同济大学第五版高数63059
同济大学《高等数学》第五版下册习题答案

同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
练习 8-6
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
总习题八
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
练习 12-4
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版上册答案(详解)

解 (1)列方程,(2)解方程
练习 12-11
总习题十二
解 正弦级数展开, 余弦级数展开
总习题十一
练习 12-1
练习 12-2
练习 12-3
练习 12-4
练习 12-5
练习 12-6
练习 12-7
提示:
提示:
练习 12-8
练习 12-9
总习题六
练习 7-1
练习 7-2
练习 7-3
练习 7-4
练习 7-5
练习 7-6
总习题七
练习 8-1
练习 8-2
>
练习 8-3
练习 8-4
练习 8-5
练习 2-5
总习题二
练习 3-1
练习 3-2
练习 3-3
练习 3-4
练习 3-5
练习 3-6
x
( 2)
y
y
+
yf(x) ↘
2 0 +
17/5
(2 1) 1
练习 10-4
练习 10-5
练习 10-6
练习 10-7
总习题十
练习 111
练习 112
练习 113
练习 11-4
练习 11-5
练习 11-7
练习 11-8
解 正弦级数展开, 余弦级数展开
练习 8-6
练习 8-7
练习 8-8
总习题八
练习 9-1
练习 9-2
>>
<< >>
<<
练习 9-3
练习 9-4
总习题九
练习 10-1
练习 10-2
练习 10-3
高等数学(同济大学第五版)第十二章

习题12−11. 试说出下列各微分方程的阶数:(1)x (y ′)2−2yy ′+x =0;解 一阶.(2)x 2y ′−xy ′+y =0;解 一阶.(3)xy ′′′+2y ′+x 2y =0;解 三阶.(4)(7x −6y )dx +(x +y )dy =0;解 一阶.(5)022=++C Q dt dQ R dtQ d L ; 解 二阶.(6)θρθρ2sin =+d d . 解 一阶.2. 指出下列各题中的函数是否为所给微分方程的解:(1)xy ′=2y , y =5x 2;解 y ′=10x .因为xy ′=10x 2=2(5x 2)=2y , 所以y =5x 2是所给微分方程的解.(2)y ′+y =0, y =3sin x −4cos x ;解 y ′=3cos x +4sin x .因为y ′+y =3cos x +4sin x +3sin x −4cos x =7sin x −cos x ≠0,所以y =3sin x −4cos x 不是所给微分方程的解.(3)y ′′−2y ′+y =0, y =x 2e x ;解 y ′=2xe x +x 2e x , y ′′=2e x +2xe x +2xe x +x 2e x =2e x +4xe x +x 2e x .因为y ′′−2y ′+y =2e x +4xe x +x 2e x −2(2xe x +x 2e x )+x 2e x =2e x ≠0,所以y =x 2e x 不是所给微分方程的解.(4)y ′′−(λ1+λ2)y ′+λ1λ2y =0, .x x e C e C y 2121λλ+= 解 , .x x e C e C y 212211λλλλ+=′x x e C e C y 21222211λλλλ+=′′因为y y y 2121)(λλλλ+′+−′′)())((2121212121221121222211x x x x x x e C e C e C e C e C e C λλλλλλλλλλλλλλ++++−+= =0,所以是所给微分方程的解.x x e C e C y 2121λλ+= 3. 在下列各题中, 验证所给二元方程所确定的函数为所给微分方程的解:(1)(x −2y )y ′=2x −y , x 2−xy +y 2=C ;解 将x 2−xy +y 2=C 的两边对x 求导得2x −y −xy ′+2y y ′=0,即 (x −2y )y ′=2x −y ,所以由x 2−xy +y 2=C 所确定的函数是所给微分方程的解.(2)(xy −x )y ′′+xy ′2+yy ′−2y ′=0, y =ln(xy ).解 将y =ln(xy )的两边对x 求导得y y x y ′+=′11, 即xxy y y −=′. 再次求导得 )(1)()()1()(2222y y y y y x x xy x xy y y y x x xy y x y y x xy y y ′+′−′−⋅−=−+−′−=−−′+−−′=′′. 注意到由y y x y ′+=′11可得1−′=′y x y yx , 所以 )2(1])1([12y y y y x xxy y y y y y x x xy y ′+′−′−⋅−=′+′−′−′−⋅−=′′, 从而 (xy −x )y ′′+xy ′2+yy ′−2y ′=0,即由y =ln(xy )所确定的函数是所给微分方程的解.4. 在下列各题中, 确定函数关系式中所含的参数, 使函数满足所给的初始条件:(1)x 2−y 2=C , y |x =0=5;解 由y |x =0=0得02−52=C , C =−25, 故x 2−y 2=−25.(2)y =(C 1+C 2x )e 2x , y |x =0=0, y ′|x =0=1;解 y ′=C 2e 2x +2(C 1+C 2x )e 2x .由y |x =0=0, y ′|x =0=1得, ⎩⎨⎧=+=10121C C C 解之得C 1=0, C 2=1, 故y =xe 2x .(3)y =C 1sin(x −C 2), y |x =π=1, y ′|x =π=0.解 y ′=C 1cos(x −C 2).由y |x =π=1, y ′|x =π=0得, 即, ⎩⎨⎧=−=−0)cos(1)sin(2121C C C C ππ⎩⎨⎧=−=0cos 1sin 2121C C C C 解之得C 1=1, 22π=C , 故2sin(π−=x y , 即y =−cos x . 5. 写出由下列条件确定的曲线所满足的微分方程:(1)曲线在点(x , y )处的切线的斜率等于该点横坐标的平方;解 设曲线为y =y (x ), 则曲线上点(x , y )处的切线斜率为y ′, 由条件y ′=x 2, 这便是所求微分方程.(2)曲线上点P (x , y )处的法线与x 轴的交点为Q , 且线段PQ 被y 轴平分.解 设曲线为y =y (x ), 则曲线上点P (x , y )处的法线斜率为y ′−1, 由条件第PQ 中点的横坐标为0, 所以Q 点的坐标为(−x , 0), 从而有y x x y ′−=+−10, 即yy ′+2x =0. 6. 用微分方程表示一物理命题: 某种气体的气压P 对于温度T 的变化率与气压成正比, 所温度的平方成反比.解2T P k dT dP =, 其中k 为比例系数.习题12−111. 试用幂级数求下列各微分方程的解:(1)y ′−xy −x =1;解 设方程的解为, 代入方程得 ∑∞=+=10n n n x a a y ,111011=−−−∑∑∞=+∞=−x x a x a x na n n n n n n 即 . 0])2[()12()1(112021=−++−−+−+∞=+∑n n n n x a a n x a a a 可见 a 1−1=0, 2a 2−a 0−1=0, (n +2)a n +2−a n =0(n =1, 2, ⋅ ⋅ ⋅),于是 , 11=a 2102a a +=, !!313=a , !!4104a a +=, ⋅ ⋅ ⋅ , !)!12(112−=−k a k , !)!2(102k a a k +=, ⋅ ⋅ ⋅. 所以 ]!)!2(1!)!12(1[120120∑∞=−++−+=k k k x k a x k a y ∑∑∞=∞=−++−+=12011202(!1)1(!)!12(1k k k k x k a xk a ∑∞=−−+++−=11220!)!12(1)1(12k k x x k e a , 即原方程的通解为∑∞=−−+−=1122!)!12(112k k x x k Ce y .(2)y ′′+xy ′+y =0;解 设方程的解为, 代入方程得 ∑∞==0n n n x a y ,0)1(01122=++−∑∑∑∞=∞=−∞=−n n n n n n n n n x a xna x x a n n即 , 0])1()1)(2[(21220=++++++∑∞=+n n n n x a n a n n a a 于是 0221a a −=,1331a a −=, ⋅ ⋅ ⋅,1112!)!12()1(a k a k k −−=−−,02!)!2()1(a k a k k −=, ⋅ ⋅ ⋅. 所以 ]!)!12()1(!)!2()1([12112010+∞=+−+−++=∑k k k k k x k a x k a x a a y ∑∑∞=−−∞=−−+−=11211020!)