关于二次曲线切线问题的两点注记

合集下载

§5.3 二次曲线的切线

§5.3  二次曲线的切线

§5.3 二次曲线的切线一、概念1. 定义1:如果直线与二次曲线交于相互重合的两个点,那么这条直线就叫做二次曲线的切线,这个重合的交点叫做切点;如果直线全部在二次曲线上,我们也称它为二次曲线的切线,直线上的每一个点都可以看作切点.2.定义2:二次曲线F(x, y)=0上满足条件F1(x0, y0)=F2(x0, y0)=0的点(x0, y0)叫做二次曲线的奇异点,简称奇点;二次曲线的非奇异点叫做二次曲线的正常点. 奇点是中心,但中心不一定是奇点.注:(1) 二次曲线有奇点的充要条件是I3= 0,(2) 二次曲线的奇点一定是二次曲线的中心,但反之不然.二、切线求法1.已知切点求切线:设点(x0, y0)是二次曲线F(x, y)=0上的点, 则通过点(x0, y0)的直线方程总可以写成那么此直线成为二次曲线切线的条件,当Φ(X, Y)≠0时∆=[F1(x0, y0)X +F2(x0, y0)Y]2-Φ(X, Y)⋅F(x0, y0)=0.因为点 (x0, y0) 在二次曲线上,所以F(x0, y0)=0;因而上式可化为F1(x0, y0)X +F2(x0, y0)Y=0.当Φ(X, Y)= 0时除了F(x0, y0)=0外,唯一的条件仍然是F1(x0, y0)X +F2(x0, y0)Y=0.(1)如果点(x0, y0)是二次曲线F (x, y)=0的正常点:那么由以上条件得X:Y = F2(x0, y0):(-F1(x0, y0)),因此切线方程为或写成,或 (x-x0)F1(x0, y0)+(y-y0)F2(x0, y0)=0,其中 (x0, y0) 是它的切点;(2)如果点 (x0, y0) 是二次曲线F (x, y)=0的奇异点,即F1(x0, y0)=F2(x0, y0)=0,则切线方向X:Y不能唯一地被确定,从而通过点 (x0, y0)的切线不确定,这时通过点 (x0, y0) 的任何直线都和二次曲线F (x, y)=0相交于相互重合的两点,我们把这样的直线也看成是二次曲线的切线.这样我们就得到定理1:如果点(x0, y0) 是二次曲线F (x, y)= 0的正常点,则通过点(x0, y0)的切线方程是 (x-x0)F1(x0, y0)+(y-y0)F2(x0, y0)=0,(x0, y0)是它的切点.如果点 (x0, y0) 是二次曲线F (x, y)=0的奇异点,则通过点 (x0, y0) 的每一条直线都是二次曲线F (x, y)=0的切线.推论:如果点 (x0, y0) 是二次曲线F (x, y) = 0的正常点,则通过点 (x0, y0) 的切线方程是a11x0x + a12(x0y+xy0)+a22y0y+a13(x+x0)+a23(y+y0)+a33=0.证明:过点(x0, y0) 的切线方程可改写成xF1(x0, y0)+yF2(x0, y0)-[x0F1(x0, y0)+y0F2(x0, y0)]=0,那么xF1(x0, y0)+yF2(x0, y0)+ F3(x0, y0)-[x0F1(x0, y0)+y0F2(x0, y0)+ F3(x0, y0)]=0,则有xF1(x0, y0)+yF2(x0, y0)+ F3(x0, y0)=0,即 x(a11x + a12y+a13)+y(a12x + a22y+a23)+( a13x + a23y+a33)=0,从而得a11x0x + a12(x0y+xy0)+a22y0y+a13(x+x0)+a23(y+y0)+a33=0.2.已知二次曲线外一点,求过此点的切线:设点(x0 , y0)不是二次曲线上的点,即F(x0 , y0)≠0, 则过点(x0 , y0)的直线方程为此直线成为二次曲线上切线唯一条件是Φ(X, Y)≠0且∆=[F1(x0, y0)X +F2(x0, y0)Y]2-Φ(X, Y)⋅F(x0, y0)=0.由此解出X:Y,从而得(两条)切线的方程.例1. 求以下二次曲线在所给点或通过所给点的切线方程.(1)曲线3x2+4xy+5y2-7x-8y-3=0, 在点 (2, 1);(2)曲线x2+xy+y2+x+4y+3=0, 经过点 (-2, -1).解:(1)F (x, y)= 3x2+4xy+5y2-7x-8y-3, F1(x, y)=3x+2y-, F2(x, y)=2x+5y-4,因为 F (2, 1)=12+8+5-14-8-3+=0,且F1(2, 1)=≠0, F2(2, 1)=5≠0,所以点(2, 1)是二次曲线上的正常点.因此切线方程为(x-2)+5(y-1)=0,化简得 9x+10y-28=0.(2)F (x, y)= x2+xy+y2+x+4y+3, F1(x, y)=x+, F2(x, y)=, 因为F(-2, -1)=4≠0, 所以点 (-2, -1) 不在曲线上,而F1(-2, -1)= -2, F2(-2, -1)=0,设所求切线方程为,由 (-2X)2-4(X2+XY+Y2)=0 得X1:Y1=-1:1, X2:Y2=1:0,所以两条切线方程为与,即x+y+3=0 与y+1=0.例3. 已知曲线x2+4xy+3y2-5x-6y+3=0的切线平行于x+4y=0,求切线方程和切点坐标.解:设切点为(x0, y0),则切线方程为x0x+2(x0y+xy0)+3y0y-(x+x0)-3(y+y0)+3=0,即 (x0+2y0-)x+(2x0+3y0-3)y-x0-3y0+3=0,由已知条件有即 4(x0+2y0-)=2x0+3y0-3,或 2x0+5y0-7=0, ①又切点在曲线上,从而+4x0y0+3-5x0-6y0+3=0, ②由①, ②解得切点为 (1, 1),(-4, 3), 故所求切线方程为x+4y-5=0 和x+4y-8=0.例4. 试求经过原点且切直线4x+3y+2=0于点 (1,-2) 及切直线x-y-1=0于点 (0, -1) 的二次曲线方程.解:因为二次曲线过原点 (0, 0),所以设二次曲线为a11x2+2a12xy+a22y2+2a13x+2a23y=0,切线方程为 (x-x0)F1(x0, y0)+(y-y0)F2(x0, y0)=0,还可写为F1(x0, y0)x+F2(x0, y0)y+F3(x0, y0)=0.从而过点 (1, -2) 及 (0, -1) 的切线分别为(a11-2a12+a13)x+(a12-2a22+a23)y+a13-2a23=0,(-a12+a13)x+(-a22+a23)y-a23=0,由题设它们应分别为4x+3y+2=0及x-y-1=0,故有,解得λ: μ = 1: -,从而a11=6, a12 = , a22 = -1, a13= 1, a23= -,故所求二次曲线为6x2+3xy-y2+2x-y=0.作业题:1. 求以下二次曲线在所给点或经过所给点的切线方程.(1) 曲线 5x2+7xy+y2-x+2y=0 在原点;(2) 曲线 5x2+6xy+5y2=8经过点 (0, 2).2. 已知曲线x2+xy+y2=3 的切线平行于x轴,求切线方程和切点坐标.。

