擦失重增加,试样磨损量多于纳米化,在此渗氮工艺下,未纳米化试样耐磨性低于纳米化试样;随着渗氮温度的升高,保温时间的延长,磨损量越大.渗氮处理的试样磨损量明显小于未渗氮试样,且400 ℃时比450 ℃耐磨性更好,这是因为当渗氮温度较低时,材料表面会形成一层氮过饱和膨胀奥氏体,称为S相,与未渗氮的母材相比,耐磨性显著提高[13-14].图8 不同工艺处理后的试样磨损失重Fig.8 Weight lose of arburized sample after different process treatments 2.4 成分分析图9为4#渗氮试样的渗层经电子探针扫描的组织形貌,图10为其选点的元素的能谱图.图9 4#试样渗层微观形貌Fig.9 Micro morphology of the nitrided layer of sample 4#图10 选点元素能谱图Fig.10 Energy spectrum of the selection of elements表3为该点的元素含量,近似反映了渗氮层元素含量.渗氮层Cr的质量分数达到69.88%,N质量分数为13.60%,而原始304不锈钢的Cr质量分数仅为18%左右.表层富Cr严重将会导致材料表面的脆性增加[15].表3 渗氮层元素含量Table 3 Element composition in nitrided layer元素质量分数/%原子数分数/%N K13.6037.11Si K1.562.12Cr K69.8851.34MnK3.332.32Fe K8.695.95Mo L2.941.173 结论1)304不锈钢经表面纳米化与离子渗氮复合处理后,温度400 ℃时白亮层薄,且渗氮层较薄;温度450 ℃时白亮层厚但呈灰黑色,且渗层较厚.保温时间能增加渗氮层深度,但不明显.表面纳米化能够使试样在同种渗氮工艺下获得更深的渗氮层. 2)渗氮温度对304不锈钢硬度的影响很大,温度越高,获得的硬度越高.保温时间对硬度的影响较小,随着保温时间的延长,硬度有较小的提高;表面纳米化能够有效提高原始表面硬度以及渗后硬度.3)渗氮温度400 ℃、保温4 h,304不锈钢耐磨性最好.随着温度升高、保温时间延长,其硬度增加,耐磨性下降.渗氮处理可能导致材料表面脆化.在本实验条件下,304不锈钢最优处理工艺为:预先表面纳米化,渗氮温度400 ℃,保温时间4 h. 参考文献:【相关文献】[1] LO K H, SHEK C H, LAI J K L. Recent developments in stainless steels[J]. Materials Science & Engineering R, 2009, 65(4): 39-104.[2] 刘静,钱林茂,董汉山,等. 碳化、氮化与碳氮化对316LVM不锈钢微动腐蚀磨损性能的影响[J]. 摩擦学学报, 2009, 29(5): 399-404.LIU Jing, QIAN Linmao, DONG Hanshan, et al. Effect of surface treatment on the fretting wear behavior of medical grade austenitic stainless steels[J]. Tribology, 2009, 29(5): 399-404.[3] 王威,陈淑梅,严伟,等. 氮对冷变形高氮奥氏体不锈钢微观结构的作用[J]. 材料热处理学报, 2010, 31(7): 59-65.WANG Wei, CHEN Shumei, YAN Wei, et al. Effects of nitrogen on microstructure of cold deformed high nitrogen austenitic stainless steels[J]. Transactions of Materials and Heat Treatment, 2010, 31(7): 59-65.DOI:10.13289/j.issn.1009-6264.2010.07.029[4] 童幸生,张婷. 低温离子渗碳对304不锈钢耐磨性影响的研究[J]. 新技术新工艺, 2013(5): 89-91.TONG Xingsheng, ZHANG Ting. Research on wear resistance of 304 stainless steel by low temperature plasma carbuirizing[J]. Journal of New Technology & New Process, 2013(5): 89-91.[5] LOU S, LI Y, ZHOU L, et al. Surface nanocrystallization of metallic alloys with different stacking fault energy induced by laser shock processing[J]. Materials & Design, 2016, 104: 320-326.DOI:10.1016/j.matdes.2016.05.028[6] JAYALAKSHMI M, HUILGOL P, BHAT B R, et al. Microstructural characterization of low temperature plasma-nitrided 316L stainless steel surface with prior severe shot peening[J]. Materials & Design, 2016, 108: 448-454.DOI:10.1016/j.matdes.2016.07.005[7] 王少杰,韩靖,韩月娇,等. 表面纳米化对304不锈钢渗碳层组织和性能的影响[J]. 中国表面工程, 2017, 30(3): 25-30.WANG Shaojie, HAN Jing, HAN Xuejiao, et al. Effect of surface nanocrystallization on the microstructure and properties of carburized layer of 304 stainless stee[J]. China Surface Engineering,2017, 30(3): 25-30.[8] TONG W P, TAO N R, WANG Z B, et al. Nitriding iron at lower temperatures[J]. Science, 2003, 299(5607): 686.[9] ZHANG H W, WANG L, HEI Z K, et al. Low temperature plasma nitriding of AISI 304 stainless steel with nano-structured surface layer[J]. Zeitschrift Fur Metallkunde, 2013,94(10): 1143-1147.[10] 沈烈. 奥氏体不锈钢形变/渗氮复合处理工艺及渗氮层结构与性能研究[D]. 大连:大连海事大学, 2013: 61-63.[11] 韩月娇,韩靖,张雪梅,等. 304不锈钢表面纳米化层的组织和性能[J]. 功能材料, 2016,47(8):8084-8088.HAN Yuejiao, HAN Jing, ZHANG Xue Mei, et al. Microstructure and properties of surface nanostructured layer of 304 stainless steel[J]. Journal of Functional Materials, 2016, 47(8): 8084-8088.DOI: 10.3969/j.issn.1001-9731.2016.08.014[12] 王晓军,侯瑞雪,赵文军,等. 304H不锈钢碳化物析出动力学研究[J]. 腐蚀科学与防护技术, 2014, 26(1): 45-49.WANG Xiaojun, HOU Ruixue, ZHAO Wenjun, et al. Precipitation kinetics of carbides of 304H austenitic stainless steel[J]. Corrosion Science and Protection Technology, 2014,26(1): 45-49.[13] LI C X, BELL T, DONG H. A study of active screen plasma nitriding[J]. Surface Engineering, 2002, 18(3): 174-181.[14] GALLO S C, DONG H. Study of active screen plasma processing conditions for carburising and nitriding austenitic stainless steel[J]. Surface & Coatings Technology, 2009, 203(24): 3669-3675.DOI:10.1016/j.surfcoat.2009.05.045[15] 王亮,许晓磊,许彬,等. 奥氏体不锈钢低温渗氮层的组织与耐磨性[J]. 摩擦学学报,2000, 20(1):67-69.WANG Liang, XU Xiaolei, XU Bin, et al. Microstructure and wear resistance of austenitic stainless steel nitrided layer at low temperature[J]. Tribology, 2000, 20(1): 67-69.DOI:10.16078/j.tribology.2000.01.017。

