高考物理高考物理曲线运动解题技巧及经典题型及练习题(含答案)

合集下载

高考物理曲线运动答题技巧及练习题(含答案)含解析

高考物理曲线运动答题技巧及练习题(含答案)含解析

高考物理曲线运动答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试曲线运动1.如图所示,竖直圆形轨道固定在木板B 上,木板B 固定在水平地面上,一个质量为3m 小球A 静止在木板B 上圆形轨道的左侧.一质量为m 的子弹以速度v 0水平射入小球并停留在其中,小球向右运动进入圆形轨道后,会在圆形轨道内侧做圆周运动.圆形轨道半径为R ,木板B 和圆形轨道总质量为12m ,重力加速度为g ,不计小球与圆形轨道和木板间的摩擦阻力.求:(1)子弹射入小球的过程中产生的内能;(2)当小球运动到圆形轨道的最低点时,木板对水平面的压力;(3)为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,求子弹速度的范围.【答案】(1)2038mv (2) 2164mv mg R+(3)042v gR ≤或04582gR v gR ≤≤【解析】本题考察完全非弹性碰撞、机械能与曲线运动相结合的问题. (1)子弹射入小球的过程,由动量守恒定律得:01(3)mv m m v =+ 由能量守恒定律得:220111422Q mv mv =-⨯ 代入数值解得:2038Q mv =(2)当小球运动到圆形轨道的最低点时,以小球为研究对象,由牛顿第二定律和向心力公式得211(3)(3)m m v F m m g R+-+=以木板为对象受力分析得2112F mg F =+ 根据牛顿第三定律得木板对水平的压力大小为F 2木板对水平面的压力的大小202164mv F mg R=+(3)小球不脱离圆形轨有两种可能性:①若小球滑行的高度不超过圆形轨道半径R由机械能守恒定律得:()()211332m m v m m gR +≤+解得:042v gR ≤②若小球能通过圆形轨道的最高点小球能通过最高点有:22(3)(3)m m v m m g R++≤由机械能守恒定律得:221211(3)2(3)(3)22m m v m m gR m m v +=+++ 代入数值解得:045v gR ≥要使木板不会在竖直方向上跳起,木板对球的压力:312F mg ≤在最高点有:233(3)(3)m m v F m m g R+++=由机械能守恒定律得:221311(3)2(3)(3)22m m v m m gR m m v +=+++ 解得:082v gR ≤综上所述为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,子弹速度的范围是042v gR ≤或04582gR v gR ≤≤2.儿童乐园里的弹珠游戏不仅具有娱乐性还可以锻炼儿童的眼手合一能力。

高考物理曲线运动解题技巧讲解及练习题(含答案)

高考物理曲线运动解题技巧讲解及练习题(含答案)

高考物理曲线运动解题技巧讲解及练习题(含答案)一、高中物理精讲专题测试曲线运动1.如图所示,竖直圆形轨道固定在木板B 上,木板B 固定在水平地面上,一个质量为3m 小球A 静止在木板B 上圆形轨道的左侧.一质量为m 的子弹以速度v 0水平射入小球并停留在其中,小球向右运动进入圆形轨道后,会在圆形轨道内侧做圆周运动.圆形轨道半径为R ,木板B 和圆形轨道总质量为12m ,重力加速度为g ,不计小球与圆形轨道和木板间的摩擦阻力.求:(1)子弹射入小球的过程中产生的内能;(2)当小球运动到圆形轨道的最低点时,木板对水平面的压力;(3)为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,求子弹速度的范围.【答案】(1)2038mv (2) 2164mv mg R+(3)042v gR ≤或04582gR v gR ≤≤【解析】本题考察完全非弹性碰撞、机械能与曲线运动相结合的问题. (1)子弹射入小球的过程,由动量守恒定律得:01(3)mv m m v =+ 由能量守恒定律得:220111422Q mv mv =-⨯ 代入数值解得:2038Q mv =(2)当小球运动到圆形轨道的最低点时,以小球为研究对象,由牛顿第二定律和向心力公式得211(3)(3)m m v F m m g R+-+=以木板为对象受力分析得2112F mg F =+ 根据牛顿第三定律得木板对水平的压力大小为F 2木板对水平面的压力的大小202164mv F mg R=+(3)小球不脱离圆形轨有两种可能性:①若小球滑行的高度不超过圆形轨道半径R由机械能守恒定律得:()()211332m m v m m gR +≤+解得:042v gR ≤②若小球能通过圆形轨道的最高点小球能通过最高点有:22(3)(3)m m v m m g R++≤由机械能守恒定律得:221211(3)2(3)(3)22m m v m m gR m m v +=+++ 代入数值解得:045v gR ≥要使木板不会在竖直方向上跳起,木板对球的压力:312F mg ≤在最高点有:233(3)(3)m m v F m m g R+++=由机械能守恒定律得:221311(3)2(3)(3)22m m v m m gR m m v +=+++ 解得:082v gR ≤综上所述为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,子弹速度的范围是042v gR ≤或04582gR v gR ≤≤2.光滑水平面AB 与竖直面内的圆形导轨在B 点连接,导轨半径R =0.5 m ,一个质量m =2 kg 的小球在A 处压缩一轻质弹簧,弹簧与小球不拴接.用手挡住小球不动,此时弹簧弹性势能Ep =49 J ,如图所示.放手后小球向右运动脱离弹簧,沿圆形轨道向上运动恰能通过最高点C ,g 取10 m/s 2.求:(1)小球脱离弹簧时的速度大小; (2)小球从B 到C 克服阻力做的功;(3)小球离开C 点后落回水平面时的动能大小. 【答案】(1)7/m s (2)24J (3)25J 【解析】 【分析】 【详解】(1)根据机械能守恒定律 E p =211m ?2v ① v 12Epm=7m/s ②(2)由动能定理得-mg ·2R -W f =22211122mv mv - ③ 小球恰能通过最高点,故22v mg m R= ④ 由②③④得W f =24 J(3)根据动能定理:22122k mg R E mv =-解得:25k E J =故本题答案是:(1)7/m s (2)24J (3)25J 【点睛】(1)在小球脱离弹簧的过程中只有弹簧弹力做功,根据弹力做功与弹性势能变化的关系和动能定理可以求出小球的脱离弹簧时的速度v;(2)小球从B 到C 的过程中只有重力和阻力做功,根据小球恰好能通过最高点的条件得到小球在最高点时的速度,从而根据动能定理求解从B 至C 过程中小球克服阻力做的功; (3)小球离开C 点后做平抛运动,只有重力做功,根据动能定理求小球落地时的动能大小3.如图所示,质量为4kg M =的平板车P 的上表面离地面高0.2m h =,质量为1kg m =的小物块Q (大小不计,可视为质点)位于平板车的左端,系统原来静止在光滑水平地面上,一不可伸长的轻质细绳长为0.9m R =,一端悬于Q 正上方高为R 处,另一端系一质量也为m 的小球(大小不计,可视为质点)。