§3二次曲线的切线和奇点

§3二次曲线的切线和奇点

§3 二次曲线的切线和奇点一 切线:1、定义:若一直线l 与二次曲线C 交于二重合实点,或l 整个在二次曲线C 上,则称l为C 的切线。

切线与C 的公共点称为切点。

2、求法:设0P (0x ,0y )∈C ,以0P 为切点的切线 l :⎩⎨⎧+=+=tY y y tX x x 00 今确定X :Y1°当1F (0x ,0y ),2F (0x ,0y )不全为0时,若X :Y 不是渐近方向,则l 与C 相切〈═〉l 与C 交于二重合实点〈═〉△=[1F (0x ,0y )X+2F (0x ,0y )Y]²-Φ(X ,Y )F (0x ,0y )=0 〈═〉1F (0x ,0y )X+2F (0x ,0y )Y=0〈═〉X :Y=-2F (0x ,0y ):1F (0x ,0y ) 若X :Y 是渐近方向,则l 与C 相切〈═〉l 处在C 上〈═〉1F (0x ,0y )X+2F (0x ,0y )Y=0〈═〉X :Y=-2F (0x ,0y ):1F (0x ,0y ) 从而切线l :⎩⎨⎧+=-=t )y x (F y y t )y x (F x x 00100020,, 即 1F (0x ,0y )(x -0x )+2F (0x ,0y )(y -0y )=01F (0x ,0y )x+2F (0x ,0y )y-[1F (0x ,0y )0x +2F (0x ,0y )0y ]=0 1F (0x ,0y )x +2F (0x ,0y )y+3F (0x ,0y )=0亦即11a 0x x +12a (0x y +0y x )+22a 0y y +13a (x +0x )+23a (y +0y )+33a =0 (*) 注:在1F (0x ,0y )与2F (0x ,0y )不全为0时,(*)即为以0P (0x ,0y )为切点的切线方程。

