数据结构排序讲解

合集下载

数据结构教程 第九章 排序

数据结构教程 第九章 排序
2 插入排序


9.2.3 希尔排序
3.算法



void ShellSort() { gap=n/2;//初次增量取序列元素个数n的一半为步长 while(gap>0) { for(i=gap+1;i<=n;i++) { j=i-gap; while(j>0) { if(r[j]>r[j+gap]) { x=r[j];r[j]=r[j+gap];r[j+gap]=x; j=j-gap; }//对子序列作直接插入排序 else j=0; } } gap=gap/2;}//每次减半,直至步长为1 上一页 }
上一页
下一页
9.3 快速排序法


9.3.2 快速排序
3【例9-5】对数据序列:70, 75, 69, 32, 88, 18, 16, 58进行快速排序如图9-3所示。 4.算法


void QuickSort(int low, int high)//递归形式的快速排序 { int pivotpos; if(low<high) { pivotpos=Partition(low,high); QuickSort(low,pivotpos-1);//对低子表递归排序 QucikSort(pivotpos+1,high);//对高子表递归排序 } }
9.2 插入排序


9.2.2 二分插入排序
3.算法



void BinsSort() { for(i=2;i<=n;i++) { r[0]=r[i];low=1;high=i-1;//将r[i]暂存到r[0] while(low<=high) //在r[low..high]中折半查找有序插入的位置 { m=(low+high)/2;//折半 if(r[0].key<r[m].key) high=m-1;//插入点在低半区 else low=m+1;//插入点在高半区 } for(j=i-1;j>high+1;--j) r[j+1]=r[j];//记录后移 r[high+1]r[0];//插入 } 上一页 下一页

数据结构第9章 排序

数据结构第9章 排序

R[3] 10
R[4] 60
R[5] 25
R[6] 30
R[7] 18 18 18 18
18 36 20

10 10 36
60 60 60
25 25 25
30 30 30
【算法】直接插入排序 void D_InsertSort(datatype R[ ], int n) { /*对排序表R[1]..R[n]进行直接插入排序,n是记录的 个数*/ for(i=2; i<=n; i++) if (R[i].key<R[i-1].key) {R[0]=R[i]; /*将R[i]插入R[1].. R[i-1]中, R[0]为监测哨*/ for(j=i-1; R[0].key<R[j].key; j--) R[j+1]=R[j]; /*后移记录*/ R[j+1]=R[0]; /*插入到合适位置*/ } }
空间性能:除排序表以外的内存占用情况。 时间性能:比较关键码的次数,数据移动的次数。 它们往往是排序表规模(n)的函数
6. 记录和排序表的数据结构
一般采用顺序结构存储排序表。 记录和排序表的类型定义如下: #define MAXNUM … /* MAXNUM 为足够大的数 typedef struct { keytype key; …… } datatype; datatype R[MAXNUM]; /*关键码字段*/ /*其它信息*/ /*记录类型*/ /*定义排序表的存储
第一趟排序结果,使得间隔为5的字表有序: P=3
29 7 41 30 11 39 50 76 41 13 10 0 80 78 86
子序列分别为:{29,30,50,13,78},{7,11,76,100,86}, {41,39,41,80}。第二趟排序结果: P=1

数据结构第八章_排序

数据结构第八章_排序

49 38 65 97 76
三趟排序:4 13 27 38 48 49 55 65 76 97
算法描述
#define T 3 int d[]={5,3,1};
例 13 48 97 55 76 4 13 49 27 38 65 49 27 38 65 48 97 55 76 4 j j j
j
j
i
例 初始: 49 38 65 97 76 13 27 48 55 4 取d1=5 49 38 65 97 76 13 27 48 55 4 一趟分组:
一趟排序:13 27 48 55 4 取d2=3 13 27 48 55 4 二趟分组:
49 38 65 97 76 49 38 65 97 76
二趟排序:13 4 48 38 27 49 55 65 97 76 取d3=1 13 27 48 55 4 三趟分组:
初始时令i=s,j=t
首先从j所指位置向前搜索第一个关键字小于x的记录,并和rp
交换 再从i所指位置起向后搜索,找到第一个关键字大于x的记录, 和rp交换 重复上述两步,直至i==j为止 再分别对两个子序列进行快速排序,直到每个子序列只含有 一个记录为止
快速排序演示
算法描述
算法评价