H13_钢表面多弧离子镀CrAlN_涂层的显微硬度及耐磨性影响

H13_钢表面多弧离子镀CrAlN_涂层的显微硬度及耐磨性影响

第20卷第11期装备环境工程2023年11月EQUIPMENT ENVIRONMENTAL ENGINEERING·115·重大工程装备H13钢表面多弧离子镀CrAlN涂层的显微硬度及耐磨性影响袁嵩1,王帅2,方略2,张永伟2,李晓燚2,周志明3,4(1.海装驻西安地区第二军事代表室,西安 710025;2.重庆长安工业集团有限责任公司,重庆 400023;3.重庆理工大学 材料科学与工程学院,重庆 400054;4.重庆合创纳米科技有限公司,重庆 400707)摘要:目的提高H13热作模具钢表面的显微硬度及耐磨性。

方法通过多弧离子镀技术,分别对未经热处理的H13钢、淬火H13钢以及氮化H13钢的表面进行多弧离子镀沉积CrAlN涂层,并分别对这3种基体上的CrAlN涂层的显微硬度和摩擦磨损性能进行研究。

结果涂层表面均较为平整,且出现了白色小颗粒。

经过淬火和氮化处理后,H13钢CrAlN涂层的显微硬度达到3 300HV以上,达到基体的14倍多。

与基体的摩擦系数相比,淬火和氮化处理后,H13钢的摩擦系数比基体低,镀膜后的摩擦系数比基体高。

氮化H13钢表面CrAlN涂层的磨损机理主要是磨粒磨损和黏着磨损共同作用,淬火H13钢的CrAlN涂层磨损机理主要是黏着磨损;淬火和氮化后H13钢基体上CrAlN涂层的耐磨性均得到较大的提高。