不难看出,若0P (0x ,0y )使1F (0x ,0y ),2F (0x ,0y )不全为0,则要求以0P 为切点的切线,只需要在C 的方程中,以0x x ,2x y y x 00+ ,0y y ,2x x 0+ ,2y y 0+ 替换x ² xy y ² x y即可2°当1F (0x ,0y )=2F (0x ,0y )=0时,对∀过0P 且沿非渐近方向的直线l :⎩⎨⎧+=+=tY y y tX x x 00 , △=[1F (0x ,0y )X+2F (0x ,0y )Y]²-Φ(X ,Y )F (0x ,0y )=0 ∴l 是切线;而对任意过0P 且沿渐近方向的直线l :⎩⎨⎧+=+=tY y y tX x x 00 Φ(X ,Y )=1F (0x ,0y )X+2F (0x ,0y )Y=F (0x ,0y )=0,∴l 整个在曲线 即l 也是切线可见,若曲线C 上一点0P (0x ,0y )使1F (0x ,y 。

二次函数速记口诀

二次函数速记口诀

二次函数速记口诀二次方程零换y,二次函数便出现。

全体实数定义域,图像叫做抛物线。

抛物线有对称轴,两边单调正相反。

A定开口及大小,线轴交点叫顶点。

顶点非高即最低。

上低下高很显眼。

如果要画抛物线,平移也可去描点,提取配方定顶点,两条途径再挑选。

列表描点后连线,平移规律记心间。

左加右减括号内,号外上加下要减。

二次方程零换y,就得到二次函数。

图像叫做抛物线,定义域全体实数。

A定开口及大小,开口向上是正数。

绝对值大开口小,开口向下A负数。

抛物线有对称轴,增减特性可看图。

线轴交点叫顶点,顶点纵标最值出。

如果要画抛物线,描点平移两条路。

提取配方定顶点,平移描点皆成图。

列表描点后连线,三点大致定全图。

若要平移也不难,先画基础抛物线,顶点移到新位置,开口大小随基础。

二次函数与几何方法分为:二次函数与线段及角、等腰三角形、直角三角形、相似三角形、平行四边形、矩形、菱形、正方形、圆、面积等问题)重要思想:①分类讨论→代表性题型:动态几何问题,存在性讨论问题;②转化思想(待定系数)→代表性题型:面积问题,二函数图象与坐标轴的交点距离、二次函数与一次函数交点距离等; ③最短路径→代表性题型:利用二次函数的对称性求三角形的周长最小时点的坐标;④尺规作图→代表性题型:二次函数中求出直角三角形与等腰三角形时点的坐标,采用直角三角板与圆规进行尺规作图分析;⑤极端值思想→代表性题型:动态几何问题,动态函数问题;⑥数形结合思想→代表性题型:函数与几何综合题。

二次函数的常见考法(1)考查一些带约束条件的二次函数最值;(2)结合二次函数考查一些创新问题二次函数的实际应用在公路、桥梁、隧道、城市建设等很多方面都有抛物线型;生产和生活中,有很多“利润最大”、“用料最少”、“开支最节约”、“线路最短”、“面积最大”等问题,它们都有可能用到二次函数关系,用到二次函数的最值。

那么解决这类问题的一般步骤是:第一步:设自变量;第二步:建立函数解析式;第三步:确定自变量取值范围;第四步:根据顶点坐标公式或配方法求出最值(在自变量的取值范围内)。