高考物理曲线运动解题技巧及经典题型及练习题(含答案).docx

高考物理曲线运动解题技巧及经典题型及练习题(含答案).docx

高考物理曲线运动解题技巧及经典题型及练习题 ( 含答案 )一、高中物理精讲专题测试曲线运动1. 光滑水平轨道与半径为 R 的光滑半圆形轨道在 B 处连接,一质量为m 2 的小球静止在 B处,而质量为 m 1 的小球则以初速度 v 0 向右运动,当地重力加速度为g ,当 m 1 与 m 2 发生弹性碰撞后, m 2 将沿光滑圆形轨道上升,问:(1)当 m 1 与 m 2 发生弹性碰撞后, m 2 的速度大小是多少?(2)当 m 1 与 m 2 满足 m 2 km 1 (k0) ,半圆的半径 R 取何值时,小球 m 2 通过最高点 C后,落地点距离 B 点最远。

【答案】( 1) 2m 1v 0 /( m 1 +m 2) ( 2) R=v 0 2/2g(1+k)2【解析】【详解】( 1)以两球组成的系统为研究对象,由动量守恒定律得: m 1v 0=m 1v 1+m 2v 2,1 2121由机械能守恒定律得:m 1v 0 =m 1v 1 +2 22m 2v 22,解得: v 22m 1v 0 ; m 1 m 2(2)小球 m 2 从 B 点到达 C 点的过程中,由动能定理可得:1 2 1 2,-m 2g ×2R= m 2v 2 ′-2 m 2v 224gR(2v 0)解得: v 2v 2 4gR (2mv)2 2 4gR ;21m 1 m 21 k小球 m 2 通过最高点 C 后,做平抛运动,竖直方向: 2R= 1gt 2,2水平方向: s=v 2′t ,解得: s(2v 0 )2 4R 16R 2 ,1 k g由一元二次函数规律可知,当v 02 时小 m 2 落地点距 B 最远.Rk )22g(12. 如图所示,质量 m=3kg 的小物块以初速度秽 v 0=4m/s 水平向右抛出,恰好从 A 点沿着圆弧的切线方向进入圆弧轨道。

圆弧轨道的半径为R= 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道 BD 平滑连接, A 与圆心 D 的连线与竖直方向成37角, MN 是一段粗糙的水平轨道,小物块与 MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。

高考物理曲线运动解题技巧及练习题(含答案)及解析

高考物理曲线运动解题技巧及练习题(含答案)及解析

高考物理曲线运动解题技巧及练习题(含答案)及解析一、高中物理精讲专题测试曲线运动1.光滑水平面AB 与竖直面内的圆形导轨在B 点连接,导轨半径R =0.5 m ,一个质量m =2 kg 的小球在A 处压缩一轻质弹簧,弹簧与小球不拴接.用手挡住小球不动,此时弹簧弹性势能Ep =49 J ,如图所示.放手后小球向右运动脱离弹簧,沿圆形轨道向上运动恰能通过最高点C ,g 取10 m/s 2.求:(1)小球脱离弹簧时的速度大小; (2)小球从B 到C 克服阻力做的功;(3)小球离开C 点后落回水平面时的动能大小. 【答案】(1)7/m s (2)24J (3)25J 【解析】 【分析】 【详解】(1)根据机械能守恒定律 E p =211m ?2v ① v 12Epm=7m/s ② (2)由动能定理得-mg ·2R -W f =22211122mv mv - ③ 小球恰能通过最高点,故22v mg m R= ④ 由②③④得W f =24 J(3)根据动能定理:22122k mg R E mv =-解得:25k E J =故本题答案是:(1)7/m s (2)24J (3)25J 【点睛】(1)在小球脱离弹簧的过程中只有弹簧弹力做功,根据弹力做功与弹性势能变化的关系和动能定理可以求出小球的脱离弹簧时的速度v;(2)小球从B 到C 的过程中只有重力和阻力做功,根据小球恰好能通过最高点的条件得到小球在最高点时的速度,从而根据动能定理求解从B 至C 过程中小球克服阻力做的功; (3)小球离开C 点后做平抛运动,只有重力做功,根据动能定理求小球落地时的动能大小2.如图所示,半径为R 的四分之三圆周轨道固定在竖直平面内,O 为圆轨道的圆心,D 为圆轨道的最高点,圆轨道内壁光滑,圆轨道右侧的水平面BC 与圆心等高.质量为m 的小球从离B 点高度为h 处(332R h R ≤≤)的A 点由静止开始下落,从B 点进入圆轨道,重力加速度为g ).(1)小球能否到达D 点?试通过计算说明; (2)求小球在最高点对轨道的压力范围;(3)通过计算说明小球从D 点飞出后能否落在水平面BC 上,若能,求落点与B 点水平距离d 的范围.【答案】(1)小球能到达D 点;(2)03F mg ≤'≤;(3)()()21221R d R ≤≤【解析】 【分析】 【详解】(1)当小球刚好通过最高点时应有:2Dmv mg R =由机械能守恒可得:()22Dmv mg h R -=联立解得32h R =,因为h 的取值范围为332R h R ≤≤,小球能到达D 点; (2)设小球在D 点受到的压力为F ,则2Dmv F mg R ='+ ()22Dmv mg h R ='- 联立并结合h 的取值范围332R h R ≤≤解得:03F mg ≤≤ 据牛顿第三定律得小球在最高点对轨道的压力范围为:03F mg ≤'≤(3)由(1)知在最高点D 速度至少为min D v gR =此时小球飞离D 后平抛,有:212R gt =min min D x v t =联立解得min 2x R R =>,故能落在水平面BC 上,当小球在最高点对轨道的压力为3mg 时,有:2max 3Dv mg mg m R+=解得max 2D v gR = 小球飞离D 后平抛212R gt =', max max D x v t ='联立解得max 22x R =故落点与B 点水平距离d 的范围为:()()21221R d R -≤≤-3.一位网球运动员用网球拍击球,使网球沿水平方向飞出.如图所示,第一个球从O 点水平飞出时的初速度为v 1,落在自己一方场地上的B 点后,弹跳起来,刚好过网上的C 点,落在对方场地上的A 点;第二个球从O 点水平飞出时的初速度为V 2,也刚好过网上的C 点,落在A 点,设球与地面碰撞时没有能量损失,且不计空气阻力,求:(1)两个网球飞出时的初速度之比v 1:v 2; (2)运动员击球点的高度H 与网高h 之比H :h【答案】(1)两个网球飞出时的初速度之比v 1:v 2为1:3;(2)运动员击球点的高度H 与网高h 之比H :h 为4:3. 【解析】 【详解】(1)两球被击出后都做平抛运动,由平抛运动的规律可知,两球分别被击出至各自第一次落地的时间是相等的,设第一个球第一次落地时的水平位移为x 1,第二个球落地时的水平位移为x 2由题意知,球与地面碰撞时没有能量损失,故第一个球在B 点反弹瞬间,其水平方向的分速度不变,竖直方向的分速度以原速率反向,根据运动的对称性可知两球第一次落地时的水平位移之比x 1:x 2=1:3,故两球做平抛运动的初速度之比v 1:v 2=1:3(2)设第一个球从水平方向飞出到落地点B 所用时间为t 1,第2个球从水平方向飞出到C点所用时间为t 2,则有H =2112gt ,H -h =2212gt 又:x 1=v 1t 1O 、C 之间的水平距离:x '1=v 2t 2第一个球第一次到达与C 点等高的点时,其水平位移x '2=v 1t 2,由运动的可逆性和运动的对称性可知球1运动到和C 等高点可看作球1落地弹起后的最高点反向运动到C 点;故 2x 1=x '1+x '2可得:t 1=2t 2 ,H =4(H -h ) 得:H :h =4:34.如图所示,光滑的水平地面上停有一质量,长度的平板车,平板车左端紧靠一个平台,平台与平板车的高度均为,一质量的滑块以水平速度从平板车的左端滑上平板车,并从右端滑离,滑块落地时与平板车的右端的水平距离。