38 49 49 38 65 76 97 13 97 76 97 27 13 30 97 27 97 30 初 始 关 键 字
38 49 65 13 76 27 76 13 30 76 27 76 30 97 第 一 趟
38 49 13 65 27 65 13 30 65 27 65 30
38 13 49
时间复杂度
最好情况(每次总是选到中间值作枢轴)T(n)=O(nlog2n) 最坏情况(每次总是选到最小或最大元素作枢轴)

数据结构第9章 排序

数据结构第9章 排序

数据结构第9章排序数据结构第9章排序第9章排名本章主要内容:1、插入类排序算法2、交换类排序算法3、选择类排序算法4、归并类排序算法5、基数类排序算法本章重点难点1、希尔排序2、快速排序3、堆排序4.合并排序9.1基本概念1.关键字可以标识数据元素的数据项。

如果一个数据项可以唯一地标识一个数据元素,那么它被称为主关键字;否则,它被称为次要关键字。

2.排序是把一组无序地数据元素按照关键字值递增(或递减)地重新排列。

如果排序依据的是主关键字,排序的结果将是唯一的。

3.排序算法的稳定性如果要排序的记录序列中多个数据元素的关键字值相同,且排序后这些数据元素的相对顺序保持不变,则称排序算法稳定,否则称为不稳定。

4.内部排序与外部排序根据在排序过程中待排序的所有数据元素是否全部被放置在内存中,可将排序方法分为内部排序和外部排序两大类。

内部排序是指在排序的整个过程中,待排序的所有数据元素全部被放置在内存中;外部排序是指由于待排序的数据元素个数太多,不能同时放置在内存,而需要将一部分数据元素放在内存中,另一部分放在外围设备上。