二次曲线的切线

二次曲线的切线

XF1 ( x0 , y0 ) YF2 ( x0 , y0 ) 0
X :Y F2 (x0, y0 ) :[F1(x0, y0 )]
因此过二次曲线上的点 M0 (x0, y0 )的切线方程为
x

y

x0 y0
F2 (x0 , F1(x0 ,
y0 y0
)t )t
x x0 y y0 F2 (x0 , y0 ) F1(x0 , y0 )
解:因为F(2,1)=4-2+1+4-4-3=0,

F1(2,1)=5/2≠0, F 2 (2,1)=-2 ≠0
所以(2,1)是二次曲线上的正常点,因此得在
点(2,1)的切线方程为:
5/2 (x-2)-2(y-1)=0
即: 5x-4y-6=0
例2 求二次曲线 x2 xy y2 1 0 通点(0,2) 的切线方程
定义5.3.1 如果直线与二次曲线相交于相互重合的 两个点,那么这条直线就叫做二次曲线的切线,这个 重合的交点叫做切点,如果直线全部在二次曲线上, 我们也称它为二次曲线的切线,直线上的每个点都可 以看作切点.
设M0 (x0,y0) 是二次曲线(1)上的任一点,则过M0的直线l 的方程总可以写成下面的形式:
解:设切点为 (x0, y0 ) ,则切线方程为:
x0
x

1 2
( x0
y

xy0
)

y0y1Fra bibliotek0

且 x0 2 y0 1 0,
x02 x0 y0 y02 1 0
解得
x0

y0

1与
0
x0

五种方法解二次曲线的切线问题,理解应用这些公式你离学霸不远了

五种方法解二次曲线的切线问题,理解应用这些公式你离学霸不远了

五种方法解二次曲线的切线问题,理解应用这些公式你离学霸
不远了
学霸数学
专注中小学考试信息及题型分析总结
关注
题型:已知焦点在x轴上的椭圆与直线2x+3y-10=0相切,且离心率为√3/2,求此椭圆方程
这里给出五种方法求解,几乎每种都代表着不同的方法,这些方法中蕴含着丰富的知识,同学们好好研究一下,对你们的学习非常有帮助呢!
解法一:(判别式法)
初等数学中,二次曲线的切线问题源于判别式,且利用判别式还可得出有关切线的某些性质、公式或定理。

