第九章外压容器与压杆的稳定计算_化工机械设备基础.pptx

合集下载

15 外压容器与压杆的稳定计算

15 外压容器与压杆的稳定计算

15
外压容器与压杆的稳定计算
.4.
2012年 15日星期四 2012年3月15日星期四
§15–0 稳定的概念与实例 §15–1 外压容器概述 §15–2 外压薄壁圆筒的厚度设计
15
外压容器与压杆的稳定计算
.5.
2012年 15日星期四 2012年3月15日星期四
【本节内容】: 本节内容】
1、稳定的概念; 稳定的概念; 2、外压容器的概念及其失稳的基
15
外压容器与压杆的稳定计算
.27.
2012年 15日星期四 2012年3月15日星期四
对外压容器,在保证其壳体强度的同时,还必须保证其壳体的稳定性。 对外压容器,在保证其壳体强度的同时,还必须保证其壳体的稳定性。 这是维持外压容器正常操作的必要条件。 这是维持外压容器正常操作的必要条件。
二、临界压力Pcr: 临界压力
机电工程学院
过程装备与控制工程教研室
15
外压容器与压杆的稳定计算
.2.
2012年 15日星期四 2012年3月15日星期四
15
外压容器与压杆的稳定计算
.3.
2012年 15日星期四 2012年3月15日星期四
§15–0 稳定的概念与实例 §15–1 外压容器概述 §15–2 外压薄壁圆筒的厚度设计 §15–3 §15–4 §15–5 外压凸形封头的厚度设计 外压锥形筒体和封头的厚度设计 加强圈的设计
刚性圆筒:属强度问题。 刚性圆筒:属强度问题。
D0
15
外压容器与压杆的稳定计算
2、材料的机械性能
.29.
2012年 15日星期四 2012年3月15日星期四
在外压作用下,圆筒形壳体开始产生失稳, 在外压作用下,圆筒形壳体开始产生失稳,壳体横断面由原来的圆形被 压瘪而呈现波形,此时的压力称为临界压力,筒壁内产生的环向应力称临界 压瘪而呈现波形,此时的压力称为临界压力,筒壁内产生的环向应力称 临界压力 环向应力 应力。 应力。

9外压容器与压杆的稳定计算

9外压容器与压杆的稳定计算

2 3

cr


cr


[ p] B e

D0
化 工 设 备 机 械 基 础
化 工 学 院
第二节 外压圆筒环向稳定计算
化 工
P216图9-8就是 曲线改造成
2 3
曲 线 (即B-

A曲线)后的形状。
备 曲线的直线部分属于弹性变形阶段,如果A值落在这
机 械
一段内,则表明E值是常数,B可以用 B 2 E A
化 工 学 院
第二节 外压圆筒环向稳定计算
化 一、临界压力计算 工 外压圆筒的计算长度L如何确定? 设 (3)对带夹套的圆筒,取承受外压的圆筒长度;若带 备 有凸形封头,还应加上封头曲面深度的1/3。 机 械 基 础
化 工 学 院
化 工 设 备 机 械 基 础
化 工 学 院
化 工 设 备 机 械 基 础
3

若A位于B-A曲线右边,B值可由曲线查得。

第二节 外压圆筒环向稳定计算
化 (4)按下式算出[p]。
工 设 备
[ p] B e
D0
机 (5)比较p与[p],若p > [p],则需再假设
械 基 础
壁厚δn,重复上述步骤,直至 [p] 大于且接 近 p。
化 工 学 院
对于在用容器稳定校核,可根据实测壁厚δc ,算 出有效厚度δe ,即δe=δc-2nλ 然后按上述步骤计 算许用外压[p]。
外压容器失稳的实例
化 工 设 备 机 械 基 础
化 工 学 院
第一节 稳定的概念与实例
化 工
二、失稳的形式