高考物理曲线运动解题技巧分析及练习题(含答案)及解析

高考物理曲线运动解题技巧分析及练习题(含答案)及解析

高考物理曲线运动解题技巧分析及练习题(含答案)及解析一、高中物理精讲专题测试曲线运动1.如图所示,倾角为45α=︒的粗糙平直导轨与半径为r 的光滑圆环轨道相切,切点为b ,整个轨道处在竖直平面内. 一质量为m 的小滑块从导轨上离地面高为H =3r 的d 处无初速下滑进入圆环轨道,接着小滑块从最高点a 水平飞出,恰好击中导轨上与圆心O 等高的c 点. 已知圆环最低点为e 点,重力加速度为g ,不计空气阻力. 求: (1)小滑块在a 点飞出的动能; ()小滑块在e 点对圆环轨道压力的大小;(3)小滑块与斜轨之间的动摩擦因数. (计算结果可以保留根号)【答案】(1)12k E mgr =;(2)F ′=6mg ;(3)42μ-= 【解析】 【分析】 【详解】(1)小滑块从a 点飞出后做平拋运动: 2a r v t = 竖直方向:212r gt = 解得:a v gr =小滑块在a 点飞出的动能21122k a E mv mgr == (2)设小滑块在e 点时速度为m v ,由机械能守恒定律得:2211222m a mv mv mg r =+⋅ 在最低点由牛顿第二定律:2m mv F mg r-= 由牛顿第三定律得:F ′=F 解得:F ′=6mg(3)bd 之间长度为L ,由几何关系得:()221L r =从d 到最低点e 过程中,由动能定理21cos 2m mgH mg L mv μα-⋅= 解得4214μ-=2.如图所示,固定的光滑平台上固定有光滑的半圆轨道,轨道半径R =0.6m,平台上静止放置着两个滑块A 、B ,m A =0.1kg,m B =0.2kg,两滑块间夹有少量炸药,平台右侧有一带挡板的小车,静止在光滑的水平地面上.小车质量为M =0.3kg,车面与平台的台面等高,小车的上表面的右侧固定一根轻弹簧,弹簧的自由端在Q 点,小车的上表面左端点P 与Q 点之间是粗糙的,PQ 间距离为L 滑块B 与PQ 之间的动摩擦因数为μ=0.2,Q 点右侧表面是光滑的.点燃炸药后,A 、B 分离瞬间A 滑块获得向左的速度v A =6m/s,而滑块B 则冲向小车.两滑块都可以看作质点,炸药的质量忽略不计,爆炸的时间极短,爆炸后两个物块的速度方向在同一水平直线上,且g=10m/s 2.求:(1)滑块A 在半圆轨道最高点对轨道的压力;(2)若L =0.8m,滑块B 滑上小车后的运动过程中弹簧的最大弹性势能;(3)要使滑块B 既能挤压弹簧,又最终没有滑离小车,则小车上PQ 之间的距离L 应在什么范围内【答案】(1)1N ,方向竖直向上(2)0.22P E J =(3)0.675m <L <1.35m 【解析】 【详解】(1)A 从轨道最低点到轨道最高点由机械能守恒定律得:2211222A A A A m v m v m g R -=⨯ 在最高点由牛顿第二定律:2A N A v m g F m R+=滑块在半圆轨道最高点受到的压力为:F N =1N由牛顿第三定律得:滑块对轨道的压力大小为1N ,方向向上 (2)爆炸过程由动量守恒定律:A AB B m v m v =解得:v B =3m/s滑块B 冲上小车后将弹簧压缩到最短时,弹簧具有最大弹性势能,由动量守恒定律可知:)B B B m v m M v =+共(由能量关系:2211()-22P B B B B E m v m M v m gL μ=-+共 解得E P =0.22J(3)滑块最终没有离开小车,滑块和小车具有共同的末速度,设为u ,滑块与小车组成的系统动量守恒,有:)B B B m v m M v =+(若小车PQ 之间的距离L 足够大,则滑块还没与弹簧接触就已经与小车相对静止, 设滑块恰好滑到Q 点,由能量守恒定律得:22111()22B B B B m gL m v m M v μ=-+联立解得:L 1=1.35m若小车PQ 之间的距离L 不是很大,则滑块必然挤压弹簧,由于Q 点右侧是光滑的,滑块必然被弹回到PQ 之间,设滑块恰好回到小车的左端P 点处,由能量守恒定律得:222112()22B B B B m gL m v m M v μ=-+ 联立解得:L 2=0.675m综上所述,要使滑块既能挤压弹簧,又最终没有离开小车,PQ 之间的距离L 应满足的范围是0.675m <L <1.35m3.水平面上有一竖直放置长H =1.3m 的杆PO ,一长L =0.9m 的轻细绳两端系在杆上P 、Q 两点,PQ 间距离为d =0.3m ,一质量为m =1.0kg 的小环套在绳上。

高考物理高考物理曲线运动常见题型及答题技巧及练习题(含答案)

高考物理高考物理曲线运动常见题型及答题技巧及练习题(含答案)