!12()1()2(!!1k k k k k x k a x k a ∑∞=−−−−−+=1121120!)!12()1(2k k k x x k a e a , 即原方程的通解为∑∞=−−−−−+=1121221!)!12()1(2k k k x x k C e C y . (3)xy ′′−(x +m )y ′+my =0(m 为自然数);解 设方程的解为, 代入方程得 ∑∞==0n n n x a y , 0)()1(01122=++−−∑∑∑∞=∞=−∞=−n n n n n n n n n x a m xna m x x a n n x 即 . 0])())(1[()(1110=−−−++−∑∞=+n n n n x a m n a m n n a a m 可见 (a 0−a 1)m =0, (n −m )[(n +1)a n +1−a n ]=0 (n ≠m ),于是 a 0=a 1,)2( )2()1(1+≥+⋅⋅⋅−=+m n m n n a a m n ,)( !11m n a n a n ≤=. 所以 ∑∑∞+=+++=+⋅⋅⋅−+++=2111100)2()1(!m n n m m m m n n x m n n a x a x n a a y∑∑∞+=+++=+++=211100!)!1(!m n n m n m mn n n x a m x a n x a ∑∑∞+=+=++=1100!)!1(!m n n m m n n n x a m n x a )!()!1(!0100∑∑=+=−++=m n n x m m n n n x e a m n x a∑=+++−++=m n n m x m n x a m a e a m 0101!])!1([)!1(, 即原方程的通解为∑=+=m n n x n x C e C y 021!(其中C 1, C 2为任意常数). (4)(1−x )y ′=x 2−y ;解 设方程的解为, 代入方程得 ∑∞==0n n n x a y ,∑∑∞=∞=−−=−0211)1(n n n n n n x a x x na x 即 . 0])1[()13(231223201=+−++−−+++∑∞=+n n n n n x a na a n x a a x a a a 可见 a 1+a 0=0, 2a 2=0, 3a 3−a 2−1=0, (n +1)a n +1−(n −1)a n =0(n ≥3),于是 a 1=−a 0, a 2=0, 313=a , )1(221−=−=−n n a n n a n n (n ≥4). 因此原方程的通解为∑∞=−++−=43)1(231)1(n n x n n x x C y (C =a 0为任意常数). . (5)(x +1)y ′=x 2−2x +y .解 设方程的解为, 代入方程得 ∑∞==0n n n x a y, ∑∑∞=∞=−+−=+02112)1(n n n n n n x a x x x na x 即 . 0])1()1[()13()1(231232210=++−+−+++++−∑∞=+n n n n x a n a n x a a x a a a 于是 a 1=a 0, a 2=−1,323=a ,)4()1(4)1( 231≥−−=−−=−−n n n a n n a n n n. 因此原方程的通解为 ∑∞=−−−++−+=4332)1(4)1(32)1(n n n x n n x x x C y (C =a 0为任意常数). 2. 试用幂级数求下列方程满足所给初始条件的解:(1)y ′=y 2+x 3, 21|0==x y ; 解 根据初始条件, 可设方程的解为∑∞=+=121n n n x a y , 代入方程得 32111)21(x x a x na n n n n n n ++=∑∑∞=∞=−, 即 ⋅⋅⋅+++++++=+∑∑∞=∞=− )2(2414312232122113211x a a a x a a x a x a x x na a n n n n n n . 比较两边同次幂的系数得411=a , 2a 2=a 1, 3a 3=a 2+a 12, 4a 4=a 3+2a 1a 2+1, ⋅ ⋅ ⋅, 于是 411=a , 812=a , 1613=a , 3294=a , ⋅ ⋅ ⋅. 因此所求特解为329161814121432⋅⋅⋅+++++=x x x x y . (2)(1−x )y ′+y =1+x , y |x =0=0;解 根据初始条件, 可设方程的解为, 代入方程得 ∑∞==1n n n x a y,x x a x na x n n n n n n +=+−∑∑∞=∞=−1)1(111即 . x x a n a n a n n n n +=−+−+∑∞=+1])1()1[(111比较系数得 , 11=a 212=a , )3( )1(121≥−=−=−n n n a n n a n n . 因此所求特解为∑∑∞=∞=−+=−++=232)1(1)1(121n n n n x n n x x n n x x y . 因为∑∞=−2)1(1n n x n n 的和函数为(1−x )ln(1−x )+x , 所以特解还可以写成 y =2x +(1−x )ln(1−x )+x .(3)0cos 22=+t x dt x d , x |t =0=a , 0|0==t dt dx . 解 根据初始条件, 可设方程的解为. ∑∞=+=2n n n t a a x 将, ∑∞=+=2n nn t a a x ∑∞=−−=2222)1(n n n t a n n dt x d 和∑∞=−=02)!2()1(cos n n n t n t 代 入方程得0)!2()1()()1(02222=−++−∑∑∑∞=∞=∞=−n n n n n n n n n t n t a a t a n n .将级数展开、整理合并同次项, 并比较系数得, a a =001=a , !22a a −=, , 03=a !424a a =, , 05=a !696a a −=, , 07=a !8558a a =, ⋅ ⋅ ⋅. 故所求特解为 !855!69!42!211(8642⋅⋅⋅++−+−=t t t t a x .习题12−21. 求下列微分方程的通解:(1)xy ′−y ln y =0;解 分离变量得dx xdy y y 1ln 1=, 两边积分得∫∫=dx x dy y y 1ln 1, 即 ln(ln y )=ln x +ln C ,故通解为y =e Cx .(2)3x 2+5x −5y ′=0;解 分离变量得5dy =(3x 2+5x )dx ,两边积分得, ∫∫+=dx x x dy )53(52即 123255C x x y ++=, 故通解为C x x y ++=232151, 其中151C =为任意常数.(3)2211y y x −=′−;解 分离变量得2211x dx y dy −=−, 两边积分得∫∫−=−2211x dx y dy 即 arcsin y =arcsin x +C ,故通解为y =sin(arcsin x +C ).(4)y ′−xy ′=a (y 2+y ′);解 方程变形为(1−x −a )y ′=ay 2, 分离变量得dx x a a dy y −−=112, 两边积分得∫∫−−=dx xa a dy y 112, 即 1)1ln(1C x a a y−−−−=−, 故通解为)1ln(1x a a C y −−+=, 其中C =aC 1为任意常数. (5)sec 2x tan ydx +sec 2y tan xdy =0; 解 分离变量得dx xx y y y tan sec tan sec 22−=, 两边积分得∫∫−=dx xx y y y tan sec tan sec 22, 即 ln(tan y )=−ln(tan x )+ln C , 故通解为tan x tan y =C .(6)y x dxdy +=10; 解 分离变量得10−y dy =10x dx ,两边积分得∫∫=−dx dy x y 1010, 即 10ln 10ln 1010ln 10C x y +=−−, 或 10−y =10x +C ,故通解为y =−lg(C −10x ).(7)(e x +y −e x )dx +(e x +y +e y )dy =0;解 方程变形为e y (e x +1)dy =e x (1−e y )dx , 分离变量得dx e e dy e e xx y y +=−11, 两边积分得∫∫+=−dx e e dy e e xx y y 11, 即 −ln(e y )=ln(e x +1)−ln C ,故通解为(e x +1)(e y −1)=C .(8)cos x sin ydx +sin x cos ydy =0;解 分离变量得dx xx dy y y sin cos sin cos −=, 两边积分得∫∫−=dx x x dy y y sin cos sin cos , 即 ln(sin y )=−ln(sin x )+ln C ,故通解为sin x sin y =C .(9)0)1(32=++x dxdy y ; 解 分离变量得(y +1)2dy =−x 3dx ,两边积分得∫∫−=+dx x dy y 32)1(, 即 14341)1(31C x y +−=+, 故通解为4(y +1)3+3x 4=C (C =12C 1).