压杆稳定教学课件PPT

压杆稳定教学课件PPT

P
cr
2E 2
细长压杆。
粗短杆 中柔度杆
o
s
大柔度杆
P
l
i
粗短杆 中长杆 细长杆
细长杆—发生弹性屈曲 (p) 中长杆—发生弹塑性屈曲 (s < p) 粗短杆—不发生屈曲,而发生屈服 (< s)
四、注意问题:
1、计算临界力、临界应力时,先计算柔度,判断所用公式。
2、对局部面积有削弱的压杆,计算临界力、临界应力时, 其截面面积和惯性距按未削弱的尺寸计算。但进行强度 计算时需按削弱后的尺寸计算。
小球平衡的三种状态
稳定平衡
随遇平衡 ( 临界状态 )
不稳定平衡
受压直杆平衡的三种形式
稳定平衡
随遇平衡 ( 临界状态 )
不稳定平衡
电子式万能试
验机上的压杆稳定 实验
工程项目的 压杆稳定试验
§9-2 细长压杆临界压力的欧拉公式 一、两端铰支细长压杆的临界载荷
当达到临界压力时,压杆处于微弯状态下的平衡
1.287
91(kN)
例:图示立柱,L=6m,由两根10号槽型A3钢组成,下端固定,上 端为球铰支座,p 100 ,试 a=?时,截面最为合理。并求立柱的 临界压力最大值为多少?
解:1、对于单个10号槽钢,形心在C1点。 A1 12.74cm2, z0 1.52cm, Iz1 198.3cm4, I y1 25.6cm4.
细长压杆的破坏形式:突然产生显著的弯
曲变形而使结构丧失工作能力,并非因强度不
够,而是由于压杆不能保持原有直线平衡状态
(a)
(b) 所致。这种现象称为失稳。
1907年加拿大圣劳伦斯河上的魁北克桥 (倒塌前正在进行悬臂法架设中跨施工)

第九章外压容器与压杆的稳定计算化工机械设备基础

第九章外压容器与压杆的稳定计算化工机械设备基础
第九章外压容器与压杆的稳定计算化 工机械设备基础
二 长圆筒、短圆筒
1.钢制长圆筒 临界压力公式:
第九章外压容器与压杆的稳定计算化 工机械设备基础
长圆筒临界压力影响因素: 与材料物理性质(E,μ)有关外,几何方 面只与径厚比(δe/DO)有关,与长径比 (L/DO)无关。
试验结果证明:长圆筒失稳时的波数为2。
直接关系。
第九章外压容器与压杆的稳定计算化 工机械设备基础
2 筒体几何尺寸的影响
序 筒径 筒长
号D
L
mm mm
1 90 175
2 90 175
3 90 350
4 90 350
有无 加强圈
无 无 无 有
壁厚 δ mm 0.51 0.3 0.3 0.3
临界压力 pcr
mm水柱 500 300
120~150 300
一 概述 1 外压容器的失稳
均匀外压——容器壁 内产生压应力;
外压在小于一定值时— —保持稳定状态;
外压达到一定值时,容 器就失去原有稳定性突然 瘪塌,变形不能恢复。
——失稳
第九章外压容器与压杆的稳定计算化 工机械设备基础
压杆失稳过程中应力的变化:
(1)压力小于一定值时,卸掉载荷,压杆恢复原形。 (2)压力达到一定值时,压杆突然弯曲变形,变形不 能恢复。 (3)失稳是瞬间发生的,压应力突然变为弯曲应力。
第九章外压容器与压杆的稳定计算化 工机械设备基础
2.钢制短圆筒
临界压力公式:
第九章外压容器与压杆的稳定计算化 工机械设备基础
短圆筒临界压力大小的影响因素 : 除了与材料物理性质(E,μ)有关外,与 圆筒的厚径比(δe/DO)和长径比(L/DO)
均 有关。

压杆稳定性计算PPT课件

压杆稳定性计算PPT课件

解:查表知A=42cm2,imin=2.31cm,μ=1,则柔度
l
i
1 3000 23.1
129.9
p
123
大柔度杆
由欧拉公式
lj
2E 2
2 200 103 129.92
117MPa
Plj lj A 117 4200 491.3kN P 500kN
所以,此杆不能安全承受500KN压力,而将发生失稳破坏。 为加大杆的承载能力,改变支承方式为两端固定(或加中间支承
称弹塑性稳定。临界应力由经验公式计算。
lj a b2; Plj lj A (a b2 ) A;
式中:λ—压杆的长细比;a、b—与材料有关的常数,可查表确定。 A3钢:a=235,b=0.00668;
16锰钢:a=343,b=0.0142
。临界应力总图—临界应力lj 与柔度的函数关系曲线。
sin
59.6
4 5
47.7kN ;
实际工程中应再考虑安全系数,取[P]=Pmax/n。
第十二页,共19页。
返回 下一张 上一张 小结
• 第四节 压杆的稳定计算
一、 稳定条件
P A
[ lj ]
lj
nw
— 极限应力法
P A
[ w ]
— 折减系数法
P
Plj nw
[Pw ] — 许可荷载法
•解:查表得20a号工字钢:
Iz=2370cm4,Iy=158cm4,
•临界压力按公式
2 EI
plj l 2 计算
Plj
2EI
l2
2 200 106 158108
32
346kN
•由此可知,若轴向压力达到346KN时,此压杆便会丧失