高考物理高考物理曲线运动常有题型及答题技巧及练习题 (含答案)一、高中物理精讲专题测试曲线运动1. 如图,圆滑轨道abcd 固定在竖直平面内,ab水平,bcd 为半圆,在b 处与 ab 相切.在直轨道 ab 上放着质量分别为 m A =2kg 、 m B =1kg的物块 A 、 B (均可视为质点),用轻质细绳将A 、B 连结在一同,且A 、B 间夹着一根被压缩的轻质弹簧(未被拴接),其弹性势能E p =12J .轨道左边的圆滑水平川面上停着一质量 M =2kg 、长 L=0.5m 的小车,小车上表面与ab 等高.现将细绳剪断,以后A 向左滑上小车,B 向右滑动且恰巧能冲到圆弧轨道的最高点 d 处.已知 A 与小车之间的动摩擦因数μ知足 0.1 ≤μ≤,0.3g 取 10m/ s 2,求( 1) A 、 B 走开弹簧瞬时的速率 v A 、v B ;( 2)圆弧轨道的半径 R ;(3) A 在小车上滑动过程中产生的热量Q (计算结果可含有μ).【答案】( 1) 4m/s ( 2) 0.32m(3) 当知足0.1 ≤μ <0.2 , Q 1μ; 当知足 0.2 ≤μ≤ 0.3时 =10时, 1mA v121(m A M ) v 222【分析】【剖析】(1)弹簧恢复到自然长度时,依据动量守恒定律和能量守恒定律求解两物体的速度; (2)依据能量守恒定律和牛顿第二定律联合求解圆弧轨道的半径R ;( 3)依据动量守恒定律和能量关系求解恰巧能共速的临界摩擦力因数的值,而后议论求解热量 Q.【详解】(1)设弹簧恢复到自然长度时A 、B 的速度分别为 v A 、 v B , 由动量守恒定律:0= m A v A m B v B 由能量关系: E P =1m A v A 2 1m B v B 222解得 v A =2m/s ;v B =4m/s(2)设 B 经过 d 点时速度为 v d ,在 d 点:m B g m B v d 2R由机械能守恒定律:1m B v B 2 =1m B v d 2 m B g 2R22解得 R=0.32m(3)设 μ =1μv,由动量守恒定律:时 A 恰巧能滑到小车左端,其共同速度为m A v A =(m A M )v 由能量关系: 1m A gL1m A v A 21m A M v 222解得 μ1=0.2议论:(ⅰ)当知足0.1 ≤μ <0时.2, A 和小车不共速, A 将从小车左端滑落,产生的热量为Q1m A gL10(J)(ⅱ)当知足0.2≤μ≤0.A3和小车能共速,产生的热量为时,Q11m A v121m A M v2,解得 Q2=2J 222.如下图,水平桌面上有一轻弹簧,左端固定在 A 点,自然状态时其右端位于B点.D 点位于水平桌面最右端,水平桌面右边有一竖直搁置的圆滑轨道MNP,其形状为半径R=0.45m 的圆环剪去左上角 127 °的圆弧, MN 为其竖直直径, P 点到桌面的竖直距离为R, P 点到桌面右边边沿的水平距离为 1.5R.若用质量 m1= 0.4kg 的物块将弹簧迟缓压缩到C 点,开释后弹簧恢还原长时物块恰停止在 B 点,用同种资料、质量为m2= 0.2kg 的物块将弹簧迟缓压缩到 C 点开释,物块过 B 点后其位移与时间的关系为x= 4t﹣ 2t 2,物块从 D 点飞离桌面后恰巧由P 点沿切线落入圆轨道.g =10m/s 2,求:(1)质量为 m2的物块在 D 点的速度;(2)判断质量为 m2=0.2kg 的物块可否沿圆轨道抵达M 点:(3)质量为 m2= 0.2kg 的物块开释后在桌面上运动的过程中战胜摩擦力做的功.【答案】( 1) 2.25m/s (2)不可以沿圆轨道抵达M 点(3)2.7J【分析】【详解】(1)设物块由 D 点以初速度 v D做平抛运动,落到P 点时其竖直方向分速度为:v y2gR2 100.45 m/s=3m/svy4tan53 °v D3所以: v D= 2.25m/s(2)物块在内轨道做圆周运动,在最高点有临界速度,则mg=m v2,R解得: v gR 3 2m/s 2物块抵达P 的速度:v P v D2v2y32 2.252m/s=3.75m/s若物块能沿圆弧轨道抵达M 点,其速度为v M,由 D 到 M 的机械能守恒定律得:1m2v M21m2v P2m2g 1 cos53R22可得: v M20.3375 ,这明显是不行能的,所以物块不可以抵达M 点(3)由题意知 x= 4t - 2t2,物块在桌面上过 B 点后初速度 v B= 4m/s ,加快度为:a4m/s2则物块和桌面的摩擦力:m2 g m2 a可得物块和桌面的摩擦系数:0.4质量 m10.4kg的物块将弹簧迟缓压缩到C点,开释后弹簧恢还原长时物块恰停止在B=点,由能量守恒可弹簧压缩到 C 点拥有的弹性势能为:E p m1gx BC 0质量为 m2=0.2kg 的物块将弹簧迟缓压缩到 C 点开释,物块过 B 点时,由动能定理可得:E p m2 gx BC 1m2v B2 2可得, x BC2m在这过程中摩擦力做功:W1m2gx BC 1.6J 由动能定理, B 到 D 的过程中摩擦力做的功:W 21m2v D21m2v02 22代入数据可得:W2= - 1.1J质量为 m2=0.2kg 的物块开释后在桌面上运动的过程中摩擦力做的功W W1W2 2.7J即战胜摩擦力做功为 2.7 J.3.图示为一过山车的简略模型,它由水平轨道和在竖直平面内的圆滑圆形轨道构成,BC 分别是圆形轨道的最低点和最高点,其半径R=1m,一质量 m=1kg 的小物块(视为质点)从左側水平轨道上的 A 点以大小 v0= 12m/ s 的初速度出发,经过竖直平面的圆形轨道后,停在右边水平轨道上的 D 点.已知 A、B 两点间的距离 L1= 5. 75m,物块与水平轨道写的动摩擦因数0. 2,取 g= 10m/ s2,圆形轨道间不互相重叠,求:(1)物块经过 B 点时的速度大小 v B;(2)物块抵达 C 点时的速度大小 v C;(3) BD 两点之间的距离 L2,以及整个过程中因摩擦产生的总热量Q 【答案】 (1)11m / s (2)9m / s(3)72J【分析】【剖析】【详解】(1)物块从 A 到 B 运动过程中,依据动能定理得:mgL11mv B21mv02 22解得: v B11m / s(2)物块从 B 到 C 运动过程中,依据机械能守恒得:1mv B21mv C2mg·2R22解得: v C9m / s(3)物块从 B 到 D 运动过程中,依据动能定理得:mgL201mv B2 2解得: L230.25m对整个过程,由能量守恒定律有:Q 1mv020 2解得: Q=72J【点睛】选用研究过程,运用动能定理解题.动能定理的长处在于合用任何运动包含曲线运动.知道小滑块能经过圆形轨道的含义以及要使小滑块不可以离开轨道的含义.4.如下图,在竖直平面内固定有两个很凑近的齐心圆形轨道,外圆ABCD圆滑,内圆的上半部分 B′C′粗D糙′,下半部分 B′A′光D滑.