解法二:。

利用隐函数定理解高考中二次曲线的切线问题

利用隐函数定理解高考中二次曲线的切线问题

利用隐函数定理解高考中二次曲线的切线问题导数给高中数学增添了新的活力,也是高考的热点内容.纵观历年高考,有很多导数试题与高等数学中的隐函数导数有关.本文是在高三备考复习中,对近些年来全国和若干省(市)高考数学卷中的把关题和压轴题做一些简单分析,旨在为备考初等数学与高等数学的衔接知识方面起抛砖引玉的作用.一、隐函数定理设函数F(x,y)在包含(x0,y0)的一个开集上连续可微,并且满足条件F(x0,y0)=0,Fy(x0,y0)≠0,则存在以(x0,y0)为中心的开方块D×E(D=(x0-δ,x0+δ),E=(y0-η,y0+η)),使得(1)对任何一个x∈D,恰好存在唯一的一个y∈E,满足方程F (x,y)=0.这就是说,方程F(x,y)=0确定了一个从D到E的函数y=f(x);(2)函数y=f(x)在D连续可微,它的导数可按下式计算dydx=-Fx(x,y)Fy(x,y).二、问题已知椭圆C:x2a2+y2b2=1(a>b>0).(Ⅰ)点P(x0,y0)是椭圆C上一点,求过P点的椭圆C的切线方程;(Ⅱ)点P(x0,y0)是椭圆C外一点,过P引椭圆C的切线PA、PB,点A、B为切点,求直线AB的方程.解:(Ⅰ)根据隐函数定理f′(x)=dydx=-2xa22yb2=-xb2ya2,过P的切线斜率k=-x0b2y0a2,过P的切线方程为y-y0=--x0b2y0a2(x-x0),整理得x0xa2+y0yb2=1.(Ⅱ)设切点A(x1,y1)、B(x2,y2),由(1)知切线PA:x1xa2+y1yb2=1,切线PB:x2xa2+y2yb2=1,由直线PA、PB的交点为P(x0,y0),所以直线AB的方程为x0xa2+y0yb2=1.三、推广命题1 已知圆C:(x-a)2+(y-b)2=r2.(1)点P(x0,y0)是圆C上一点,则过P点的圆C的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2.(2)点P(x0,y0)是圆C:(x-a)2+(y-b)2=r2外一点,过P引圆C的切线PA、PB,点A、B为切点,则直线AB的方程为(x0-a)(x-a)+(y0-b)(y-b)=r2.命题2 已知双曲线C:x2a2-y2b2=1(a>0,b>0).(1)点P(x0,y0)是双曲线C上一点,则过P点的双曲线C的切线方程为x0xa2-y0yb2=1.(2)点P(x0,y0)是双曲线C:x2a2-y2b2=1(a>0,b>0)外一点,过P引双曲线C的切线PA、PB,点A、B为切点,则直线AB的方程为x0xa2-y0yb=1.命题3 已知抛物线C:x2=2py(p>0).(1)点P(x0,y0)是抛物线C上一点,则过P点的抛物线C 的切线方程为x0x=2p・y0+y2.(2)点P(x0,y0)是抛物线C:x2=2py(p>0)外一点,过P引抛物线C的切线PA、PB,点A、B为切点,则直线AB的方程为x0x=2p・y0+y2.四、在高考中的应用图1【例1】如图1,以椭圆x2a2+y2b2=1(a>b>0)的中心为圆心,分别以a和b为半径作大圆和小圆.过椭圆右焦点F(c,0)(c>b)作垂直于x轴的直线交大圆于第一象限内的点A.连结OA交小圆于点B.设直线BF是小圆的切线.(Ⅰ)证明c2=ab,并求直线BF与y轴的交点M的坐标;(Ⅱ)设直线BF交椭圆于P、Q两点,证明OP・OQ=12b2.解:(Ⅰ)F(c,0),则A(c,b),所以OA的方程为y=bcx.由y=bcx,x2+y2=b2得B(bca,b2a),则根据隐函数定理,小圆O在B点的切线BF的方程为bcax+b2ay=b2,又该切线过点F(c,0),所以c2=ab,M(0,a),(Ⅱ)由(1)知切线BF的方程为cx+by=ab,由方程组x2a2+y2b2=1,cx+by=ab,得x1x2=a4b-a2b3a3+b3,y1y2=a2b3-a3b2a3+b3,x1x2+y1y2=a4b-a2b3a3+b3+a2b3-a3b2a3+b3=a3b(a-b)(a+b)(a2-ab+b2).