(10)ydx +(x 2−4x )dy =0.解 分离变量得dx xx dy y 411(4−+=, 两边积分得∫∫−+=dx x x dy y )411(4, 即 ln y 4=ln x −ln(4−x )+ln C ,故通解为y 4(4−x )=Cx .2. 求下列微分方程满足所给初始条件的特解:(1)y ′=e 2x −y , y |x =0=0;解 分离变量得e y dy =e 2x dx ,两边积分得, ∫∫=dx e dy e x y 2即 C e e x y +=221,或 )21ln(2C e y x +=.由y |x =0=0得0)21ln(=+C , 21=C , 所以特解2121ln(2+=x e y .(2)cos x sin ydy =cos y sin xdx , 4|0π==x y ; 解 分离变量得tan y dy =tan x dx ,两边积分得∫∫=xdx ydy tan tan ,即 −ln(cos y )=−ln(cos x )−ln C , 或 cos y =C cos x . 由4|0π==x y 得C C ==0cos 4cos π, 21=C , 所以特解为x y cos cos 2=.(3)y ′sin x =y ln y , e y x ==2π;解 分离变量得dx xdy y y sin 1ln 1=, 两边积分得∫∫=dx x dy y y sin 1ln 1,即 C xy ln 2ln(tan )ln(ln +=, 或2tan x C e y =. 由e y x ==π2得4tan πC e e =, C =1,所以特解为2tan x e y =.(4)cos ydx +(1+e −x )sin ydy =0, 4|0π==x y ; 解 分离变量得dx e e dy y y x x +=−1cos sin , 两边积分得∫∫+=−dx e e dy y y xx 1cos sin , 即 ln|cos y |=ln(e x +1)+ln |C |,或 cos y =C (e x +1).由4|0π==x y 得)1(4cos 4+=ππe C , 42=C , 所以特解为)1(42cos +=x e y . (5)xdy +2ydx =0, y |x =2=1.解 分离变量得dx xdy y 21−=, 两边积分得∫∫−=dx x dy y 21, 即 ln y =−2ln x +ln C ,或 y =Cx −2.由y |x =2=1得C ⋅2−2=1, C =4, 所以特解为24x y =.3. 有一盛满了水的圆锥形漏漏斗, 高为10cm , 顶角为60°, 漏斗下面有面积为0. 5cm 2的孔, 求水面高度变化的规律及流完所需的时间.解 设t 时该已流出的水的体积为V , 高度为x , 则由水力学有x dtdV )9802(5.062.0×××=, 即dt x dV )9802(5.062.0×××=. 又因为330tan x x r =°=,故 dx x dx r V 223ππ−=−=, 从而 dx x dt x 23)9802(5.062.0π−=×××, 即 x dt 2398025.062.03×××=π,因此 C x t +×××−=2598025.062.032π. 又因为当t =0时, x =10, 所以251098025.062.053××××=πC ,故水从小孔流出的规律为 645.90305.0)10(98025.062.0532252525+−=−××××=x x t π. 令x =0, 得水流完所需时间约为10s .4. 质量为1g (克)的质点受外力作用作直线运动, 这外力和时间成正比, 和质点运动的速度成反比. 在t =10s 时, 速度等于50cm/s , 外力为4g cm/s 2, 问从运动开始经过了一分钟后的速度是多少?解 已知v t k F =, 并且法t =10s 时, v =50cm/s , F =4g cm/s 2, 故50104k =, 从而k =20, 因此vt F 20=. 又由牛顿定律, F =ma , 即v t dt dv 201=⋅, 故v dv =20t d t . 这就是速度与时间应满足的微分方程. 解之得C t v +=221021, 即C t v 2202+=. 由初始条件有C +×=2210105021, C =250. 因此 500202+=t v .当t =60s 时, cm/s 3.26950060202=+×=v .5. 镭的衰变有如下的规律: 镭的衰变速度与它的现存量R 成正比. 由经验材料得知, 镭经过1600年后, 只余原始量R 0的一半. 试求镭的量R 与时间t 的函数关系.解 由题设知,R dt dR λ−=, 即dt RdR λ−=, 两边积分得ln R =−λt +C 1,从而 .)( 1C t e C Ce R ==−λ 因为当t =0时, R =R 0, 故R 0=Ce 0=C , 即R =R 0e −λt .又由于当t =1600时, 021R R =, 故λ16000021−=e R R , 从而16002ln =λ. 因此 t t e R e R R 000433.0010002ln 0−−==.6. 一曲线通过点(2, 3), 它在两坐标轴间的任一切线线段均被切点所平分, 求这曲线方程.解 设切点为P (x , y ), 则切线在x 轴, y 轴的截距分别为2x , 2y , 切线斜率为 xy x y −=−−2002, 故曲线满足微分方程:x y dx dy −=, 即dx x dy y 11−=, 从而 ln y +ln x =ln C , xy =C .因为曲线经过点(2, 3), 所以C =2×3=6, 曲线方程为xy =6.7. 小船从河边点O 处出发驶向对岸(两岸为平行直线). 设船速为a , 船行方向始终与河岸垂直, 又设河宽为h , 河中任一点处的水流速度与该点到两岸距离的乘积成正比(比例系数为k ). 求小船的航行路线.解 建立坐标系如图. 设t 时刻船的位置为(x , y ), 此时水速为)(y h ky dt dx v −==, 故dx =ky (h −y )dt .又由已知, y =at , 代入上式得dx =kat (h −at )dt ,积分得C t ka kaht x +−=3223121.由初始条件x |t =0=0, 得C =0, 故3223121t ka kaht x −=. 因此船运动路线的函数方程为⎪⎩⎪⎨⎧=−=ayy t ka kaht x 3223121, 从而一般方程为)312(32y y h a k x −=.习题12−31. 求下列齐次方程的通解:(1)022=−−−′x y y y x ;解 原方程变为1)(2−−=x y x y dx dy . 令xy u =, 则原方程化为 12−+=+u u dx du x u , 即dx x du u 1112=−, 两边积分得C x u u ln ln )1ln(2+=−+, 即Cx u u =−+12, 将xy u =代入上式得原方程的通解Cx x y x y =−+1)(2, 即222Cx x y y =−+. (2)xy y dx dy xln =; 解 原方程变为xy x y dx dy ln =. 令xy u =, 则原方程化为 u u dx du x u ln =+, 即dx x du u u 1)1(ln 1=−, 两边积分得ln(ln u −1)=ln x +ln C , 即u =e Cx +1, 将xy u =代入上式得原方程的通解 y =xe Cx +1.(3)(x 2+y 2)dx −xydy =0;解 这是齐次方程. 令xy u =, 即y =xu , 则原方程化为 (x 2+x 2u 2)dx −x 2u (udx +xdu )=0, 即dx x udu 1=,两边积分得u 2=ln x 2+C , 将xy u =代入上式得原方程的通解 y 2=x 2(ln x 2+C ).(4)(x 3+y 3)dx −3xy 2dy =0;解 这是齐次方程. 令xy u =, 即y =xu , 则原方程化为 (x 3+x 3u 3)dx −3x 3u 2(udx +xdu )=0, 即dx x du u u 121332=−, 两边积分得C x u ln ln )21ln(213+=−−, 即2312x C u −=, 将xy u =代入上式得原方程的通解 x 3−2y 3=Cx .(5)0ch 3)ch 3sh2(=−+dy xy x dx x y y x y x ; 解 原方程变为xy x y dx dy +=th 32. 令xy u =, 则原方程化为 u u dx du x u +=+th 32, 即dx x du u u 2sh ch 3=, 两边积分得3ln(sh u )=2ln x +ln C , 即sh 3u =Cx 2, 将xy u =代入上式得原方程的通解 22sh Cx xy =. (6)0)1(2)21(=−++dy yx e dx e y x y x . 解 原方程变为y xy xe e y x dy dx 21)1(2+−=.