关键词:H13钢;CrAlN涂层;多弧离子镀;摩擦磨损;显微硬度; 显微组织中图分类号:TG174 文献标识码:A 文章编号:1672-9242(2023)11-0115-06DOI:10.7643/ issn.1672-9242.2023.11.015Effect on the Microhardness and Wear Resistance of Multi Arc IonPlating CrAlN Coating on H13 SteelYUAN Song1, WANG Shuai2,F ANG Lue2, ZHANG Yong-wei2, LI Xiao-yi2, ZHOU Zhi-ming3,4(1. The Second Military Representative Office of Haizhuang's in Xi'an, Shaanxi Xi'an, 710025, China; 2. Chongqing Chang'anIndustrial Group Co., Ltd., Chongqing 400023, China; 3.School of Material Science and Engineering, Chongqing University of Technology, Chongqing 400054, China; 4. Chongqing Hechuang Nano Technology Co., Ltd., Chongqing4000707, China)ABSTRACT: The work aims to improve the microhardness and wear resistance of H13 steel surface by multiarc ion plating coating technology. The CrAlN coatings were separately deposited on the surfaces of untreated H13 steel, quenched H13 steel and nitrided H13 steel. The microhardness and friction and wear properties of CrAlN coatings on these three substrates were studied. The coating surface was relatively flat and white small particles appeared. The microhardness of the CrAlN coating on H13 steel after quenching and nitriding treatment reached over 3300HV, which was more than 14 times that of the substrate.Compared with the friction coefficient of the substrate, the friction coefficient of H13 steel after quenching and nitriding treat-ment was lower than that of the substrate, while the friction coefficient after coating was higher than that of the substrate. The wear mechanism of CrAlN coating on nitrided H13 steel was an interaction of adhesive wear and abrasive wear, while the wear mechanism of CrAlN coating on quenched H13 steel was mainly attributed to adhesive wear. The wear resistance of CrAlN收稿日期:2023-08-03;修订日期:2023-11-01Received:2023-08-03;Revised:2023-11-01引文格式:袁嵩, 王帅, 方略, 等. H13钢表面多弧离子镀CrAlN涂层的显微硬度及耐磨性影响[J]. 装备环境工程, 2023, 20(11): 115-120. YUAN Song, WANG Shuai, FANG Lue, et al. Effect on the Microhardness and Wear Resistance of Multi Arc Ion Plating CrAlN Coating on H13 Steel[J]. Equipment Environmental Engineering, 2023, 20(11): 115-120.·116·装备环境工程 2023年11月coating on quenched and nitridedH13 steel increases greatly.KEY WORDS: H13 steel; CrAlN coatings; multiarc ion plating; friction and wear; microhardness; microstructure多弧离子镀是提高材料表面耐磨耐蚀性的一种物理气相沉积技术[1-3]。

球磨时间对Ti-13Nb-5Sn_牙科合金耐蚀与耐磨性能的影响

第 3 期第 100-108 页材料工程Vol.52Mar. 2024Journal of Materials EngineeringNo.3pp.100-108第 52 卷2024 年 3 月球磨时间对Ti -13Nb -5Sn 牙科合金耐蚀与耐磨性能的影响Effect of ball milling time on corrosion and wear resistance of Ti -13Nb -5Sn dental alloys颉芳霞1,2*,陆东兴1,黄家兵1,张文成1,孙琪超1,何雪明1,2(1 江南大学 机械工程学院,江苏 无锡 214122;2 江苏省食品先进制造装备技术重点实验室,江苏 无锡 214122)XIE Fangxia 1,2*,LU Dongxing 1,HUANG Jiabing 1,ZHANG Wencheng 1,SUN Qichao 1,HE Xueming 1,2(1 School of Mechanical Engineering ,Jiangnan University ,Wuxi 214122, Jiangsu ,China ;2 Jiangsu Key Laboratory of Advanced Food ManufacturingEquipment and Technology ,Wuxi 214122,Jiangsu ,China )摘要:采用粉末冶金法制备了Ti -13Nb -5Sn 牙科合金,研究了不同球磨时间(3,12,24,48 h )对粉末特性、材料微观结构、电化学腐蚀和摩擦学行为的影响规律。

结果表明:随着球磨时间从3 h 增加至48 h ,粉末形貌由大块状逐渐变成细小颗粒,部分Nb 和Sn 原子扩散到Ti 晶格中,形成了一定体积的Ti (Nb )和Ti (NbSn )固溶体;等轴α-Ti 减少转变为柱状的晶界α-Ti ,网篮组织转变为魏氏组织;动电位极化曲线显示,合金在人工唾液(AS )和模拟体液(SBF )中的腐蚀电位(E corr )和极化电阻(R p )呈上升趋势,腐蚀电流密度(I corr )呈下降趋势,α-Ti 减少,β-Ti 增多,使得合金耐腐蚀性能提升;合金的硬度升高,而摩擦因数、磨痕深度和磨损率逐渐降低,细化粉末在烧结中会产生更多的晶界,使得合金的耐磨性能提升。