又c2=ab,a2=b2+c2,a2=b2+ab.a+b=a2b,a-b=b2a.x1x2+y1y2=a4b-a2b3a3+b3+a2b3-a3b2a3+b3=a3b(a-b)(a+b)(a2-ab+b2)=12b2,所以OP・OQ=x1x2+y1y2=12b2.图2【例2】在平面直角坐标系xOy中,有一个以F1(0,-3)和F2(0,3)为焦点、离心率为32的椭圆.设椭圆在第一象限的部分为曲线C,动点P在C上,C在点P处的切线与x、y轴的交点分别为A、B,且向量OM=OA+OB.求点M的轨迹方程.解:根据题意,椭圆半焦距长为3,半长轴长为a=ce=2,半短轴长b=1,即椭圆的方程为x2+y24=1.设点P坐标为(cosθ,2sinθ)(其中0所以点M的轨迹方程为(1x)2+(2y)2=1(x>0且y>0).评析:例1是过圆上的点作圆的切线,例2是过椭圆上的点作椭圆的切线,都是研究切线的直线方程,是命题1的应用.【例3】如图3,设抛物线方程为x2=2py(p>0),M为直线y=-2p 上任意一点,过M引抛物线的切线,切点分别为A,B.(Ⅰ)求证:A,M,B三点的横坐标成等差数列;(Ⅱ)已知当M点的坐标为(2,-2p)时,|AB|=410,求此时抛物线的方程;(Ⅲ)是否存在点M,使得点C关于直线AB的对称点D在抛物线x2=2py(p>0)上,其中点C满足OC=OA+OB(O为坐标原点).若存在,求出所有适合题意的点M的坐标;若不存在,请说明理由.解:(Ⅰ)证明:由题意设M(x0,-2p),则根据隐函数定理,直线AB的方程为x0x=2p×-2p+y2,即x0x-py+2p2=0.由x0x-py+2p2=0,x2=2py得x2-2x0x-4p2=0,①图3即2x0=x1+x2.所以A、M、B三点的横坐标成等差数列.(Ⅱ)由(Ⅰ)知,当x0=2时,直线AB的方程为2x-py+2p2=0,方程①即为x2-4x-4p2=0,因此x1+x2=4,x1x2=-4p2,kAB=2p.由弦长公式得|AB|=1+k2(x1+x2)2-4x1x2=1+4p216+16p2.又|AB|=410,所以p=1或p=2,因此所求抛物线方程为x2=2y或x2=4y.(Ⅲ)由(Ⅰ)知x1+x2=2x0,则y1+y2=2x20+4p2p.由题意得C(x1+x2,y1+y2),即C(2x0,2x20+4p2p).当x0=0时,则x1+x2=2x0=0,此时,点M(0,-2p)符合题意.当x0≠0时,设D(x3,y3),由题意可得x23=2py3,y3-2x20+4p2px3-2x0=-px0,x0x3+2x02-py3+2x20+4p2p2+2p2=0.解关于x0,x3,y3的方程组,经验检该方程组无解.所以x0≠0时,不存在符合题意的M点.综上所述,仅存在一点M(0,-2p)符合题意.图4【例4】设点P(x0,y0)在直线x=m(y≠±m,0解:(Ⅰ)设A(xA,yA),N(xN,xN),AN垂直于直线y=x,则,yA-xNxA-xN=-1,xN=xA+yA2,N(xA+yA2,xA+yA2).设G(x,y),则x=1m+xA+xA+yA23=13m+12xA+16yA,y=xA+yA2+yA3=16xA+12yA,解得xA=94x-34y-34m,yA=-34x+94y+14m,代入双曲线方程x2-y2=1,并整理得9(x-13m)22-9y22=1,即G点所在的曲线方程为(x-13m)229-y229=1.(Ⅱ)设P(m,y0),则根据隐函数定理得过P的双曲线切线方程为mx-y0y=1,又M(1m,0)满足上述方程,A、M、B三点共线.点评:例3是过抛物线外一点作抛物线的两切线,例4是过双曲线外一点作双曲线的两切线,都是研究切点弦所在的直线方程,是以上命题(2)的应用.五、评析(1)在近几年高考试题中有关过曲线上点的切线、曲线外一点引曲线的两切线的切点弦问题出现频率高,而且以压轴题为主.(2)用隐函数定理解这种题型比用常规方法(判别式法、转化为求导数、解方程组等)要省事.(3)这种题型具有明显的高等数学背景,它对进一步学习高等数学来说是非常必须的,具有较好的选拔功能,同时也具有导学和导教功能.。