整个排序过程需要在内存和外存之间进行多次数据交换才能得到排序结果。

本章仅讨论常用的内部排序方法。

5.排序的基本方法内部排序主要有5种方法:插入、交换、选择、归并和基数。

6.排序算法的效率评估排序算法的效率主要有两点:第一,在一定数据量的情况下,算法执行所消耗的平均时间。

对于排序操作,时间主要用于关键字之间的比较和数据元素的移动。

因此,我们可以认为一个有效的排序算法应该是尽可能少的比较和数据元素移动;第二个是执行算法所需的辅助存储空间。

辅助存储空间是指在一定数据量的情况下,除了要排序的数据元素所占用的存储空间外,执行算法所需的存储空间。

理想的空间效率是,算法执行期间所需的辅助空间与要排序的数据量无关。

7.待排序记录序列的存储结构待排序记录序列可以用顺序存储结构和和链式存储结构表示。

在本章的讨论中(除基数排序外),我们将待排序的记录序列用顺序存储结构表示,即用一维数组实现。

《数据结构排序》课件

《数据结构排序》课件

根据实际需求选择时间复杂度和空间 复杂度最优的排序算法,例如快速排 序在平均情况下具有较好的性能,但 最坏情况下其时间复杂度为O(n^2)。
排序算法的适用场景问题
适用场景考虑因素
选择排序算法时需要考虑实际应 用场景的特点,如数据量大小、 数据类型、是否需要稳定排序等 因素。
不同场景适用不同
算法
例如,对于小规模数据,插入排 序可能更合适;对于大规模数据 ,快速排序或归并排序可能更优 。
排序的算法复杂度
时间复杂度
衡量排序算法执行时间随数据量增长而增长的速率。时间复杂度越低,算法效 率越高。常见的时间复杂度有O(n^2)、O(nlogn)、O(n)等。
空间复杂度
衡量排序算法所需额外空间的大小。空间复杂度越低,算法所需额外空间越少 。常见的空间复杂度有O(1)、O(logn)、O(n)等。
在数据库查询中,经常需要对结果进行排序,以便用户能够快速找到所需信息。排序算 法的效率直接影响到查询的响应时间。
索引与排序
数据库索引能够提高查询效率,但同时也需要考虑到排序的需求。合理地设计索引结构 ,可以加速排序操作。
搜索引擎中的排序
相关性排序
搜索引擎的核心功能是根据用户输入的 关键词,返回最相关的网页。排序算法 需要综合考虑网页内容、关键词密度、 链接关系等因素。
VS
广告与排序
搜索引擎中的广告通常会根据关键词的竞 价和相关性进行排序,以达到最佳的广告 效果。
程序中的排序应用
数组排序
在程序中处理数组时,经常需要对其进行排 序。不同的排序算法适用于不同类型的数据 和场景,如快速排序、归并排序等。
数据可视化中的排序
在数据可视化中,需要对数据进行排序以生 成图表。例如,柱状图、饼图等都需要对数 据进行排序处理。

数据结构的常用算法

数据结构的常用算法

数据结构的常用算法一、排序算法排序算法是数据结构中最基本、最常用的算法之一。

常见的排序算法有冒泡排序、选择排序、插入排序、快速排序、归并排序等。

1. 冒泡排序冒泡排序是一种简单的排序算法,它重复地比较相邻的两个元素,如果它们的顺序错误就将它们交换过来。

通过多次的比较和交换,最大(或最小)的元素会逐渐“浮”到数列的顶端,从而实现排序。

2. 选择排序选择排序是一种简单直观的排序算法,它每次从待排序的数据中选择最小(或最大)的元素,放到已排序序列的末尾,直到全部元素排序完毕。

3. 插入排序插入排序是一种简单直观的排序算法,它将待排序的数据分为已排序区和未排序区,每次从未排序区中取出一个元素,插入到已排序区的合适位置,直到全部元素排序完毕。

4. 快速排序快速排序是一种常用的排序算法,它采用分治的思想,通过一趟排序将待排序的数据分割成独立的两部分,其中一部分的所有数据都比另一部分小,然后再按此方法对这两部分数据进行快速排序,递归地进行,最终实现整个序列有序。

5. 归并排序归并排序是一种稳定的排序算法,它采用分治的思想,将待排序的数据分成若干个子序列,分别进行排序,然后将排好序的子序列合并成更大的有序序列,直到最终整个序列有序。

二、查找算法查找算法是在数据结构中根据给定的某个值,在数据集合中找出目标元素的算法。

常见的查找算法有线性查找、二分查找、哈希查找等。

1. 线性查找线性查找是一种简单直观的查找算法,它从数据集合的第一个元素开始,依次比较每个元素,直到找到目标元素或遍历完整个数据集合。

2. 二分查找二分查找是一种高效的查找算法,它要求数据集合必须是有序的。

通过不断地将数据集合分成两半,将目标元素与中间元素比较,从而缩小查找范围,最终找到目标元素或确定目标元素不存在。

3. 哈希查找哈希查找是一种基于哈希表的查找算法,它通过利用哈希函数将目标元素映射到哈希表中的某个位置,从而快速地找到目标元素。

三、图算法图算法是解决图结构中相关问题的算法。

数据结构加强之排序算法讲解

数据结构加强之排序算法讲解
操作细节: 当插入第i(i≥1)个对象时, 前面的r[0], r[1], …, r[i-1]已 经排好序。 用r[i]的关键字与r[i-1], r[i-2], …的关键字顺序进行比 较(和顺序查找类似),如果小于,则将r[x]向后移动(插入 位置后的记录向后顺移);找到插入位置即将r[i]插入。
3.1 直接插入排序
for j=1 to n-1
for i=1 to n-j
真 a[i]>a[i+1]
a[i]a[i+1]
输出a[1] 到 a[n]
#include <stdio.h> main() { int a[11],i,j,t; printf("Input 10 numbers:\n"); for(i=1;i<11;i++) scanf("%d",&a[i]); printf("\n"); 假 for(j=1;j<=9;j++) for(i=1;i<=10-j;i++) if(a[i]>a[i+1]) {t=a[i]; a[i]=a[i+1]; a[i+1]=t;} printf("The sorted numbers:\n"); for(i=1;i<11;i++) printf("%d ",a[i]); }
排序算法
常见的经典排序算法
冒泡排序 选择排序 插入排序 希尔排序 快速排序 归并排序
1 冒泡排序
算法描述 设待排序记录序列中的记录个数为n
一般地,第i趟起泡排序从1到n-i+1
依次比较相邻两个记录的关键字,如果发生逆序, 则交换之。 其结果是这n-i+1个记录中,关键字最大的记录被 交换到第n-i+1的位置上,最多作n-1趟。