一质量′m=0.2kg 的小球从轨道的最低点 A 处以初速度 v0向右运动,球的直径略小于两圆间距,球运动的轨道半径R=0.2m,取g=10m/s2.(1)若要使小球一直紧贴着外圆做完好的圆周运动,初速度v0起码为多少?(2)若 v0=3m/s ,经过一段时间小球抵达最高点,内轨道对小球的支持力F C=2N,则小球在这段时间内战胜摩擦力做的功是多少?(3)若 v0=3.1m/s ,经过足够长的时间后,小球经过最低点 A 时遇到的支持力为多少?小球在整个运动过程中减少的机械能是多少?(保存三位有效数字)【答案】( 1)v0= 10m/s(2) 0.1J ( 3) 6N; 0.56J【分析】【详解】(1)在最高点重力恰巧充任向心力mg mv C2R从到机械能守恒2mgR1mv02 -1mv C222解得v010m/s(2)最高点mv C'2mg - F CR从 A到 C用动能定理-2mgR - W f 1mv C'2-1mv02 22得 W f =0.1J(3)由 v0 =3.1m/s< 10m/s 于,在上半圆周运动过程的某阶段,小球将对内圆轨道间有弹力,因为摩擦作用,机械能将减小.经足够长时间后,小球将仅在半圆轨道内做来去运动.设此时小球经过最低点的速度为v A,遇到的支持力为F A12mgR mv Amv2AF A - mgR得 F A =6N整个运动过程中小球减小的机械能E 1mv02 - mgR 2得 E =0.56J5.如下图,水平实验台 A 端固定, B 端左右可调,将弹簧左端与实验平台固定,右端有一可视为质点,质量为2kg 的滑块紧靠弹簧(未与弹黄连结),弹簧压缩量不一样时,将滑块弹出去的速度不一样.圆弧轨道固定在地面并与一段动摩擦要素为0.4 的粗拙水平川面相切D 点, AB 段最长时, BC两点水平距离x BC=0.9m, 实验平台距地面髙度h=0.53m ,圆弧半径R=0.4m,θ =37,°已知 sin37 =0°.6, cos37 =0.°8.达成以下问題:(1)轨道尾端 AB 段不缩短,压缩弹黄后将滑块弹出,滑块经过点速度v B=3m/s ,求落到 C 点时速度与水平方向夹角;(2)滑块沿着圆弧轨道运动后能在DE 上持续滑行 2m, 求滑块在圆弧轨道上对 D 点的压力大小:(3)经过调整弹簧压缩量,并将AB 段缩短,滑块弹出后恰巧无碰撞从 C 点进入圆弧轨道,求滑块从平台飞出的初速度以及AB 段缩短的距离 .【答案】(1) 45°( 2) 100N (3) 4m/s 、0.3m【分析】(1)依据题意 C 点到地面高度h C R Rcos3700.08m从 B 点飞出后,滑块做平抛运动,依据平抛运动规律:h h C1gt 22化简则 t0.3s依据 x BC v B t可知 v B3m / s飞到 C 点时竖直方向的速度v y gt 3m / s所以 tan v y1 v B即落到圆弧 C 点时,滑块速度与水平方向夹角为45°(2)滑块在 DE 阶段做匀减速直线运动,加快度大小fg am依据 v E2v D22ax DE联立两式则 v D4m / s在圆弧轨道最低处F N mg m v D2R则 F N 100N ,即对轨道压力为100N.(3)滑块弹出恰巧无碰撞从 C 点进入圆弧轨道,说明滑块落到 C 点时的速度方向正好沿着轨迹该出的切线,即tan v y v0因为高度没变,所以 v y v y3m / s ,370所以 v04m / s对应的水平位移为x AC v0 t 1.2m所以缩短的AB 段应当是x AB x AC x BC0.3m【点睛】滑块经历了弹簧为变力的变加快运动、匀减速直线运动、平抛运动、变速圆周运动,匀减速直线运动;波及恒力作用的直线运动可选择牛顿第二定律和运动学公式;而变力作用做曲线运动优先选择动能定理,对匀变速曲线运动还可用运动的分解利用分运动联合等时性研究.6.如下图 ,粗拙水平川面与半径R 1.6m 的圆滑半圆轨道BCD在 B 点光滑连结,O点是半圆轨道 BCD 的圆心,B、O、D三点在同一竖直线上,质量m2kg 的小物块 (可视为质点)静止在水平川面上的A点 .某时辰用一压缩弹簧(未画出 )将小物块沿AB方向水平弹出 ,小物块经过 B 点时速度大小为10m/s(不计空气阻力).已知x AB10m ,小物块与水平川面间的动摩擦因数=0.2 ,重力加快度大小g10m/s2求:.(1)压缩弹簧的弹性势能;(2)小物块运动到半圆轨道最高点时,小物块对轨道作使劲的大小;(3)小物块走开最高点后落回到地面上的地点与 B 点之间的距离.【答案】 (1)140J (2)25N (3)4.8m【分析】(1)设压缩弹簧的弹性势能为E P,从A到B依据能量守恒,有E P 1mv B2mgx AB 2代入数据得 E P140J(2)从 B 到 D,依据机械能守恒定律有1mv B21mv D2mg 2R22在 D 点,依据牛顿运动定律有Fmg m vD2R代入数据解得 F25N由牛顿第三定律知,小物块对轨道作使劲大小为25N(3)由 D 点到落地址物块做平抛运动竖直方向有2R 1 gt22落地址与 B 点之间的距离为x v D t代入数据解得x 4.8m点睛:此题是动能定理、牛顿第二定律和圆周运动以及平抛运动规律的综合应用,重点是确立运动过程,剖析运动规律,选择适合的物理规律列方程求解.7.如下图,轨道ABCD的 AB 段为一半径R= 0.2 m 的圆滑 1/4 圆形轨道, BC段为高为h=5 m 的竖直轨道, CD 段为水平轨道.一质量为 0.2 kg 的小球从 A 点由静止开始下滑,抵达B 点时速度的大小为 2 m/s,走开 B 点做平抛运动 (g= 10 m/s2),求:(1)小球走开 B 点后,在CD 轨道上的落地址到 C 点的水平距离;(2)小球抵达 B 点时对圆形轨道的压力大小;(3)假如在 BCD 轨道上搁置一个倾角θ=45°的斜面(如图中虚线所示),那么小球走开B 点后可否落到斜面上?假如能,求它第一次落在斜面上的地点距离 B 点有多远.假如不可以,请说明原因.【答案】(1)2 m(2)6 N(3)能落到斜面上,第一次落在斜面上的地点距离B点 1.13 m【分析】①.小球走开 B 点后做平抛运动,h 1gt 2 2x v B t解得: x2m所以小球在CD 轨道上的落地址到 C 的水平距离为2m②.在圆弧轨道的最低点B,设轨道对其支持力为N由牛二定律可知:N mg m v2BR代入数据,解得N3N故球抵达 B 点时对圆形轨道的压力为3N③.由①可知,小球必定能落到斜面上依据斜面的特色可知,小球平抛运动落到斜面的过程中,其着落竖直位移和水平位移相等v B t1gt 2,解得:t 0.4s2则它第一次落在斜面上的地点距 B 点的距离为S2v B t 0.8 2m .8.如下图,在圆滑水平桌面EAB上有质量为m=2 kg的小球P 和质量为M= 1 kg 的小球 Q, P、 Q 之间压缩一轻弹簧(轻弹簧与两小球不拴接),桌面边沿 E 处搁置一质量也为M =1 kg 的橡皮泥球S,在 B 处固定一与水平桌面相切的圆滑竖直半圆形轨道。