令yx u =, 则原方程化为 u u e e u dy du y u 21)1(2+−=+, 即u u ee u dy du y 212++−=, 分离变量得dy y du e u e uu 1221−=++, 两边积分得ln(u +2e u )=−ln y +ln C , 即y (u +2e u )=C , 将yx u =代入上式得原方程的通解 C e yx y y x =+)2(, 即C ye x y x =+2. 2. 求下列齐次方程满足所给初始条件的特解:(1)(y 2−3x 2)dy +2xydx =0, y |x =0=1;解 这是齐次方程. 令xy u =, 即y =xu , 则原方程化为 (x 2u 2−3x 2)(udx +xdu )+2x 2udx =0,即 dx x du u u u 1332=−−, 或dx x du u u u 1)11113(=−+++− 两边积分得−3ln |u |+ln|u +1|+ln|u −1|=ln|x |+ln|C |, 即u 2−1=Cxu 3, 将xy u =代入上式得原方程的通解 y 2−x 2=Cy 3.由y |x =0=1得C =1, 故所求特解为y 2−x 2=y 3.(2)xy y x y +=′, y |x =1=2; 解 令xy u =, 则原方程化为 u u dx du x u +=+1, 即dx xudu 1=, 两边积分得C x u +=ln 212,将xy u =代入上式得原方程的通解 y 2=2x 2(ln x +C ).由y |x =1=2得C =2, 故所求特解为y 2=2x 2(ln x +2).(3)(x 2+2xy −y 2)dx +(y 2+2xy −x 2)dy =0, y |x =1=1.解 这是齐次方程. 令xy u =, 即y =xu , 则原方程化为 (x 2+2x 2u −x 2u 2)dx +(x 2u 2+2x 2u −x 2)(udx +xdu )=0,即dx x du u u u u u 1112232−=+++−+, 或 dx x du u u u 1)1211(2=+−+, 两边积分得ln|u +1|−ln(u 2+1)=ln|x |+ln|C |, 即u +1=Cx (u 2+1), 将xy u =代入上式得原方程的通解 x +y =C (x 2+y 2).由y |x =1=1得C =1, 故所求特解为x +y =(x 2+y 2).3. 设有连结点O (0, 0)和A (1, 1)的一段向上凸的曲线弧A O , 对于A O 上任一点P (x , y ), 曲线弧P O 与直线段所围图形的面积为x 2, 求曲线弧A O 的方程. 解 设曲线弧A O 的方程为y =y (x ). 由题意得 20)(21)(x x xy dx x y x =−∫,两边求导得 x x y x x y x y 2)(21)(21)(=′−−, 即 4−=′x y y . 令xy u =, 则有 4−=+u dx du x u , 即dx xdu u 41−=, 两边积分得u =−4ln x +C . 将xy u =代入上式得方程的通解 y =−4x ln x +Cx .由于A (1, 1)在曲线上, 即y (1)=1, 因而C =1, 从则所求方程为y =−4x ln x +x .习题12−41. 求下列微分方程的通解:(1)x e y dxdy −=+; 解 )()()(C x e C dx e e e C dx e e e y x x x x dx x dx +=+⋅=+∫⋅∫=−−−−−∫∫. (2)xy ′+y =x 2+3x +2;解 原方程变为x x y x y 231++=+′.])23([11C dx e x x e y x x +∫⋅++∫=∫−])23(1])23([12C dx x x x C xdx x x x +++=+++=∫∫x Cx x C x x x x +++=+++=22331)22331(1223.(3)y ′+y cos x =e −sin x ;解 )(cos sin cos C dx e e e y xdx x dx +∫⋅∫=∫−−)()(sin sin sin sin C x e C dx e e e x x x x +=+⋅=−−−∫.(4)y ′+y tan x =sin 2x ;解 )2sin (tan tan C dx e x e y xdx xdx +∫⋅∫=∫−)2sin (cos ln cos ln C dx e x e x x +⋅=∫−∫+⋅=)cos 1cos sin 2(cos C dx x x x x=cos x (−2cos x +C )=C cos x −2cos 2x .(5)(x 2−1)y ′+2xy −cos x =0;解 原方程变形为1cos 1222−=−+′x xy x xy .)1cos(1221222C dx e x x e y x xdx x x +∫⋅−∫=∫−−−)(sin 11])1(1cos [112222C x x C dx x x xx +−=+−⋅−−=∫.(6)23=+ρθρd d ; 解 )2(33C d e e d d +∫⋅∫=∫−θρθθ )2(33C d e e +=∫−θθθ θθθ33332)32(−−+=+=Ce C e e . (7)x xy dxdy 42=+; 解 )4(22C dx e x e y xdx xdx +∫⋅∫=∫− )4(22C dx e x e x x +⋅=∫− .2222)2(x x x Ce C e e −−+=+= (8)y ln ydx +(x −ln y )dy =0;解 原方程变形为y x y y dy dx 1ln 1=+. )1(ln 1ln 1C dy e ye x y y dy y y +∫⋅∫=∫− )ln 1(ln 1C ydy yy +⋅=∫ yC y C y y ln ln 21)ln 21(ln 12+=+=. (9)3)2(2)2(−+=−x y dxdy x ; 解 原方程变形为2)2(221−=−−x y x dx dy . ])2(2[21221C dx e x e y dx x dx x +∫⋅−∫=∫−−− ∫+−⋅−−=]21)2(2)[2(2C dx x x x =(x −2)[(x −2)2+C ]=(x −2)3+C (x −2).(10)02)6(2=+−y dxdy x y .解 原方程变形为y x y dy dx 213−=−. ])21([33C dy e y e x y dy y +∫⋅−∫=∫− )121(33C dy y y y +⋅−=∫ 32321)21(Cy y C y y +=+=. 2. 求下列微分方程满足所给初始条件的特解:(1)x x y dxdy sec tan =−, y |x =0=0; 解 )sec (tan tan C dx e x e y xdx xdx +∫⋅∫=∫− )(cos 1)cos sec (cos 1C x xC xdx x x +=+⋅=∫. 由y |x =0=0, 得C =0, 故所求特解为y =x sec x .(2)xx x y dx dy sin =+, y |x =π=1; 解 )sin (11C dx e x x e y dx x x +∫∫=∫− )cos (1)sin (1C x xC xdx x x x +−=+⋅=∫. 由y |x =π=1, 得C =π−1, 故所求特解为)cos 1(1x x y −−=π. (3)x e x y dx dy cos 5cot =+, 4|−==πx y ; 解 )5(cot cos cot C dx e e e y xdx x xdx +∫⋅∫=∫− )5(sin 1)sin 5(sin 1cos cos C e xC xdx e x x x +−=+⋅=∫. 由4|2−==πx y , 得C =1, 故所求特解为)15(sin 1cos +−=x e x y . (4)83=+y dxdy , y |x =0=2;解 )8(33C dx e e y dx dx +∫⋅∫=∫− x x x x x Ce C e e C dx e e 3333338)38()8(−−−+=+=+=∫. 由y |x =0=2, 得32−=C , 故所求特解为)4(323x e y −−=. (5)13232=−+y x x dx dy , y |x =1=0. 解 )1(223232C dx e e y dx x x dx x x +∫⋅∫=∫−−− )21()1(22221131313C e e x C dx e x e x x x x x +=+=−−∫. 由y |x =1=0, 得e C 21−=, 故所求特解为)1(211132−−=x e x y . 3. 求一曲线的方程, 这曲线通过原点, 并且它在点(x , y )处的切线斜率等于2x +y . 解 由题意知y ′=2x +y , 并且y |x =0=0.由通解公式得)2()2(C dx xe e C dx xe e y x x dx dx +=+∫∫=∫∫−− =e x (−2xe −x −2e −x +C )=Ce x −2x −2.由y |x =0=0, 得C =2, 故所求曲线的方程为y =2(e x −x −1).4. 设有一质量为m 的质点作直线运动, 从速度等于零的时刻起, 有一个与运动方向一至、大小与时间成正比(比例系数为k 1)的力作用于它, 此外还受一与速度成正比(比例系数为k 2)的阻力作用. 