数据结构排序PPT课件

数据结构排序PPT课件
—— 若待排序记录一部分在内存,一部分在外存, 则称为外部排序。
注:外部排序时,要将数据分批调入内存来 排序,中间结果还要及时放入外存,显然外 部排序要复杂得多。
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
5.待排序记录在内存中怎样存储和处理?
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
Void BInsertSort (SqList &L) // 折半插入排序
{ for ( i=2;i<=L.length;++i )
{ L.r[0] = L.r[ i ]; // 将L.r [i] 暂存到L.r[0]
处理方式: ① 顺序排序 —— 数据间的逻辑顺序关系通过其物理
存储位置的相邻来体现,排序时直接移动记录; 适合数据较少的情况!
② 链表排序 ——数据间的逻辑顺序关系通过结点中 的指针体现,排序时只修改指针,不移动数据;
③ 地址排序 —— 数据存储在一段连续地址的空间, 构造一个辅助表保持各数据的存放地址(指针),排 序时先修改辅助表中的地址,最后再移动记录。
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
4. 什么叫内部排序?什么叫外部排序? —— 若待排序记录都在内存中,称为内部排序;
内部排序基本操作有两种: ◆ 比较两个关键字的大小;(比不可少的操作) ◆ 存储位置的移动。
i=8
0
1
2
3
4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8.3 交换排序
冒泡排序
数据结构
排序过程:将第一个记录的关键字与第二个记录的关 键字进行比较,若为逆序r[1].key>r[2].key,则交换; 然后比较第二个记录与第三个记录;依次类推,直至 第n-1个记录和第n个记录比较为止——第一趟冒泡排 序,结果关键字最大的记录被放在最后。 对前n-1个记录进行第二趟冒泡排序,结果使关键字 次大的记录被放在第n-1个位置。重复上述过程,直 到“在一趟排序过程中没有进行过交换记录的操作” 为止。
38
38 13 38 27 13 38 27 30 30 38 49
13 27 30 38
13 27 30
13
13 49
13 49 27 27 30 49 49 30 65
27
97 第 一 趟
第 三 趟
第 四 趟
第 五 趟
第 六 趟
第 七 趟
排序后序列为:13 27 30 38 49 65 76 97
数据结构
快速排序
基本思想:通过一趟排序,将待排序记录分割成独立 的两部分,其中一部分记录的关键字均比另一部分记 录的关键字小,则可分别对这两部分记录进行排序, 以达到整个序列有序。 排序过程: 对r[s……t]中记录进行一趟快速排序,附设两个 指针i和j,设rp=r[s],x=rp.key。初始时令i=s, j=t。 首先从j所指位置向前搜索第一个关键字小于x的记 录,并和rp交换。再从i所指位置起向后搜索,找 到第一个关键字大于x的记录,和rp交换。重复上 述两步,直至i=j为止。 再分别对两个子序列进行快速排序,直到每个子序 列只含有一个记录为止。
数据结构
第八章 排序
8.1 基本概念 8.2 插入排序 8.3 交换排序 8.4 选择排序 8.5 归并排序
8.1 基本概念
数据结构
排序:将一个数据元素(或记录)的任意序列,重新 排列成一个按关键字有序的序列。
有序表与无序表:一组记录按关键字的递增或递减次 序排列得到的结果被称之为有序表,相应地,把排序 前的状态称为无序表。
数据结构 折半插入排序:用折半查找方法确定插入位置。
例:
i=1
… i=7 6
(30) 13 70 85 39 42 6
30) 70 85 39 42 6 13 30 39 13 30 39 m 13 30 39 m j 13 30 39 s mj 13 20 30
20
20
i=2 13 (13 (6
42 70 85 ) 20 42 70 85 ) 20 j 42 70 85 ) 20
i=8 20 (6 s i=8 20 (6 s i=8 20 (6 i=8 20 (6
42 70 85 ) 20
39 42 70 85 )
数据结构
希尔排序
希尔排序(Shell Sort)又称为“缩小增量排序”。 排序过程:先取一个正整数d1<n,把所有相隔d1的记 录放一组,组内进行直接插入排序;然后取d2<d1, 重复上述分组和排序操作;直至di=1,即所有记录放 进一个组中排序为止。
数据结构