碳陶复合材料英文专著

碳陶复合材料英文专著Carbon Ceramic Composite Materials: An English MonographAbstract:Carbon ceramic composite materials have attracted significant attention in various industries due to their unique properties and potential applications. This monograph provides a comprehensive overview of carbon ceramic composite materials in terms of their structure, properties, synthesis methods, and applications. The aim is to provide readers with insights into the advancements and future prospects of these materials.1. IntroductionCarbon ceramic composite materials, also known as carbon-carbon composites or C/C composites, are a class of materials that combine carbon fibers with a ceramic matrix. These composites exhibit exceptional mechanical, thermal, and chemical properties, making them suitable for a wide range of applications. This chapter introduces the background and significance of carbon ceramic composites, outlining their unique properties and potential applications.2. Structure of Carbon Ceramic CompositesThis chapter discusses the structure of carbon ceramic composites, focusing on the arrangement and orientation of carbon fibers within the ceramic matrix. The microstructure and macrostructure of these composites are explored, highlighting the role of fiber architecture in determining their mechanical properties and performance.3. Properties of Carbon Ceramic CompositesIn this section, the mechanical, thermal, and electrical properties of carbon ceramic composites are discussed in detail. The exceptional strength, stiffness, and wear resistance of these materials, along with their high thermal stability and low thermal expansion, make them ideal for applications in aerospace, automotive, and energy industries. The electrical conductivity and electromagnetic shielding properties of carbon ceramic composites are also addressed.4. Synthesis Methods of Carbon Ceramic CompositesVarious synthesis methods for carbon ceramic composites are presented, including chemical vapor infiltration (CVI), liquid silicon infiltration (LSI), and pyrolysis. Each method is described, highlighting the advantages, limitations, and challenges associated with their implementation. The effect of processing parameters on the microstructure and properties of carbon ceramic composites is also discussed.5. Applications of Carbon Ceramic CompositesThis chapter reviews the applications of carbon ceramic composites in different industries. Aerospace applications, such as aircraft brakes and thermal protection systems, are discussed, along with automotive applications in brake discs and engine components. The use of carbon ceramic composites in the energy sector, including nuclear fusion reactors and fuel cells, is also explored. Furthermore, potential future applications and emerging trends in the field are presented.6. Challenges and Future PerspectivesThe final chapter addresses the challenges and future perspectives of carbon ceramic composites. The limitations of current synthesis methods, such as high costs and complex processing requirements, are identified. The need for further research in areas such as interfacial bonding improvement, scalability, and recycling strategies is emphasized. Lastly, the future prospects of carbon ceramic composites in terms of advanced applications and market growth are discussed.Conclusion:Carbon ceramic composite materials exhibit exceptional properties and have diverse applications in various industries. This monograph provides a comprehensive overview of these materials, including their structure, properties, synthesis methods, and applications. Through understanding the advancements and challenges, it is evident that carbon ceramic composites have great potential for future development and innovation in materials science and engineering.Acknowledgements:The author would like to acknowledge the contributions of researchers and scientists in the field of carbon ceramic composites. Their valuable work and insights have greatly enriched the content of this monograph.。

210984058_液压阻尼器活塞杆激光熔覆WC

第52卷第3期表面技术2023年3月SURFACE TECHNOLOGY·217·腐蚀与防护液压阻尼器活塞杆激光熔覆WC/Co06涂层耐磨耐腐蚀性能肖居鹏,杨学锋,李万洋,侯启敏(济南大学 机械工程学院,济南 250022)摘要:目的研究WC添加量对WC/Co06复合涂层耐磨耐腐蚀性能影响,以期应用到液压阻尼器活塞杆表面,增强活塞杆耐磨耐腐蚀性能。

方法采用同轴送粉式激光熔覆设备在液压阻尼器活塞杆用42CrMo钢表面制备不同WC含量(质量分数为5%、10%、15%、20%)的WC/Co06涂层,用金相显微镜、扫描电镜、X射线衍射仪及维氏硬度显微计,对4组不同WC含量的涂层进行质量检测。

用滑动摩擦磨损试验机对涂层进行磨损性能测试。

用盐雾腐蚀试验箱对涂层进行耐腐蚀测试。

结果熔覆层表面质量良好,稀释率为5%左右。

熔覆层显微组织随WC含量的升高越来越致密,WC/Co06涂层生成多种硬质相,如Cr23C6、Cr7C3、WC及Fe3W3C等分布在 -Co固溶体周围增强其硬度以及耐磨耐腐蚀能力。