求质点运动的速度与时间的函数关系.解 由牛顿定律F =ma , 得v k t k dt dv m21−=, 即t m k v m k dt dv 12=+. 由通解公式得)()(222211C dt e t m k e C dt e t m k e v t m k t m k dt m km k +⋅=+∫⋅∫=∫∫−− )(22222121C e k m k te k k e t m kt m k t m k +−=−.由题意, 当t =0时v =0, 于是得221k m k C =. 因此 )(22122121222k m k e k m k te k k e v t m k t m k m k +−=− 即 )1(22121t m k e k m k t k k v −−−=. 5. 设有一个由电阻R =10Ω、电感L =2h(亨)和电源电压E =20sin5t V (伏)串联组成的电路. 开关K 合上后, 电路中有电源通过. 求电流i 与时间t 的函数关系.解 由回路电压定律知01025sin 20=−−i dt di t , 即t i dt di 5sin 105=+. 由通解公式得t dt dt Ce t t C dt e t e i 5555cos 5sin )5sin 10(−−+−=+∫⋅∫=∫. 因为当t =0时i =0, 所以C =1. 因此)45sin(25cos 5sin 55π−+=+−=−−t e e t t i t t (A).6. 设曲在右半平面(x >0)内与路径无关, 其中f (x )可导, 且f (1)=1, 求f (x ).dy x x xf dx x yf L ])(2[)(2−+∫ 解 因为当x >0时, 所给积分与路径无关, 所以])(2)]([2x x xf xx yf y −∂∂=∂∂, 即 f (x )=2f (x )+2xf ′(x )−2x , 或 1)(21)(=+′x f xx f . 因此 x C x C dx x x C dx e e x f dx x dx x +=+=+∫⋅∫=∫∫−32)(1)1()(2121. 由f (1)=1可得31=C , 故xx x f 3132)(+=. 7. 求下列伯努利方程的通解:(1))sin (cos 2x x y y dxdy −=+;解 原方程可变形为x x ydx dy y sin cos 11−=+, 即x x y dx y d cos sin )(11−=−−−. ])cos sin ([1C dx e x x e y dx dx +∫⋅−∫=−−∫x Ce C dx e x x e x x x sin ])sin (cos [−=+−=∫−, 原方程的通解为x Ce y x sin 1−=. (2)23xy xy dxdy =−; 解 原方程可变形为x y x dxdy y =−1312, 即x xy dx y d −=+−−113)(. ])([331C dx e x e y xdx xdx +∫⋅−∫=∫−−)(222323C dx xe e x x +−=∫− 31)31(222232323−=+−=−−x x x Ce C e e , 原方程的通解为311223−=−x Ce y . (3)4)21(3131y x y dx dy −=+; 解 原方程可变形为)21(31131134x y dx dy y −=+, 即12)(33−=−−−x y dx y d . ])12([3C dx e x e y dx dx +∫⋅−∫=−−∫x x x Ce x C dx e x e +−−=+−=∫−12])12([, 原方程的通解为1213−−=x Ce y x .(4)5xy y dxdy =−; 解 原方程可变形为x ydx dy y =−4511, 即x y dx y d 44)(44−=+−−. ])4([444C dx e x e y dx dx +∫⋅−∫=∫−− )4(44C dx xe e x +−=∫− x Ce x 441−++−=, 原方程的通解为x Ce x y 44411−++−=.(5)xdy −[y +xy 3(1+ln x )]dx =0.解 原方程可变形为 )ln 1(11123x yx dx dy y +=⋅−⋅, 即)ln 1(22)(22x y x dx y d +−=+−−. ])ln 1(2[222C dx e x e y x dx x +∫⋅+−∫=∫−− ])ln 1(2122C dx x x x ++−=∫ x x x x C 94ln 322−−=, 原方程的通解为x x x x C y 94ln 32122−−=. 8. 验证形如yf (xy )dx +xg (xy )dy =0的微分方程, 可经变量代换v =xy 化为可分离变量的方程, 并求其通解.解 原方程可变形为)()(xy xg xy yf dx dy −=. 在代换v =xy 下原方程化为)()(22v g x v vf x v dx dv x −=−,即dx xdu v f v g v v g 1)]()([)(=−, 积分得 C x du v f v g v v g +=−∫ln )]()([)(, 对上式求出积分后, 将v =xy 代回, 即得通解.9. 用适当的变量代换将下列方程化为可分离变量的方程, 然 后求出通解:(1)2)(y x dxdy +=; 解 令u =x +y , 则原方程化为21u dx du =−, 即21u du dx +=. 两边积分得x =arctan u +C .将u =x +y 代入上式得原方程的通解x =arctan(x +y )+C , 即y =−x +tan(x −C ).(2)11+−=yx dx dy ; 解 令u =x −y , 则原方程化为 111+=−udx du , 即dx =−udu . 两边积分得 1221C u x +−=.将u =x +y 代入上式得原方程的通解12)(21C y x x +−−=, 即(x −y )2=−2x +C (C =2C 1).(3)xy ′+y =y (ln x +ln y );解 令u =xy , 则原方程化为u x u x u x u dx du x x ln )1(2=+−, 即du uu dx x ln 11=. 两边积分得ln x +ln C =lnln u , 即u =e Cx .将u =xy 代入上式得原方程的通解xy =e Cx , 即Cx e xy 1=. (4)y ′=y 2+2(sin x −1)y +sin 2x −2sin x −cos x +1;解 原方程变形为y ′=(y +sin x −1)2−cos x .令u =y +sin x −1, 则原方程化为x u x dx du cos cos 2−=−, 即dx du u =21. 两边积分得 C x u +=−1. 将u =y +sin x −1代入上式得原方程的通解 C x x y +=−+−1sin 1, 即C x x y +−−=1sin 1.(5)y (xy +1)dx +x (1+xy +x 2y 2)dy =0 . 解 原方程变形为)1()1(22y x xy x xy y dx dy +++−=. 令u =xy , 则原方程化为)1()1(1222u u x u u x u dx du x +++−=−, 即)1(1223u u x u dx du x ++=. 分离变量得du uu u dx x )111(123++=. 两边积分得 u uu C x ln 121ln 21+−−=+. 将u =xy 代入上式得原方程的通解 xy xy y x C x ln 121ln 221+−−=+, 即 2x 2y 2ln y −2xy −1=Cx 2y 2(C =2C 1).习题12−51. 判别下列方程中哪些是全微分方程, 并求全微分方程的通解:(1)(3x 2+6xy 2)dx +(6x 2y +4y 2)dy =0;解 这里P =3x 2+6xy 2, Q =6x 2y +4y 2. 因为x Q xy yP ∂∂==∂∂12, 所以此方程是全微分方程, 其通解为 , C dy y y x dx x y x =++∫∫02202)46(3即 C y y x x =++3223343. (2)(a 2−2xy −y 2)dx −(x +y )2dy =0;解 这里P =a 2−2xy −y 2, Q =−(x +y )2. 因为xQ y x y P ∂∂=−−=∂∂22, 所以此方程是全微分方程, 其通解为 , C dy y x dx a y x =+−∫∫0202)(即 a 2x −x 2y −xy 2=C .(3)e y dx +(xe y −2y )dy =0;解 这里P =e y , Q =xe y −2y . 因为x Q e yP y ∂∂==∂∂, 所以此方程是全微分方程, 其通解为 , C dy y xe dx e y y x =−+∫∫000)2(即 xe y −y 2=C .(4)(x cos y +cos x )y ′−y sin x +sin y =0;解 原方程变形为(x cos y +cos x )dy −(y sin x +sin y )dx =0. 这里P =−(y sin x +sin y ), Q =x cos y +cos x . 