高考物理曲线运动解题技巧讲解及练习题(含答案)及解析

高考物理曲线运动解题技巧讲解及练习题(含答案)及解析

高考物理曲线运动解题技巧讲解及练习题(含答案)及解析一、高中物理精讲专题测试曲线运动1.光滑水平面AB与一光滑半圆形轨道在B点相连,轨道位于竖直面内,其半径为R,一个质量为m的物块静止在水平面上,现向左推物块使其压紧弹簧,然后放手,物块在弹力作用下获得一速度,当它经B点进入半圆形轨道瞬间,对轨道的压力为其重力的9倍,之后向上运动经C点再落回到水平面,重力加速度为g.求:(1)弹簧弹力对物块做的功;(2)物块离开C点后,再落回到水平面上时距B点的距离;(3)再次左推物块压紧弹簧,要使物块在半圆轨道上运动时不脱离轨道,则弹簧弹性势能的取值范围为多少?【答案】(1)(2)4R(3)或【解析】【详解】(1)由动能定理得W=在B点由牛顿第二定律得:9mg-mg=m解得W=4mgR(2)设物块经C点落回到水平面上时距B点的距离为S,用时为t,由平抛规律知S=v c t2R=gt2从B到C由动能定理得联立知,S= 4 R(3)假设弹簧弹性势能为EP,要使物块在半圆轨道上运动时不脱离轨道,则物块可能在圆轨道的上升高度不超过半圆轨道的中点,则由机械能守恒定律知EP≤mgR若物块刚好通过C点,则物块从B到C由动能定理得物块在C 点时mg =m 则联立知:EP≥mgR .综上所述,要使物块在半圆轨道上运动时不脱离轨道,则弹簧弹性势能的取值范围为 EP≤mgR 或 EP≥mgR .2.如图所示,光滑轨道CDEF 是一“过山车”的简化模型,最低点D 处入、出口不重合,E 点是半径为0.32R m =的竖直圆轨道的最高点,DF 部分水平,末端F 点与其右侧的水平传送带平滑连接,传送带以速率v=1m/s 逆时针匀速转动,水平部分长度L=1m .物块B 静止在水平面的最右端F 处.质量为1A m kg =的物块A 从轨道上某点由静止释放,恰好通过竖直圆轨道最高点E ,然后与B 发生碰撞并粘在一起.若B 的质量是A 的k 倍,A B 、与传送带的动摩擦因数都为0.2μ=,物块均可视为质点,物块A 与物块B 的碰撞时间极短,取210/g m s =.求:(1)当3k =时物块A B 、碰撞过程中产生的内能; (2)当k=3时物块A B 、在传送带上向右滑行的最远距离;(3)讨论k 在不同数值范围时,A B 、碰撞后传送带对它们所做的功W 的表达式.【答案】(1)6J (2)0.25m (3)①()21W k J =-+②()221521k k W k +-=+【解析】(1)设物块A 在E 的速度为0v ,由牛顿第二定律得:20A A v m g m R=①,设碰撞前A 的速度为1v .由机械能守恒定律得:220111222A A A m gR m v m v +=②, 联立并代入数据解得:14/v m s =③;设碰撞后A 、B 速度为2v ,且设向右为正方向,由动量守恒定律得()122A A m v m m v =+④;解得:21141/13A A Bm v v m s m m ==⨯=++⑤;由能量转化与守恒定律可得:()22121122A AB Q m v m m v =-+⑥,代入数据解得Q=6J ⑦; (2)设物块AB 在传送带上向右滑行的最远距离为s ,由动能定理得:()()2212A B A B m m gs m m v μ-+=-+⑧,代入数据解得0.25s m =⑨; (3)由④式可知:214/1A A B m v v m s m m k==++⑩;(i )如果A 、B 能从传送带右侧离开,必须满足()()2212A B A B m m v m m gL μ+>+,解得:k <1,传送带对它们所做的功为:()()21J A B W m m gL k μ=-+=-+; (ii )(I )当2v v ≤时有:3k ≥,即AB 返回到传送带左端时速度仍为2v ; 由动能定理可知,这个过程传送带对AB 所做的功为:W=0J ,(II )当0k ≤<3时,AB 沿传送带向右减速到速度为零,再向左加速, 当速度与传送带速度相等时与传送带一起匀速运动到传送带的左侧. 在这个过程中传送带对AB 所做的功为()()2221122A B A B W m m v m m v =+-+, 解得()221521k k W k +-=+; 【点睛】本题考查了动量守恒定律的应用,分析清楚物体的运动过程是解题的前提与关键,应用牛顿第二定律、动量守恒定律、动能定理即可解题;解题时注意讨论,否则会漏解.A 恰好通过最高点E ,由牛顿第二定律求出A 通过E 时的速度,由机械能守恒定律求出A 与B 碰撞前的速度,A 、B 碰撞过程系统动量守恒,应用动量守恒定律与能量守恒定律求出碰撞过程产生的内能,应用动能定理求出向右滑行的最大距离.根据A 、B 速度与传送带速度间的关系分析AB 的运动过程,根据运动过程应用动能定理求出传送带所做的功.3.如图所示,一个固定在竖直平面上的光滑半圆形管道,管道里有一个直径略小于管道内径的小球,小球在管道内做圆周运动,从B 点脱离后做平抛运动,经过0.3s 后又恰好与倾角为045的斜面垂直相碰.已知半圆形管道的半径为1R m =,小球可看作质点且其质量为1m kg =,210/g m s =,求:(1)小球在斜面上的相碰点C与B点的水平距离;(2)小球通过管道上B点时对管道的压力大小和方向.【答案】(1)0.9m;(2)1N【解析】【分析】(1)根据平抛运动时间求得在C点竖直分速度,然后由速度方向求得v,即可根据平抛运动水平方向为匀速运动求得水平距离;(2)对小球在B点应用牛顿第二定律求得支持力N B的大小和方向.【详解】(1)根据平抛运动的规律,小球在C点竖直方向的分速度v y=gt=10m/s水平分速度v x=v y tan450=10m/s则B点与C点的水平距离为:x=v x t=10m(2)根据牛顿运动定律,在B点N B+mg=m2 v R解得 N B=50N根据牛顿第三定律得小球对轨道的作用力大小N, =N B=50N方向竖直向上【点睛】该题考查竖直平面内的圆周运动与平抛运动,小球恰好垂直与倾角为45°的斜面相碰到是解题的关键,要正确理解它的含义.要注意小球经过B点时,管道对小球的作用力可能向上,也可能向下,也可能没有,要根据小球的速度来分析.4.如图所示,水平传送带AB长L=4m,以v0=3m/s的速度顺时针转动,半径为R=0.5m的光滑半圆轨道BCD与传动带平滑相接于B点,将质量为m=1kg的小滑块轻轻放在传送带的左端.已,知小滑块与传送带之间的动摩擦因数为μ=0.3,取g=10m/s2,求:(1)滑块滑到B点时对半圆轨道的压力大小;(2)若要使滑块能滑到半圆轨道的最高点,滑块在传送带最左端的初速度最少为多大.【答案】(1)28N.(2)7m/s【解析】【分析】(1)物块在传送带上先加速运动,后匀速,根据牛顿第二定律求解在B点时对轨道的压力;(2)滑块到达最高点时的临界条件是重力等于向心力,从而求解到达D 点的临界速度,根据机械能守恒定律求解在B 点的速度;根据牛顿第二定律和运动公式求解A 点的初速度. 【详解】(1)滑块在传送带上运动的加速度为a=μg=3m/s 2;则加速到与传送带共速的时间01v t s a == 运动的距离:211.52x at m ==, 以后物块随传送带匀速运动到B 点,到达B 点时,由牛顿第二定律:2v F mg m R-= 解得F=28N ,即滑块滑到B 点时对半圆轨道的压力大小28N.(2)若要使滑块能滑到半圆轨道的最高点,则在最高点的速度满足:mg=m 2Dv R解得v D =5m/s ; 由B 到D ,由动能定理:2211222B D mv mv mg R =+⋅ 解得v B =5m/s>v 0可见,滑块从左端到右端做减速运动,加速度为a=3m/s 2,根据v B 2=v A 2-2aL 解得v A =7m/s5.如图所示,竖直平面内有一光滑的直角细杆MON ,其中ON 水平,OM 竖直,两个小物块A 和B 分别套在OM 和ON 杆上,连接AB 的轻绳长为L =0.5m ,.现将直角杆MON 绕过OM 的轴O 1O 2缓慢地转动起来.已知A 的质量为m 1=2kg ,重力加速度g 取10m/s 2。