4组熔覆层中,20%WC含量的熔覆层硬度最高(810HV),是基体的(275HV)2.95倍。

摩擦磨损及盐雾腐蚀试验后,熔覆涂层磨损量及腐蚀失重均明显降低,其中20%WC熔覆层的磨损量及腐蚀失重最低,分别为基体的54.7%和21%。

结论 WC 可提高熔覆层硬度,改善熔覆层的耐磨耐腐蚀性能,且WC含量越高,强化效果越明显。

通过试验可得20%WC 含量的WC/Co06涂层具有更优良的耐磨耐腐蚀性能。

关键词:液压阻尼器活塞杆;激光熔覆;WC/Co06涂层;摩擦磨损;盐雾腐蚀中图分类号:TG172 文献标识码:A 文章编号:1001-3660(2023)03-0217-11DOI:10.16490/ki.issn.1001-3660.2023.03.019Wear Resistance and Corrosion Resistance of Laser CladdingWC/Co06 Coating on the Piston Rod of Hydraulic DamperXIAO Ju-peng, YANG Xue-feng, LI Wan-yang, HOU Qi-min(School of Mechanical Engineering, University of Jinan, Jinan 250022, China) ABSTRACT: The wear and corrosion resistance of the piston rod surface of the hydraulic damper can be improved by laser收稿日期:2022–01–17;修订日期:2022–05–31Received:2022-01-17;Revised:2022-05-31基金项目:国家自然科学基金(51872122);中国博士后科学基金(2017M620286);山东省重点研发计划(2018CXGC0809);山东省农机装备研发创新计划(2018YF012)Fund:The National Natural Science Foundation of China (51872122); the Postdoctoral Science Foundation of China (2017M620286); the Key Research and Development Program of Shandong Province, China (2018CXGC0809); Agricultural Machinery Equipment Research and Development Innovation Plan of Shandong Province (2018YF012)作者简介:肖居鹏(1993—),男,硕士研究生,主要研究方向为摩擦润滑理论及工程应用。

钛含量对高铬铸铁耐磨性能的影响

68铸钢•铸铁Vol.70 No.1 2021钛含量对高铬铸铁耐磨性能的影响刘夙伟1,季峰2,张艳2,郭宇航2(1.江阴职业技术学院机电工程系,江苏江阴214405; 2.江苏科技大学材料科学与工程学院,江苏镇江212003)摘要:研究了含0.1 %、0.6%、丨.1%、1.6%钛的高铬铸铁的硬度和耐磨性能与组织之间的关系。

通过金相组织图、XRD测试、EDS分析以及磨损试验,发现钛的添加对高铬铸铁的耐磨性能有显著影响,形成的TiC对(C r,Fe)7C i,碳化物有明显的细化作用,但是过多的钛会导致TiC团聚并减少基体组织中的含碳量,对高格铸铁的耐磨性能造成负面影响。

当钛含量为1.6%时,高铬铸铁硬度达到HRC 63,有着最佳的耐磨损性能,其热处理工艺为1020 T保温2h,油淬,再经250丈保温4 h,空冷。

关键词:高铬铸铁;M7C,碳化物;耐磨性能;碳化钛作为新材料领域的核心,耐磨材料对高新技术的发展起着重要的支撑作用〜1。

高铬铸铁作为继普通白口铸铁、镍硬铸铁之后第三代耐磨材料'自20世纪80年代开始就进行了大量理论和实际应用研究,为我国抗磨材料的发展做出了很大贡献14~。

研究表明,适量的钛添加到髙铬铸铁中可以有效细化共晶碳化物,增加高铬铸铁的耐磨性能|7〜。

然而,由于钛是强碳化物形成元素且化学性质活泼,作为微量元素添加到高铬铸铁中会与碳、氮等非合金元素发生多种反应因此少量或过量的钛都可能会造成负面影响。

本试验研究不同钛含量高铬铸铁的硬度以及耐磨性能与组织结构之间的关系,希望通过揭示钛在高铬铸铁中的作用机理,提高高铬铸铁的耐磨性能。

作者简介:刘夙伟(1981-),女,博士,讲师,主要从事金属摩擦及热处理研究工作。

E-mail: justlsw@中图分类号:T G I63文献标识码: A文章编号:1001-4977(2021) 01-0068-06收稿曰期:2020-07-03收到初稿,2020-08-24收到修订稿。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档