因为xQ x y y P ∂∂=−=∂∂sin cos ,所以此方程是全微分方程, 其通解为, C dy x y x dx yx =++∫∫00)cos cos (0即 x sin y +y cos x =C .解(5)(x 2−y )dx −xdy =0;解 这里P =x 2−y , Q =−x . 因为x Q yP ∂∂=−=∂∂1, 所以此方程是全微分方程, 其通解为, C xdy dx x y x =−∫∫002即 C xy x =−331. (6)y (x −2y )dx −x 2dy =0;解 这里P =y (x −2y ), Q =−x 2. 因为y x yP 4−=∂∂, x x Q 2−=∂∂, 所以此方程不是全微分方程.(7)(1+e 2θ)d ρ+2ρe 2θd θ=0;解 这里P =1+e 2θ, Q =2ρe 2θ. 因为xQ e y P ∂∂==∂∂θ22, 所以此方程是全微分方程, 其通解为 , C d e d =+∫∫θθρθρρ02022即 ρ(e 2θ+1)=C .(8)(x 2+y 2)dx +xydy =0.解 这里P =x 2+y 2, Q =xy . 因为y yP 2=∂∂, y x Q =∂∂, 所以此方程不是全微分方程.2. 利用观察法求出下列方程的积分因子, 并求其通解:(1)(x +y )(dx −dy )=dx +dy ;解 方程两边同时乘以y x +1得 y x dy dx dy dx ++=−, 即d (x −y )=d ln(x +y ), 所以yx +1为原方程的一个积分因子, 并且原方程的通解为 x −y =ln(x +y )+C .(2)ydx −xdy +y 2xdx =0;解 方程两边同时乘以21y 得 02=+−xdx y xdy ydx , 即02()(2=+x d y x d , 所以21y 为原方程的一个积分因子, 并且原方程的通解为 C x y x =+22. (3)y 2(x −3y )dx +(1−3y 2x )dy =0;解 原方程变形为xy 2dx −3y 3dx +dy −3x 2dy =0, 两边同时乘以21y 并整理得 0)33(2=+−+xdy ydx ydy xdx , 即0)(3)1()2(2=−−xy d y d x d , 所以21y 为原方程的一个积分因子, 并且原方程的通解为 C xy yx =−−3122. (4)xdx +ydy =(x 2+y 2)dx ;解 方程两边同时乘以221y x +得 022=−++dx yx ydy xdx , 即0)]ln(21[22=−+dx y x d , 所以221y x +为原方程的一个积分因子, 并且原方程的通解为 x 2+y 2=Ce 2x .(5)(x −y 2)dx +2xydy =0;解 原方程变形为xdx −y 2dx +2xydy =0, 两边同时乘以21x 得 0222=−+x dx y xydy x dx , 即0)()(ln 2=+x y d x d , 所以21x为原方程的一个积分因子, 并且原方程的通解为 C x y x =+2ln , 即x ln x +y 2=Cx . (6)2ydx −3xy 2dx −xdy =0.解 方程两边同时乘以x 得2xydx −x 2dy −3x 2y 2dx =0, 即yd (x 2)−x 2dy −3x 2y 2dx =0, 再除以y 2得03)(2222=−−dx x ydy x x yd , 即0)(32=−x y x d 所以2y x 为原方程的一个积分因子, 并且原方程的通解为 032=−x yx . 3. 验证)]()([1xy g xy f xy −是微分方程yf (xy )dx +xg (xy )dy =0的积分因子, 并求下列方程的通解:解 方程两边乘以)]()([1xy g xy f xy −得 0])()()]()([1=+−dy xy xg dx xy yf xy g xy f xy , 这里)]()([)(xy g xy f x xy f P −=, )]()([)(xy g xy f y xy g Q −=. 因为x Q xy g xy f xy g xy f xy g xy f y P ∂∂=−′−′=∂∂2)]()([)()()()(, 所以)]()([1xy g xy f xy −是原方程的一个积分因子. (1)y (x 2y 2+2)dx +x (2−2x 2y 2)dy =0;解 这里f (xy )=x 2y 2+2, g (xy )=2−2x 2y 2 , 所以 31)]()([1y x xy g xy f xy =− 是方程的一个积分因子. 方程两边同乘以3331y x 得全微分方程 032323222232=−++dy y x y x dx y x x , 其通解为C dy y x y x dx x x y x =−++∫∫122123232, 即C y x y x =−+−)11ln (ln 31222, 或2212y x e Cy x =.(2)y (2xy +1)dx +x (1+2xy −x 3y 3)dy =0.解 这里f (x y )=2x y +1, g (x y )=1+2x y −x 3 y 3 , 所以 441)]()([1yx xy g xy f xy =− 是方程的一个积分因子. 方程两边同乘以1y x 得全微分方程 02112433334=−+++dy y x y x xy dx yx xy ,其通解为C dy y x y x xy dx x x y x =−+++∫∫14333142112, 即 C y y x y x =++||ln 3113322. 4. 用积分因子法解下列一阶线性方程:(1)xy ′+2y =4ln x ;解 原方程变为x x y x y ln 42=+′, 其积分因子为 22)(x e x x =∫=μ, 在方程x xy x y ln 42=+′的两边乘以x 2得 x 2y ′+2xy =4x ln x , 即(x 2y )′=4x ln x ,两边积分得, C x x x xdx x y x +−==∫222ln 2ln 4原方程的通解为21ln 2x C x y +−=. (2)y ′−tan x ⋅y =x . 解 积分因子为,x e x xdx cos )(tan =∫=−μ在方程的两边乘以cos x 得cos x ⋅y ′−sin x ⋅y =x cos x , 即(cos x ⋅y )′=x cos x , 两边积分得C x x x xdx x y x ++==⋅∫cos sin cos cos , 方程的通解为xC x x y cos 1tan ++=.习题12−61. 求下列各微分方程的通解:(1)y ′′=x +sin x ;解 12cos 21)sin (C x x dx x x y +−=+=′∫, 21312sin 61)cos 21(C x C x x dx C x x y ++−=+−=∫, 原方程的通解为213sin 61C x C x x y ++−=. (2)y ′′′=xe x ;解 , 12C e xe dx xe y x x x +−==′′∫, 21122)2(C x C e xe dx C e xe y x x x x ++−=+−=′∫, 3221213)22(C x C x C e xe dx C x C e xe y x x x x +++−=++−=∫原方程的通解为.32213C x C x C e xe y x x +++−= (3)211x y +=′′; 解 12arctan 11C x dx x y +=+=′∫ x C dx x x x x dx C x y 1211arctan )(arctan ++−=+=∫∫ 212)1ln(21arctan C x C x x x +++−=, 原方程的通解为2121ln arctan C x C x x x y +++−=.(4)y ′′=1+y ′2;解 令p =y ′, 则原方程化为p ′=1+p 2, 即dx dp p =+211, 两边积分得arctan p =x +C 1, 即y ′=p =tan(x +C 1),, 211|)cos(|ln )tan(C C x dx C x y ++−=+=∫原方程的通解为21|)cos(|ln C C x y ++−=.(5)y ′′=y ′+x ;解 令p =y ′, 则原方程化为p ′−p =x ,由一阶线性非齐次方程的通解公式得, 1)()(111−−=+=+∫⋅∫=∫∫−−x e C C dx xe e C dx e x e p x x x dx dx 即 y ′=C 1e x −x −1,于是 221121)1(C x x e C dx x e C y x x +−−=−−=∫, 原方程的通解为22121C x x e C y x +−−=.(6)xy ′′+y ′=0;解 令p =y ′, 则原方程化为 x p ′+p =0, 即01=+′p xp , 由一阶线性齐次方程的通解公式得xC e C e C p x x 1ln 111==∫=−−, 即 xC y 1=′, 于是 211ln C x C dx xC y +==∫, 原方程的通解为y =C 1ln x +C 2 .