高考物理曲线运动解题技巧及经典题型及练习题(含答案)含解析

高考物理曲线运动解题技巧及经典题型及练习题(含答案)含解析

高考物理曲线运动解题技巧及经典题型及练习题(含答案)含解析一、高中物理精讲专题测试曲线运动1.如图所示,倾角为45α=︒的粗糙平直导轨与半径为r 的光滑圆环轨道相切,切点为b ,整个轨道处在竖直平面内. 一质量为m 的小滑块从导轨上离地面高为H =3r 的d 处无初速下滑进入圆环轨道,接着小滑块从最高点a 水平飞出,恰好击中导轨上与圆心O 等高的c 点. 已知圆环最低点为e 点,重力加速度为g ,不计空气阻力. 求: (1)小滑块在a 点飞出的动能; ()小滑块在e 点对圆环轨道压力的大小;(3)小滑块与斜轨之间的动摩擦因数. (计算结果可以保留根号)【答案】(1)12k E mgr =;(2)F ′=6mg ;(3)42μ-= 【解析】 【分析】 【详解】(1)小滑块从a 点飞出后做平拋运动: 2a r v t = 竖直方向:212r gt = 解得:a v gr =小滑块在a 点飞出的动能21122k a E mv mgr == (2)设小滑块在e 点时速度为m v ,由机械能守恒定律得:2211222m a mv mv mg r =+⋅ 在最低点由牛顿第二定律:2m mv F mg r-= 由牛顿第三定律得:F ′=F 解得:F ′=6mg(3)bd 之间长度为L ,由几何关系得:()221L r =从d 到最低点e 过程中,由动能定理21cos 2m mgH mg L mv μα-⋅= 解得4214μ-=2.高台滑雪以其惊险刺激而闻名,运动员在空中的飞跃姿势具有很强的观赏性。