二次曲线的切线方程

二次曲线的切线方程

二次曲线的切线方程
什么是二次曲线?二次曲线是指一个二元一次方程,它由一个二次项、两个一次项和一个常数项组成,并以给定方程求出的曲线,比如椭圆、双曲线和抛物线等。

平面中的椭圆、双曲线和抛物线都是二次曲线的一种。

切线,又称法线或正切线,是一条与曲线的切点处的切线方向相同的线,切线的斜率值等于曲线在切点处的切率值。

在二次曲线上,任何一点都有一条切线,因此,研究二次曲线切线的方程也就变得非常重要。

求解二次曲线切线方程的正确方法是首先计算出曲线上每一点
的切率值,然后再根据它们求出切线方程。

一般来说,可以用一下公式来计算出切线方程:
$$y-y_1=m(x-x_1)$$
式中,m表示切点处的切率值,(x1,y1)表示切点的坐标。

同时,还可以用偏导数法计算二次曲线切线方程。

一般来说,二次曲线的切点处的偏导数就等于切线方程的斜率。

如果满足二次曲线的方程,$$ax^2+bx+c=0$$,切点处的斜率值为:$$m=frac{-b}{2a}$$ 接下来,要讨论的是如何使用二次曲线的切线方程来求解问题。

一般来说,切线方程可以用来求解曲线上任意两点的距离以及曲线的使用情况。

此外,它还可以用来求解曲线的最大值和最小值,以及曲线的单调性。

有时,切线方程还可以用来求解曲线上某一点处的切点,或者求解曲线上某一点处的曲率。

通过以上分析,可以看出二次曲线的切线方程非常重要,它可以用来解决很多有关曲线的问题,因此,在数学中研究二次曲线的切线方程也就变得非常重要起来。

因此,在数学教学中,有必要对这一内容进行深入的研究,使学生们能够更好地理解它,也能够用它来解决实际问题。

二次曲线中点弦、切线、切点弦及双切线方程

二次曲线中点弦、切线、切点弦及双切线方程

=(nla2 4-a;Ox;+(blb2+b A)《+
(aIb2+a2b1)XOYo一
[(alb2+a2b1)Yo+2ala2名o]名。一
[(aIb2+a2b1)茗o+2bIb2Yo]Yo,
且口A麟。算+A byoy=A似:+A 6_《.
从而,O;Xo髫+byoy=鲋j+6扼.
这说明,点M(戈。,Y。)关于双直线AC、
\ ∥~y /a。+2
O/
-x

都成等角.证明:这
图6
样的折线只能位于
抛物线对称轴的一侧.
(第22届全苏数学奥林匹克)
讲解:不妨设抛物线为Y=ax2(a>0).
依次取折线上三个相邻的顶点A;(并nax;)
(i=n,n+1,n+2,nE N).
由抛物线在点A。+。处的切线方程(或求
导数)可知其斜率
k七 l2j2:}2-ak=x^忌A+nl一, +l一An.++2.--=鼎掣叫=凸X(nX+n2+4"X石nn++I1)?).
即5菇一7y-鲁:o.
所以,Q也是MN的中点,即定点Q平分 线段MN.
注:从曲线的含变化参数的方程(实际
上就是曲线系方程)求出曲线上的定点,是
证明曲线过定点的常规方法.由于本题中的
切点弦MN只依赖点Jp的位置,因此,使用切
点弦方程正是时机.证明点Q平分线段MN
实际上是使用了同一法,同时也发挥了中点
弦方程的作用.
2009年第8期

二次曲线中点弦、切线、切点弦及双切线方程
胡圣团
(湖南省澧县一中,415500)
(本讲适合高中) 1知识简介
记G(x,Y)=Ax2+Bxy+Cy2+Dk+E|y+F 1.1二次曲线中点弦的方程
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘 要 讨 论 二 次 曲线 切 线 的 相 关 问 题 , 明 无 奇 异 点 的二 次 曲线 若 有 沿 渐 近 方 向 的 切 线 , 一 定 是 包 含 两 证 则
条 平 行 直 线 的线 心二 次 曲 线 ; 二 次 曲线 外 的 中心 , 过 曲线 没 有 切 线 . 关 键 词 二 次 曲 线 ; 线 ; 异 点 ; 近 方 向 切 奇 渐
或 者
A 一 0, z , ): 0 ( , F( o = ( X y)一 0 , ) () 6
如果 沿渐 近方 向的直 线
Al + B1 + C1— 0 z Y () 2
则 二次 曲线 ( ) 切线 ] 1 有
在该 曲线 上 , 则该 二 次 曲线 的方程 可写 成
F( )三 ( z + B1 + C1 ( x, Al ) Ax + B + C)一 0 y . () 3
中图分类号 01 2 1 8 . 文 献 标 识 码 A 文 章 编 号 1 0 — 3 9 2 1 ) 20 0 -3 0 8 1 9 ( 0 2 0 - 0 50
文献 E i利 用二 次 曲线 切 线 的定 义 分 别讨 论 了 l 过二 次 曲线上 一 点切 线 的求 法及 过 二次 曲线外 一 点
切线 的两 种求 法 , 到 了存 在 奇 异 点 的 二 次 曲 线 的 得 具体 类 型. 文将 对 该 文 研 究 的 二 次 曲线 的 切 线 问 本
题 做 两点 补 充 , 为此 , 首先 给 出文 中使 用 的记号
F ( )三 a l x, 1 。+ 2 1x 斗一 2Y + a2y n2 。
如下 引理 .
A一 [ F1 z ,o +Y ( oY ) 。 X ( oY ) F2z , o ] 一
根 据二 次 曲线切 线 的定义 可 知 , 果 如
△一 0 ( ( , X y)≠ O ), () 5
引理 1 对 于二 次 曲线
F( 3 : 0, x, , ) () 1
( a 3一 Cl ) + ( a 3 C1 Y+ a 3 2 1 A z 2 2一 B) 3.
因为直 线 ( )在 曲线 ( )上 , 以 2 1 所
2 3一 C1 a1 A