(7)yy ′′+′=y ′2;解 令p =y ′, 则dy dp p dx dy dy dp y =⋅=′′, 原方程化为 21p dy dp yp =+, 即dy y dp p p 112=−, 两边积分得||ln ||ln |1|ln 2112C y p +=−, 即. 22121y C p ±− 当|y ′|=|p |>1时, 方程变为2211y C y +±=′, 即dx dy y C ±=+21)(11, 两边积分得arcsh(C 1y )=±C 1x +C 2,即原方程的通解为)(sh 1121x C C C y ±=. 当|y ′|=|p |<1时, 方程变为 2211y C y −±=′, 即dx dy y C ±=−21)(11, 两边积分得arcsin(C 1y )=±C 1x +C 2,即原方程的通解为)(sin 1121x C C C y ±=.(8)y 3y ′′−1=0;解 令p =y ′, 则dy dp py =′′, 原方程化为 013=−dy dp py , 即pdp =y −3dy , 两边积分得122212121C y p +−=−, 即p 2=−y −2+C 1, 故 21−−±=′y C y , 即dx dy y C ±=−−211, 两边积分得)(12121C x C y C +±=−,即原方程的通解为C 1y 2=(C 1x +C 2)2 .(9)yy 1=′′; 解 令p =y ′, 则dy dp py =′′, 原方程化为 y dy dp p 1=, 即dy ypdp 1=, 两边积分得122221C y p +=, 即1244C y p +=, 故 12C y y +±=′, 即dx dy C y ±=+11, 两边积分得原方程的通211231]2)(32[C C y C C y x ++−+±=.(10)y ′′=y ′3+y ′. 解 令p =y ′, 则dydp py =′′, 原方程化为 p p dy dp p +=3, 即0)]1([2=+−p dy dp p . 由p =0得y =C , 这是原方程的一个解. 由0)1(2=+−p dydp 得 arctan p =y −C 1, 即y ′=p =tan(y −C 1),从而 )sin(ln )tan(1112C y dy C y C x −=−=+∫, 故原方程的通解为.12arcsin C e y C x +=+ 2. 求下列各微分方程满足所给初始条件的特解:(1)y 3 y ′′+1=0, y |x =1=1, y ′|x =1=0;解 令p =y ′, 则dy dp p y =′′, 原方程化为013=+dy dp p y , 即dy ypdp 31−=, 两边积分得1221C y p +=, 即y y C y 211+±=′. 由y |x =1=1, y ′|x =1=0得C 1=−1, 从而yy y 21−±=′, 分离变量得dx dy yy =−±21, 两边积分得221C x y +=−±, 即22)(1C x y +−±=.由y |x =1=1得C 2=−1, 2)1(1−−=x y , 从而原方程的通解为22x x y −=.(2)y ′′−ay ′2=0, y |x =0=0, y ′|x =0=−1;解 令p =y ′, 则原方程化为02=−ap dx dp , 即adx dp p=21, 两边积分得 11C ax p +=−, 即11C ax y +−=′. 由y ′|x =0=−1得C 1=1, 11+−=′ax y , 两边积分得 2)1ln(1C ax a y ++−=.由y |x =0=0得C 2=0, 故所求特解为)1ln(1+−=ax a y .(3)y ′′′=e ax , y |x =1=y ′|x =1=y ′′|x =1=0;解 11C e adx e y ax ax +==′′∫.。
《同济版高数》课件

持续学习
高等数学是学习其他学科的 基础,要不断提高自己的数 学能力。
勇于挑战
数学中的难题和挑战并不可 怕,要勇敢面对并寻求解决 方法。
采用多样化的教学方法和工具, 激发学生对数学的兴趣和思考 能力。
倡导学生参与式学习,鼓励讨 论和合作,提高学生的学习效 果。
问题解决
培养学生的问题解决能力,注 重实际应用和创新思维。
PPT动效运用
1
简洁清晰
使用适度的动效,突出重点,让学生
过渡自然
2
更清晰地理解内容。
平滑的过渡效果,使切换页面更加流
提供大量习题,巩固理论知识并锻炼解题 能力。
教材简介
《同济版高数》是一套针对高等数学课程编写的教材系列。内容丰富、结构清晰,旨在帮助学生全面理 解和掌握高等数学的核心概念和方法。
PPT目录结构
第一章
函数与极限
第三章
函数的应用
第二章
导数与微分
第四章
微分中值定理与导数的应用
教学设计理念
创新教学
互动学习
畅,保持学生的专注度。
3
视觉引导
运用动画和视觉引导,帮助学生理解 步骤和概念。
学习效果评估
1 定期测评
设置阶段性测验,及时检查学生的学习进展和掌握情况。
2 反馈指导
提供个性化的学习反馈和指导,帮助学生改进学习方法和提高成绩。
3 课堂讨论
鼓励学生参与课堂讨论,提高学习的互动性和深度。
结论和要点
数学的魅力
《同济版高数》PPT课件
探索《同济版高数》的世界,与高数的魅力相遇。让我们一起学习,展现数 学的美妙与力量。
高等数学同济第五版教材

高等数学同济第五版教材高等数学是大学数学课程中的一门重要学科,是培养学生数学思维和解决实际问题能力的关键学科之一。
同济大学出版社的《高等数学同济第五版教材》是国内热门的高等数学教材之一,它覆盖了高等数学的各个分支,给予了学生全面且系统的学习资源。
本文将对该教材进行介绍和评价。
一、教材概述《高等数学同济第五版教材》由同济大学数学系主编,主要面向大学本科高等数学课程。
该教材经过多年的修订和完善,已经成为国内高校广泛采用的教材之一。
教材内容涵盖了微积分、空间解析几何和线性代数等重要内容,以及一些拓展与应用的知识点。
二、教材特点1. 内容全面:教材内容涵盖了高等数学的各个分支,包括函数与极限、微分学、积分学、多元函数微分学、重积分与曲线积分、无穷级数与幂级数、空间解析几何和线性代数等主题。
2. 知识体系清晰:教材将各个知识点有机地组织在一起,形成了一个完整的知识体系,帮助学生系统地理解高等数学的各个概念和原理。
3. 理论与实践结合:教材既注重理论的讲解与推导,又融入了大量的例题和应用题,帮助学生将理论知识应用到实际问题中去。
4. 程序化思维培养:教材在讲解的过程中注重培养学生的程序化思维,即通过一系列的步骤和方法解决问题的思维方式,对于日后学习和工作都非常重要。
三、教材优缺点分析1. 优点:a. 通俗易懂:教材采用了通俗易懂的语言,结合大量的图表和实例,使得抽象的数学理论变得更具可读性和可理解性。
b. 知识点扩展:教材在每一章节的末尾都附带了一些扩展知识点,能够满足对高等数学更深入学习的学生需求。
c. 题目丰富:教材中的习题种类多样,题量适中,既能巩固基础知识,又能拓宽应用能力。
d. 师生配套资源丰富:教材配套资源丰富,包括习题解答、教案和试卷等,在教学过程中能够提供更多的辅助资料和教学参考。
2. 缺点:a. 部分章节过于简略:由于教材篇幅的限制,部分章节的讲解过于简洁,对于一些深入的数学理论没有给予足够的解释。
同济5版高等数学教材

同济5版高等数学教材同济大学出版社出版的《同济大学高等数学教材》(第5版)是一本经典的高等数学教材,广泛应用于中国各大高校数学专业的教学中。
该教材分为上、下两册,分别涵盖了高等数学的基础知识和进阶内容。
本文将从教材的编写背景、内容特点以及教学应用等方面对《同济大学高等数学教材》(第5版)进行介绍。
一、编写背景同济大学高等数学教材(第5版)的编写背景可以追溯到上个世纪50年代初。
这个时期,中国的高等教育迎来了大规模的重建和发展,为了培养更多的数学专业人才,编写一本符合国内高等数学教学需求的教材就成为当时急需解决的问题。
同济大学被委以重任,派出一批优秀的教师和数学专家组成了编写团队,开始了《高等数学》教材的编写工作。
二、内容特点1.全面系统:《同济大学高等数学教材》(第5版)涵盖了高等数学的各个分支,包括数学分析、线性代数、概率论与数理统计等,形成了一个全面而系统的知识体系。
2.理论与实践相结合:教材注重将理论与实践相结合,将数学的抽象概念与实际问题相联系,通过大量的例题和应用题,帮助学生理解和掌握数学知识,提高问题解决能力。
3.逻辑清晰:教材结构严谨,逻辑清晰,由浅入深,层层递进。
每个章节都以明确的学习目标为导向,便于学生掌握知识的重点和难点。
4.突出思维方法:教材注重培养学生的数学思维方法,强调解题的思路和方法,注重培养学生的逻辑思维、分析问题和解决问题的能力。
三、教学应用1.大学本科教学:《同济大学高等数学教材》(第5版)在中国各个高校的本科数学专业的教学中广泛应用。
教师可以根据教学内容和学生的学习进度,灵活选用教材中的章节和题目,进行课堂讲解和习题训练。
2.自学和复习指导:除了大学本科教学外,该教材也可以作为自学和复习的指导书。
学生可以通过系统地学习教材中的知识点和例题,提高自己的数学水平。
3.参考书目:该教材还可以作为其他高校教材的参考书目,教师可以根据自己的教学需求,结合其他教材进行教学。
同济第五版高数下第七章课件

z
(3)同理在xOz面上的投影
也为线段.