某滑雪轨道的完整结构可以简化成如图所示的示意图。

其中AB 段是助滑坡,倾角α=37°,BC 段是水平起跳台,CD 段是着陆坡,倾角θ=30°,DE 段是停止区,AB 段与BC 段平滑相连,轨道各部分与滑雪板间的动摩擦因数均为μ=0.03,图中轨道最高点A 处的起滑台距起跳台BC 的竖直高度h=47m 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理高考物理曲线运动解题技巧及经典题型及练习题(含答案)一、高中物理精讲专题测试曲线运动1.已知某半径与地球相等的星球的第一宇宙速度是地球的12倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加速度?(2)细线刚被拉断时,小球抛出的速度多大? (3)细线所能承受的最大拉力?【答案】(1)01=4g g 星 (2)0024g sv H L=-201[1]42()s T mg H L L =+- 【解析】 【分析】 【详解】(1)由万有引力等于向心力可知22Mm v G m R R =2MmGmg R= 可得2v g R=则014g g 星=(2)由平抛运动的规律:212H L g t -=星 0s v t =解得0024g s v H L=- (3)由牛顿定律,在最低点时:2v T mg m L-星=解得:201142()s T mg H L L ⎡⎤=+⎢⎥-⎣⎦【点睛】本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g 0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键.2.如图,光滑轨道abcd 固定在竖直平面内,ab 水平,bcd 为半圆,在b 处与ab 相切.在直轨道ab 上放着质量分别为m A =2kg 、m B =1kg 的物块A 、B (均可视为质点),用轻质细绳将A 、B 连接在一起,且A 、B 间夹着一根被压缩的轻质弹簧(未被拴接),其弹性势能E p =12J .轨道左侧的光滑水平地面上停着一质量M =2kg 、长L =0.5m 的小车,小车上表面与ab 等高.现将细绳剪断,之后A 向左滑上小车,B 向右滑动且恰好能冲到圆弧轨道的最高点d 处.已知A 与小车之间的动摩擦因数µ满足0.1≤µ≤0.3,g 取10m /s 2,求(1)A 、B 离开弹簧瞬间的速率v A 、v B ; (2)圆弧轨道的半径R ;(3)A 在小车上滑动过程中产生的热量Q (计算结果可含有µ).【答案】(1)4m/s (2)0.32m(3) 当满足0.1≤μ<0.2时,Q 1=10μ ;当满足0.2≤μ≤0.3时,22111()22A A m v m M v -+ 【解析】 【分析】(1)弹簧恢复到自然长度时,根据动量守恒定律和能量守恒定律求解两物体的速度; (2)根据能量守恒定律和牛顿第二定律结合求解圆弧轨道的半径R ;(3)根据动量守恒定律和能量关系求解恰好能共速的临界摩擦力因数的值,然后讨论求解热量Q. 【详解】(1)设弹簧恢复到自然长度时A 、B 的速度分别为v A 、v B , 由动量守恒定律:0=A A B B m v m v - 由能量关系:2211=22P A A B B E m v m v -解得v A =2m/s ;v B =4m/s(2)设B 经过d 点时速度为v d ,在d 点:2dB B v m g m R=由机械能守恒定律:22d 11=222B B B B m v m v m g R +⋅ 解得R=0.32m(3)设μ=μ1时A 恰好能滑到小车左端,其共同速度为v,由动量守恒定律:=()A A A m v m M v +由能量关系:()2211122A A A A m gL m v m M v μ=-+ 解得μ1=0.2 讨论:(ⅰ)当满足0.1≤μ<0.2时,A 和小车不共速,A 将从小车左端滑落,产生的热量为110A Q m gL μμ== (J )(ⅱ)当满足0.2≤μ≤0.3时,A 和小车能共速,产生的热量为()22111122A A Q m v m M v =-+,解得Q 2=2J3.如图所示,水平屋顶高H =5 m ,围墙高h =3.2 m ,围墙到房子的水平距离L =3 m ,围墙外空地宽x =10 m ,为使小球从屋顶水平飞出落在围墙外的空地上,g 取10 m/s 2.求: (1)小球离开屋顶时的速度v 0的大小范围; (2)小球落在空地上的最小速度.【答案】(1)5 m/s≤v 0≤13 m/s ; (2)55m/s ; 【解析】 【分析】 【详解】(1)若v 太大,小球落在空地外边,因此,球落在空地上,v 的最大值v max 为球落在空地最右侧时的平抛初速度,如图所示,小球做平抛运动,设运动时间为t 1. 则小球的水平位移:L+x=v max t 1, 小球的竖直位移:H=gt 12 解以上两式得 v max =(L+x )=(10+3)×=13m/s .若v 太小,小球被墙挡住,因此, 球不能落在空地上,v 的最小值v min为球恰好越过围墙的最高点P 落在空地上时的平抛初速度,设小球运动到P 点所需时间为t 2,则此过程中小球的水平位移:L=v min t 2小球的竖直方向位移:H ﹣h=gt 22 解以上两式得v min =L=3×=5m/s因此v 0的范围是v min ≤v 0≤v max , 即5m/s≤v 0≤13m/s .(2)根据机械能守恒定律得:mgH+=解得小球落在空地上的最小速度:v min ′===5m/s4.如图所示,水平长直轨道AB 与半径为R =0.8m 的光滑14竖直圆轨道BC 相切于B ,BC 与半径为r =0.4m 的光滑14竖直圆轨道CD 相切于C ,质量m =1kg 的小球静止在A 点,现用F =18N 的水平恒力向右拉小球,在到达AB 中点时撤去拉力,小球恰能通过D 点.已知小球与水平面的动摩擦因数μ=0.2,取g =10m/s 2.求: (1)小球在D 点的速度v D 大小; (2)小球在B 点对圆轨道的压力N B 大小; (3)A 、B 两点间的距离x .【答案】(1)2/D v m s = (2)45N (3)2m 【解析】 【分析】 【详解】(1)小球恰好过最高点D ,有:2Dv mg m r=解得:2m/s D v = (2)从B 到D ,由动能定理:2211()22D B mg R r mv mv -+=- 设小球在B 点受到轨道支持力为N ,由牛顿定律有:2Bv N mg m R-=N B =N 联解③④⑤得:N =45N (3)小球从A 到B ,由动能定理:2122B x Fmgx mv μ-= 解得:2m x =故本题答案是:(1)2/D v m s = (2)45N (3)2m 【点睛】利用牛顿第二定律求出速度,在利用动能定理求出加速阶段的位移,5.如图所示,光滑轨道CDEF 是一“过山车”的简化模型,最低点D 处入、出口不重合,E 点是半径为0.32R m =的竖直圆轨道的最高点,DF 部分水平,末端F 点与其右侧的水平传送带平滑连接,传送带以速率v=1m/s 逆时针匀速转动,水平部分长度L=1m .物块B 静止在水平面的最右端F 处.质量为1A m kg =的物块A 从轨道上某点由静止释放,恰好通过竖直圆轨道最高点E ,然后与B 发生碰撞并粘在一起.若B 的质量是A 的k 倍,A B 、与传送带的动摩擦因数都为0.2μ=,物块均可视为质点,物块A 与物块B 的碰撞时间极短,取210/g m s =.求:(1)当3k =时物块A B 、碰撞过程中产生的内能; (2)当k=3时物块A B 、在传送带上向右滑行的最远距离;(3)讨论k 在不同数值范围时,A B 、碰撞后传送带对它们所做的功W 的表达式.【答案】(1)6J (2)0.25m (3)①()21W k J =-+②()221521k k W k +-=+【解析】(1)设物块A 在E 的速度为0v ,由牛顿第二定律得:20A A v m g m R=①,设碰撞前A 的速度为1v .由机械能守恒定律得:220111222A A A m gR m v m v +=②, 联立并代入数据解得:14/v m s =③;设碰撞后A 、B 速度为2v ,且设向右为正方向,由动量守恒定律得()122A A m v m m v =+④;解得:21141/13A AB mv v m s m m ==⨯=++⑤;由能量转化与守恒定律可得:()22121122A AB Q m v m m v =-+⑥,代入数据解得Q=6J ⑦; (2)设物块AB 在传送带上向右滑行的最远距离为s ,由动能定理得:()()2212A B A B m m gs m m v μ-+=-+⑧,代入数据解得0.25s m =⑨; (3)由④式可知:214/1A A B m v v m s m m k==++⑩;(i )如果A 、B 能从传送带右侧离开,必须满足()()2212A B A B m m v m m gL μ+>+,解得:k <1,传送带对它们所做的功为:()()21J A B W m m gL k μ=-+=-+; (ii )(I )当2v v ≤时有:3k ≥,即AB 返回到传送带左端时速度仍为2v ; 由动能定理可知,这个过程传送带对AB 所做的功为:W=0J ,(II )当0k ≤<3时,AB 沿传送带向右减速到速度为零,再向左加速, 当速度与传送带速度相等时与传送带一起匀速运动到传送带的左侧. 在这个过程中传送带对AB 所做的功为()()2221122A B A B W m m v m m v =+-+, 解得()221521k k W k +-=+; 【点睛】本题考查了动量守恒定律的应用,分析清楚物体的运动过程是解题的前提与关键,应用牛顿第二定律、动量守恒定律、动能定理即可解题;解题时注意讨论,否则会漏解.A 恰好通过最高点E ,由牛顿第二定律求出A 通过E 时的速度,由机械能守恒定律求出A 与B 碰撞前的速度,A 、B 碰撞过程系统动量守恒,应用动量守恒定律与能量守恒定律求出碰撞过程产生的内能,应用动能定理求出向右滑行的最大距离.根据A 、B 速度与传送带速度间的关系分析AB 的运动过程,根据运动过程应用动能定理求出传送带所做的功.6.光滑水平轨道与半径为R 的光滑半圆形轨道在B 处连接,一质量为m 2的小球静止在B 处,而质量为m 1的小球则以初速度v 0向右运动,当地重力加速度为g ,当m 1与m 2发生弹性碰撞后,m 2将沿光滑圆形轨道上升,问:(1)当m 1与m 2发生弹性碰撞后,m 2的速度大小是多少?(2)当m 1与m 2满足21(0)m km k =>,半圆的半径R 取何值时,小球m 2通过最高点C 后,落地点距离B 点最远。

相关文档
最新文档