第九章压杆稳定-1

第九章压杆稳定-1
9
§9—2 两端铰支细长压杆的临界力
假定压力以达到临界值,杆已经处于微弯状态且服从虎克定律,
如图,从挠曲线入手,求临界力。
w
Fcr
w
Fcr
x
L
M Fcr
wx
①、弯矩:
M (x) Fcrw
Fcr ②、挠曲线近似微分方程:
EIw M (x)
Fcrw w Fcr w 0
EI

1、校核稳定性;2、设计截面尺寸;3、确定外荷载。
三、注意:强度的许用应力和稳定的许用应力的区别
强度的许用应力只与材料有关;稳定的许用应力不仅与 材料有关,还与压杆的支承、截面尺寸、截面形状有关2。6
例:图示起重机, AB 杆为圆松木,长 L= 6m,[ ] =11MPa,直 径为: d = 0.3m,试求此杆的许用压力。(xy面两端视为铰支; zy面一端视为固定,一端视为自由)
——抛物线型经验公式
s
a1 s
b1 20
3:小柔度杆(短粗压杆)只需进行强度计算。
cr s
FN
A
s ( s )
三、临界应力总图:临界应力与柔度之间的变化关系图。
cr
S
cr a b
P
2E
cr
2
o
s
P
1
第九章 压杆稳定
§9—1 概述 §9—2 两端铰支细长压杆的临界力 §9—3 其它支承下细长压杆的临界力 §9—4 临界应力、欧拉公式的适用范围 §9-5 压杆的稳定计算及提高压杆稳定的措施 压杆稳定小结
2
§9—1 概述
3
FP
4
短粗压杆——
max

9-1压杆稳定-PPT精品文档-专业PPT文档

9-1压杆稳定-PPT精品文档-专业PPT文档
1
2 EI
0.7 L 2
0.7
2 EI
0.5 L 2
0.5
2 EI L2
1 16
压杆稳定
例9-2-1 试导出下图两端固定的细长压杆临界力公式。
P P
解:变形如图,其挠曲线近似微分方程为:
E yI M (x) Py M 0
L
M0 xP
M
令: k2 P
EI
x
得: yk2yM0
EI
通解 : 为
y
解:(1)、求T与P之间的关系:
T0 T L
LPLT
LTLT LPPL EA
Lt P
LP
PTEA
(2)判断杆的失效性质 (是稳定失效?还是强度失效?)
35
压杆稳定
T0 T L
Lt P
LP
(2)判断杆的失效性质
i D2 d2 4 402302 412.5mm
l i
0.52(1 .251 03)8 0
y
yAsiknx Bcoksx M0 P
M
P
0
边界条件为:
M0
P
x0 y0及y0
xL y0及y0
17
压杆稳定
解得:
A 0 B M0 / P coskL 1 sinkL 0
kL 2n ( n1,2,3...)
最小临界力为 n = 1 即取: kL2
所以,临界力为:
2EI
Pcr ( L / 2 )2
即: cr
2E 2
3、柔度(长细比): L i
惯性半:径 i I A
27
压杆稳定
4、欧拉公式的分界与大柔度杆
c
r
2E 2
P

压杆稳定与外压容器

压杆稳定与外压容器

第12章压杆稳定与外压容器本章重点讲解内容:(1)建立清晰的稳定、压杆稳定和外压圆筒稳定的概念;(2)掌握长圆筒、短圆筒的概念及其相应的临界压力计算公式,会利用临界长度计算公式判断圆筒属于长圆筒或短圆筒;(3)掌握外压圆筒及封头稳定性的计算方法和步骤,理解材料性能曲线在外压计算中的应用以及B—A曲线的由来;(4)正确理解提高外压容器承压能力的措施,熟悉加强圈的设计过程、加强圈最小截面惯性矩和实际惯性矩的计算。