38 49
38 49 65 97 76 13 97 76 13 27 97 27 30 97 30 97 初 始 关 键 字 n=8
38 49 65 76 13 27 76 13 27 30 76 30 76
38 49 65 13 13 65 27 30 27 65 65 30 76 第 二 趟
排序基本操作: 比较两个关键字大小 将记录从一个位置移动到另一个位置
8.2 插入排序
直接插入排序
数据结构
排序过程:整个排序过程为n-1趟插入,即先将序 列中第1个记录看成是一个有序子序列,然后从第2 个记录开始,逐个进行插入,直至整个序列有序。 例:
i=1 (49) 38 65 97 76 13 27
数据结构
例:初始: 49 38 65 97 76 13 27 48 55 4 取d1=5 49 38 65 97 76 13 27 48 55 4 一趟分组:
一趟排序: 13 27 48 55 4 取d2=3 13 27 48 55 4 二趟分组:
49 38 65 97 76 49 38 65 97 76
数据结构
x=ቤተ መጻሕፍቲ ባይዱ9
例:
初始关键字: 27 49 i 完成一趟排序: ( 27 38 13 49 65 i 13) 49 97 76 j 97 49 13 j 97 49 65 27 50 j 50)
i
38
iij
j
65
49 (76
分别进行快速排序: ( 13) 27
(38) 49 (50
65)
76
(97)
正序表与逆序表:若有序表是按关键字升序排列的, 则称为升序表或正序表,否则称为降序表或逆序表。 不失普遍性,一般只讨论正序表。
数据结构 排序的方法: 插入排序:直接插入排序、折半插入排序、希尔排序 交换排序:冒泡排序、快速排序 选择排序:简单选择排序、堆排序 归并排序:2-路归并排序 其它排序: 多关键字排序
i=2 38 (38 49) 65 97 76 13 27 i=3 65 (38 49 65) 97 76 13 27 i=4 97 (38 49 65 97) 76 13 27
i=5 76 (38 49 65 76 97) 13 27
i=6 13 (13 38 49 65 76 97) 27 i=7 27 (13 27 38 49 38 65 49 65 76 76 97) 97 27 排序结果:(13 j j27 j38 j49 j65 j76 97)
二趟排序: 13 4 48 38 27 49 55 65 97 取d3=1 13 27 48 55 4 三趟分组:
76
49 38 65 97 76
三趟排序: 4 13 27 38 48 49 55 65 76 97
数据结构
希尔排序特点
子序列的构成不是简单的“逐段分割”,而是将相 隔某个增量的记录组成一个子序列。关键字较小的 记录跳跃式前移,在进行最后一趟增量为1的插入排 序时,序列已基本有序。
快速排序结束:
13
27
38
49
50
65
76
97
8.4 选择排序
简单选择排序
排序过程:
数据结构
首先通过n-1次关键字比较,从n个记录中找出关键 字最小的记录,将它与第一个记录交换。 再通过n-2次比较,从剩余的n-1个记录中找出关键 字次小的记录,将它与第二个记录交换。 重复上述操作,共进行n-1趟排序后,排序结束。
相关文档
最新文档