1 z 2, y 0 | x | 3 2 ;
O
y
x
例4 求抛物面 y z x 与平面 x 2 y z 0 的截线在三个坐标面 上的投影曲线方程. z
2 2
解
截线方程为
y z x x 2y z 0
z: b 0 b 0 b ,
令 2 ,
h 2b
( t , b
z
x a cos t y a sin t z vt v
)
则上升的高度: 称为螺距.
h
x
o
z
y
三、空间曲线在坐标面上的投影
F ( x, y, z) 0 设空间曲线C的一般方程: G ( x , y , z ) 0
2 2
例6 求上半球面 和锥面 所围的立体在 xoy 面上的投影. 解 所求投影是二曲面交线在xoy 面上的 投影曲线所围之域 . 二曲面交线
x o
z
C
1
y
在xoy 面上的投影曲线 所围区域为圆域:
x y 1, z 0.
2 2
补充: 空间立体或曲面在坐标面上的投影.
空 间 立 体
曲 面
( t为 参 数 )
当给定 t
( x 1 , y 1 , z 1 ),
t1
时,就得到曲线上的一个点
随着参数的变化可得到曲线上的
全部点.
例3 如果空间一点M在圆柱面 x y a 上以角速度 绕z轴旋转,同时又以线速度v 沿平行于z轴上升,那么点M构成的图形叫做 螺旋线. 试建立其参数方程. z 取时间t为参数, 动点从A点出发, 解 经过t 时间,运动到M点. M 在 xoy 面的投影 M ( x , y , 0 )
同济大学第五版高等数学课件D81基本概念

微分方程的问题
微分方程的定义
微分方程是描述函数及其导数之间关系的数 学模型,通常用来描述自然现象或工程问题 中的动态变化过程。
微分方程的解法
微分方程的解法包括分离变量法、常数变易 法、参数变易法等,这些方法可以帮助我们 求解微分方程并得到其通解或特解。
空间解析几何的问题
要点一
空间解析几何的基本概念
基础性
同济大学第五版高等数学(下)课件 D81是学习高等数学的基础,对于后 续的学习具有重要的支撑作用。
同济大学第五版高等数学(下)课件D81的应用场景
科学计算
同济大学第五版高等数学(下)课件D81的概念在科学计算中有着广泛的应用 ,如物理、工程、经济等领域的研究和计算。
实际问题解决
通过同济大学第五版高等数学(下)课件D81的概念,可以解决许多实际问题 ,如优化问题、统计分析等。
同济大学第五版高 等数学(下课件 D81基本概念
目录
• 同济大学第五版高等数学(下)课件 D81的简介
• 同济大学第五版高等数学(下)课件 D81的基本概念
目录
• 同济大学第五版高等数学(下)课件 D81的基本定理
• 同济大学第五版高等数学(下)课件 D81的基本问题
01
同济大学第五版高等数学 (下)课件D81的简介
积分的问题
01
积分的定义
积分是描述函数在某个区间上的面积 的数学概念,即函数在某个区间上的 定积分值等于该区间上所有小区间上 函数的增量之和的极限。
02
积分的性质
积分具有一些重要的性质,如线性性 、可加性、积分中值定理等,这些性 质在研究函数的性质和解决数学问题 中具有重要的作用。
03
积分的计算
积分的计算是高等数学中的基本技能 之一,包括换元法、分部积分法、有 理函数积分法等,这些方法可以帮助 我们快速准确地计算出函数的积分值 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
uv uv uv, uv uv uv,
uvdx uv uvdx, udv uv vdu.
分部积分公式
例1 求积分 x cos xdx .
解(一) 令 u cos x, xdx 1 dx2 dv
2
x cos xdx
e x (sin x cos x) e x sin xdx 注意循环形式
e
x
sin
xdx
ex 2
(sin
x
cos
x)
C.
例7 求积分 x arctan x dx.
x
arctan 1 x2
x
dx
arctan
xd
1 x2
1 x2 arctan x 1 x2d(arctan x)
x)dx
x [sin(ln 2
x)
cos(ln
x)]
C.
例6 求积分 e x sin xdx.
解 e x sin xdx sin xde x e x sin x e xd(sin x) e x sin x e x cos xdx e x sin x cos xde x e x sin x (e x cos x e xd cos x)
1. 使用原则 : v易求出, uv dx易积分
2. 使用经验 : “反对幂指三” , 前 u v
后 3. 题目类型 :
分部化简 ; 循环解出;
4. 计算格式 : u u
v
v
递推公式
第四章 第四节
有理函数的积分
• 基本积分法 : 直接积分法 ; 换元积分法 ;
分部积分法
求导 • 初等函数
积分
初等函数
解 sin(ln x)dx xsin(ln x) xd[sin(ln x)]
x sin(ln
x)
x
cos(ln
x)
1 x
dx
x sin(ln x) x cos(ln x) xd[cos(ln x)]
x[sin(ln x) cos(ln x)] sin(ln x)dx
sin(ln
本节内容:
一、有理函数的积分
二、可化为有理函数的积分举例
一、有理函数的积分
有理函数的定义:
tan x lncos x tan x x C
例11. 求
解: 令 x t , 则 x t2 , dx 2t d t
原式 2 t e t d t 令 u t , v et 2(t et et ) C 2e x ( x 1) C
内容小结
分部积分公式 u vdx u v uv dx
x
dx
1 x2 arctan x ln( x 1 x2 ) C .
例 8 已知 f ( x)的一个原函数是ex2 , 求 xf ( x)dx .
解 xf ( x)dx xdf ( x) xf ( x) f ( x)dx,
f ( x)dx f ( x),
f ( x)dx ex2 C ,
高等数学
李苹 计算机科学学院
第四章 第三节
分部积分法
由导数公式 (uv) uv uv
积分得: uv uvdx uvdx
uvdx uv uv dx 或 udv uv v du
分部积分公式
1) v 容易求得 ;
容易计算 .
一、基本内容
问题 xe xdx ?
解决思路 利用两个函数乘积的求导法则.
x2e xdx x2e x 2 xe xdx
(再次使用分部积分法)u x, e xdx dv
x2e x 2( xe x e x ) C.
总结 若被积函数是幂函数和正(余)弦函数 或幂函数和指数函数的乘积, 就考虑设幂函
数为 u, 使其降幂一次(假定幂指数是正整数)
例3 求积分 x arctan xdx.
解 令 u arctan x , xdx d x2 dv
x arctan
xdx
x2 2
arctan
x
2 x
2
2
d
(arctan
x)
x2 arctan x
2
x2 2
1
1 x
2
dx
x2 arctan x
2
1 2
(1
1
1 x
2
)dx
x2 arctan x 1 ( x arctan x) C .
1 x2 arctan x
1
x2
1
1 x2
dx
1 x2 arctan x 1 dx
1 x2 令 x tan t
1
1 x2dx
1 sec2 tdt
1 tan2 t
sec tdt
ln(sec t tan t) C ln( x 1 x2 ) C
x
arctan 1 x2
两边同时对 x求导, 得 f ( x) 2 xex2 ,
xf ( x)dx xf ( x) f ( x)dx
2
x
2e
x
2
ex2
C.
例9. 求
解: 令 u
x2 a2 , v 1, 则 u
x , vx
x2a2
x2 a2 dx x x2 a2
x2 x2 a2
dx
x
x2 a2
x2 2
cos x
x2 2
sin
xdx
显然,u,v 选择不当,积分更难进行.
解(二) 令 u x, cos xdx d sin x dv
x cos xdx xd sin x x sin x sin xdx
x sin x cos x C.
例2 求积分 x2e xdx.
解 u x2 , e xdx de x dv,
2
2
例4 求积分 x3 ln xdx.
解 u ln x, x3dx d x4 dv,
4
x3
ln
xdx
1 4
x
4
ln
x
1 4
x
3dx
1 x4 ln x 1 x4 C .
4
16
总结 若被积函数是幂函数和对数函数或幂
函数和反三角函数的乘积,就考虑设对数函
数或反三角函数为 u.
例5 求积分 sin(ln x)dx.
(x2 a2 )a2 dx
x2 a2
x x2 a2
x2 a2 dx a2
dx x2 a2
∴
原式
=
1 2
x
x2 a2 a2 ln ( x 2
x2 a2 ) C
例10. 求
解:
令
u
ln cos
x,
v
1 cos2
x
,则
u tan x, v tan x
原式 = tan x lncos x tan2 x dx tan x lncos x (sec2 x 1) dx