(5)理解压杆稳定的实用计算、掌握欧拉公式及其适用范围、惯性半径和柔度系数概念。

第一节稳定的概念与实例1、稳定现象(buckling phenomenon)稳定就是针对平衡而言,平衡状态主要有稳定平衡和不稳定平衡。

(1)稳定平衡当物体受到外力的短时干扰,在其平衡位置附近作无限小的偏离后,物体仍能够回到它的原来的位置,如图1(a)所示。

图(1)稳定平衡与不稳定平衡(2)不稳定平衡当物体受到外力的短时干扰,在其平衡位置附近作无限小的偏离后,物体不能恢复到其原来位置,如图1(b)所示。

2、稳定的概念与实例(1)压杆①拉杆在其原有直线形状下的平衡是稳定的。

其受力如图2所示。

②压杆根据轴向压力的大小不同,可以分为两种情况(如图3所示):当轴向压力小于临界压力时,压杆的平衡是稳定的;当轴向压力大于临界压力时,压杆的平衡是不稳定的;使压杆在原有直线形状下的稳定平衡过渡到不稳定平衡的压力称为压杆的临界压力。

临界压力的大小取决于材料的力学性能,杆件的几何尺寸以及杆件两端的支撑情况。

对压杆稳定性的研究,就是确定其临界压力,控制压杆的工作载荷,确保不失稳。

图2 拉杆不失稳 图3 压杆可能失稳(2)外压容器(external pressure vessels )① 外压容器概念 化工生产过程中的承受外部压力的容器。

1、真空操作的精馏塔;2、真空操作的蒸发器,夹套式蒸发器;3、夹套式反应器(在夹套内通入加热蒸汽或通入冷却介质,其压力高于反应操作压力);4、其他真空操作的设备;② 失效形式 受外压力作用的容器及设备,其失效形式有三种:强度不足引起的失效:遵循弹性失效准则、塑性失效准则、爆破失效准则的规律。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 根据所使用的材料,选出相应的B-A曲线,A在 曲线的左边,按 算出B。在曲线右边,B 值从曲线中查出。
32
圆筒稳定计算步骤:
4 算出[P]。 5 与设计压力相比较。
33
例:今需制作一台分馏塔,塔的内径为 200cm,塔身长度为600cm,封头深度为 50cm,分馏塔在250℃及真空条件下操作。 现库存有9、12、14mm厚的Q245R钢板。问
26
(2)确定 ~ p关系
cr pcr Do E 2eE
已知[p] pcr m
,pcr m[ p]
则 m[ p]Do 2 e E
27
28
许用外压的计算:
第一步:由几何参数:L/DO和Do/δe,确定筒体应变值 ε。作得如下算图1:
长圆筒
cr
1.1
e
D0
2
e
1.5
短圆筒
cr
1.3
D0
L
D0
29
第二步:由应变值ε,根据 不同的材料及不同的设计温 度,确定B值。公式为:
B 2 E
m
30
第三步: 根据B值,确定许用外压。 公式为:
31
圆筒稳定计算步骤:
1 假设δn,算出
和Do/δe。
,定出L/DO
2 根据L/DO和Do/δe,查图9-7,得到ε(A)。
20
3 计算长度的确定
(1)有加强圈的筒体取相邻两加强圈的间距。
(2)与凸形封头相连的筒体,计算长度计 入封头内高度的1/3。
21
四 外压圆筒的工程设计
(一)设计准则 设计时必须保证计算压力满足下式:
pc
[ p]
pcr m
式中m——稳定安全系数。
圆筒、锥壳取3.0;
球壳、椭圆形及碟形封头取15。
第二节 外压圆筒环向稳定计算
一 临界压力 (一)临界压力概念(pcr) 导致筒体失稳的压力称为该筒体的临界压力。
——筒体抵抗失稳的能力 此时筒壁内存在的压应力称为临界压应力,以
σcr表示。
9
当外压低于临界压力(p< pcr)时, 压缩变形 可以恢复;
当外压大于等于临界压力( p ≥pcr) 时,壁内压缩应力和变形发生突变,变形 不能恢复
3 圆筒的椭圆度和材料不均匀性的影响
筒体失稳不是因为它存在椭圆度或材料不 均匀而引起的。但是,筒体存在椭圆度或材 料不均匀,会使其失稳提前发生。 椭圆度e=(Dmax –Dmin)/DN
13
二 长圆筒、短圆筒
1.钢制长圆筒 临界压力公式:
pcr
2E
1 2
( e
D0
)3
钢制圆筒 0.3 则上式成为
第九章 外压容器与压杆 的稳定计算
1
一 外压容器的失稳 二 外压圆筒环向稳定计算 三 封头的稳定计算 四 外压圆筒加强圈的设计 五 压杆稳定计算简介 六 圆筒的轴向稳定校核
2
第一节 外压容器的失稳
一 概述 1 外压容器的失稳
均匀外压——容器壁 内产生压应力;
外压在小于一定值时— —保持稳定状态;
均 有关。
试验结果证明:短圆筒失稳时的波数为大 于2的整数。
17
三 临界长度
1 介于长圆筒与短圆筒之间的长度称为临 界长度。
确定临界长度的方法: 由长圆筒的临界压力等于短圆筒的临
界压力。
18
长圆筒与短圆筒之间的临界长度为:
19
2 加强圈
为了提高外压圆筒的抗失稳能力,可以缩短 圆筒的长度或者在不改变圆筒长度的条件下, 在筒体上焊上一至数个加强圈,将长圆筒变 成能够得到封头或加强圈支撑的短圆筒。
10
(二)影响临界压力的因素
1 筒体材料性能的影响
(1)筒体失稳时壁内应力远小于材料屈服点
——与材料的强度没有直接关系。
(2)临界压力的计算公