一 一 —]

22 a 3一 C1 B
一 磐 C ,
1 一
由此则 得式 ( ) 立. 3 成 定 理 1 有 奇异 点 的二 次 曲线 一定 有 沿渐 近方 向的切 线 ; 无奇 异点 的二 次 曲线 若 有 沿 渐 近方 向 的
证 明 不 妨 记
( , X y) F( o 。 . z , )
是否 每种 二 次 曲线 都有 这 两 种 情 况 的切 线 ? 是 的 不 话 什 么样 的曲线有 沿 渐 近 方 向 的切 线? 么样 的 曲 什
线 只有沿 渐 近方 向 的切线 ? 回答 这个 问题 , 给 出 为 先
一 B :A
收稿 日期 :0 10 —O 修 改 日期 :0 11 —4 2 1- 53 ; 2 1 —22 作 者 简 介 : 德 金 ( 9 7 ) 男 , 东 武 城 人 , 授 , 事 几 何 与 拓 扑 刘 15 - , 山 教 从 的 教 学 与 研 究 . malt _ e n o @ 1 6 cr E i i dj _ k 2 .o :u i n
2 1 + 2 2Y+ 3 , a3 a3 3 ( )三 a 1 。+ 2 1x + a 2 z, lz a2 y 2Y , F1 , )兰 1z+ 口 2 一 1 , ( 1 1Y 口 3 F2 , )三 a 2 ( 1z+ a 2 f a 3 2Y- 2 , —
证 明
而 直 线
因为 X : y为 渐近 方 向的充 要条 件 是
( , X y) : 0 . () 4
若 二 次 曲 线 ( )没 有 奇 异 点 , 它 有 沿 渐 近 1 且
A1 + B1 + C1: 0 z Y
方 向 的切 线 ( ) 则 直 线 ( )一 定 满 足 条 件 ( ) 7, 7 6 ,
其 中 a (, = 1 2 ,)是任 意 实数 .
文[ ]在 给 出 二 次 曲 线 的 切 线 定 义 之 后 指 出 : 1
二次 曲线 的切 线有 两种 可 能 的情 况 , 一是 具 有 非 渐
近方 向的切线 , 是具 有 渐近 方 向的切 线 . 二 现在 要 问
切 线 , 一 定是包 含 两条 平行 直线 的线 心二 次 曲线. 则
是 方程 ( )的一个 根 , 以可设 4 所 ( )= ( z+ B ) A , A1 1 ( x+ B ) y ,
于 是
F( )三 ( z+ B1 ) Ax + B z, A1 ( y)+ 2 1X+ 2 2Y+ a 3= a3 a3 3
( A z+ B Y+ C ) A ( x+ B ) y +
{ xX X 。 t =+ ’ :o .  ̄

可 见 , 二 次 曲线有 奇 异 点 ( 。 ) 则 过 奇 异 点 的 若 z, , 。 直 线 ( )无 论 沿 渐 近 方 向还 是 沿 非 渐 近 方 向 都 是 7 二 次 曲线 的 切 线 . 非 渐 近 方 向 时 , X, 沿 ( y)≠ 0, 直 线 ( )与 曲线 相 交 于 两 个重 合 的点 ; 渐 近 方 向 7 沿 时 , X, ( y)一 0 直 线 ( , )是 曲线 的 一部 分 .
第1 5卷 第 2 期
21 O 2年 3月
高 等 数 学 研 究
ST U DI N ES I COLLEGE A T H EM A TI M CS
Vo . 5 No 2 11 , .
M a .,2O1 r 2
关 于二 次 曲线切 线 问题 的 两点 注记
刘德 金
( 州 学 院 数 学 系 ,山东 德 州 2 3 2 ) 德 5 0 3
相关文档
最新文档