pcr
2E
1 2
( e )3
DO
( e )2.5
pc' r 2.59E比(μ)有
直接关系。
11
2 筒体几何尺寸的影响
序 筒径 筒长
号D
L
mm mm
1 90 175
2 90 175
3 90 350
4 90 350
有无 加强圈
无 无 无 有
壁厚 δ mm 0.51 0.3 0.3 0.3
临界压力 pcr
mm水柱 500 300
120~150 300
结论:
1)比较1和2 ,L/D相同时,δ/D大者pcr高; 2)比较2和3,δ/D相同时,L/D小者pcr高; 3)比较3和4,δ/D,L/D相同时,有加强圈者pcr高12.
外压达到一定值时,容 器就失去原有稳定性突然 瘪塌,变形不能恢复。
——失稳 3
压杆失稳过程中应力的变化:
(1)压力小于一定值时,卸掉载荷,压杆恢复原形。 (2)压力达到一定值时,压杆突然弯曲变形,变形不 能恢复。 (3)失稳是瞬间发生的,压应力突然变为弯曲应力4 。
外压容器失稳的过程
失稳前,壳壁内存在有压应力,外压卸 掉后变形完全恢复;
失稳后,壳壁内产生了以弯曲应力为主 的复杂应力。
失稳过程是瞬间发生的。
5
2 容器失稳型式分类
(1)侧向失稳
载荷——侧向外压 变形:横截面由圆型突变为波形
6
(2)轴向失稳
载荷——轴向外压 失稳时经向应力由压应力突 变为弯曲应力。 变形:
——经线变为波形
7
(3)局部失稳
载荷:局部压力过大
局部范围的壳体壁内的压应力突变为弯曲应力。 8
pcr
2.2E( e
Do
)3
14
长圆筒临界压力影响因素: 与材料物理性质(E,μ)有关外,几何方 面只与径厚比(δe/DO)有关,与长径比 (L/DO)无关。
试验结果证明:长圆筒失稳时的波数为2。
15
2.钢制短圆筒
临界压力公式:
( e )2.5
pc' r 2.6E
Do L
Do
16
短圆筒临界压力大小的影响因素 : 除了与材料物理性质(E,μ)有关外,与 圆筒的厚径比(δe/DO)和长径比(L/DO)
m的大小取决于形状的准确性(加工精度) 、载荷 的对称性、材料的均匀性等等。
22
(二)外压圆筒环向稳定计算的图算法
1.算图的由来
思路:由已知条件(几何条件:L/Do,Do/δe
以及材质,设计温度) 确定许用外压力[p],
判断计算压力是否满足: pc [ p]
几何条件
稳定条件
ε
23
(1)确定ε-几何条件关系
pcr
2.2E( e )3
D0
Pcr D0
cr
2e
( e )2.5
pc' r 2.59E
Do L
Do
cr
E
24
得到如下关系式: ——得到“ε~几何条件”关系
25
结论:
(1)若εcr或ε/cr ≤εp,这说明所讨论的圆 筒失稳时仍处于完全弹性状态,材料的E 值可查。
(2)若εcr或ε/cr >εp ,说明所讨论的圆筒 失稳时筒壁金属已不是纯弹性形变,σcr 利用圆筒材料的σ-ε取值。
相关文档
最新文档