高二数学下学期期中考试Microsoft Word 文档

合集下载

高二数学下学期期中考试试卷含答案(共5套,word版)

高二数学下学期期中考试试卷含答案(共5套,word版)

高二下学期数学期中考试试卷时量:120分钟 总分:150分一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 设全集R I =,集合}1|{},3,log |{A 3-==>==x y x B x x y y ,则( )A .B A ⊆ B .A B A =⋃C .φ=⋂B AD .φ≠⋂)(B C A I 2.已知i 是虚数单位,复数z 满足i z i 2)1(=-,则z 的虚部是( ) A .1 B .i C .-1 D .-i3. 函数x x f 3log )(=的图象与函数()sin g x x π=的图象的交点个数是( ) A .2 B .3 C .4 D .54. 若向量,a b 的夹角为32π,且1||,2||==b a ,则向量b a 2+与向量a 的夹角为( ) A .6π B .3π C. 23π D .56π5. 已知0a >,0b >,若不等式313ma b a b+≥+恒成立,则m 的最大值为( )A .9B .12C .18D .246.已知21)4tan(=-πα,且0<<-απ,则αα2sin 22sin +等于( )A .B .25-C .25D .5127.已知直三棱柱ABC ﹣A 1B 1C 1,AB ⊥BC ,AB=BC=AA 1=2,若该三棱柱的所有顶点都在同一球面上,则该球的表面积为( )A .π48B .π32C .π12D .π8 8. 已知定义在R 上的函数()21x mf x -=- (m 为实数)为偶函数,记)3(log 5.0f a =,),2(),5(log 2m f c f b ==则,,a b c 的大小关系为( )A .a b c <<B .a c b <<C .c a b <<D .c b a <<9.直线02=++y x 分别与轴轴,y x 交于B A ,两点,点P 在圆2)2(22=+-y x 上,则ABP ∆面积的取值范围是( )A .]6,2[B .]8,4[ C. ]23,2[ D .]23,22[ 10. 执行如图所示的程序框图,则输出的k 值为( ) A .4B .5C .7D .911.已知函数)(x f 是定义在R 上的偶函数,设函数)(x f 的导数为)(x f ',若对任意的0>x 都有0)()(2>'+x f x x f 成立,则( )A .)3(9)2(4f f <-B . )3(9)2(4f f >-C .)2(3)3(2->f fD .)2(2)3(3-<-f f12.设双曲线)0,0(12222>>=-b a by a x C ,:的左、右焦点分别为1F 、2F 。

高二数学下学期期中考试试卷含答案(word版)

高二数学下学期期中考试试卷含答案(word版)

第二学期期中考试 高二级数学试卷考试时间:120分钟 满分:150分第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知命题:,sin 1p x x ∀∈≤R ,它的否定是( ) A .存在,sin 1x x ∈>R B .任意,sin 1x x ∈≥R C .存在,sin 1x x ∈≥R D .任意,sin 1x x ∈>R2.已知复数z 满足(z-1)i=i+1,复平面内表示复数z 的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限3.函数()f x 在0x=x 处导数存在,若p :f ‘(x 0)=0;q :x=x 0是()f x 的极值点,则( ) A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是 q 的充分条件D . p 既不是q 的充分条件,也不是q 的必要条件4.有下列命题:①若0xy =,则0x y +=;②若a b >,则a c b c +>+;③矩形的对角线互相垂直.其中真命题有( )A .0个B .1个C .2个D .3个5.设复数z=()()12i i a ++为纯虚数,其中a 为实数,则a =( )A .2-B .12-C . 12 D .26.双曲线2214y x -=的渐近线方程和离心率分别是( )A . 2,y x e =±=B . 1,2y x e =±=C .1,2y x e =± D .2,y x e =±=7.若函数()ln f x x x =-的单调递增区间是( ) A .()0,1 B .()0,e C .()0,+∞ D .()1,+∞8.按照图1——图3的规律,第10个图中圆点的个数为( )个. A .40 B .36 C .44 D .52图1图2图39. 某产品的广告费用x 与销售额y 的统计数据如下表:广告费用x (万元) 4 2 3 5 销售额y (万元)49263954根据上表可得回归方程y bx a =+ 中的b 为9.4,据此模型预报广告费用为6万元时销售额为( ). A .63.6万元B .65.5万元C .67.7万元D .72.0万元10. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则( )A .乙可以知道两人的成绩B .丁可能知道两人的成绩C . 乙、丁可以知道自己的成绩D .乙、丁可以知道对方的成绩11. 已知函数3()63f x x bx b =-+在(0,1)内有极小值,则b 的取值范围是( )A . ,0-∞B .1(0,)2C . 1,2⎛⎫+∞ ⎪⎝⎭D . ()0,112.设A 、B 是椭圆C :2213x y m+=长轴的两个端点,若C 上存在点M 满足∠AMB =120°,则m 的取值范围是( )A .(0,1][4,)+∞B .3][4,)+∞C .(0,1][9,)+∞D .3][9,)+∞第II 卷二.填空题:本大题共4小题.每小题5分,满分20分. 13.设()11i x yi +=+,其中,x y 是实数,则x yi += .14. 如图程序框图的算法思路源于我国古代数学名著《九章算术》中“更相减损术”.执行该程序框图,若输入的a ,b 分别为98、63,则输出的a = .15.已知双曲线的顶点为椭圆2212y x +=长轴的端点,且双曲线的离心率与椭圆的离心率的乘积等于1,则双曲线的方程是16. 已知曲线ln y x x =+在点 ()1,1处的切线与曲线()221y ax a x =+++ 相切,则a = . 三.解答题:本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤.17.(本小题满分12分)已知:p 关于x 的方程210x mx ++=有两个不等的负根;:q 关于x 的方程244(2)10x m x +-+=无实根。

高二数学下学期期中试题word版本

高二数学下学期期中试题word版本

2016-2017 学年度第二学期高二数学期中考试卷试卷总分: 150 分;考试时间: 120 分钟;注意事项:1.答题前填写好自己的姓名、班级等信息2.请将答案正确填写在答题卡上第 I 卷(选择题)一、选择题(每题 5 分,共 60 分)1.已知命题: x R,sin x1,则()A . p : x R, sin x 1B . p : x R,sin x 1C .p : x R, sin x 1D.p : x R,sin x 12.已知 aR ,则“ a 2 ”是“ a 22a ”的()A .充足不用要条件B .必需不充足条件C .充要条件D.既非充足也非必需条件3.椭圆 x 2y 2 1 的离心率为()25 16A .3B.3C .4D.9545254.以下命题中错误的选项是()A .若命题为真命题,命题为假命题,则命题“ pq ”为真命题B .命题“若 a b 7 ,则 a 2 或 b 5 ”为真命题C .命题 p :x0,sin x 2x 1 ,则为x 0,sin x 2x1D .命题“若 x 2 x0 ,则 x0 或 x 1”的否命题为“若 x 2x 0 ,则 x0 且 x 1”5.抛物线 y =ax 2 的准线方程为 y =2,则实数 a 的值为A .-1B.1C . 8D .- 88 81的两个交点,过的直线与椭圆交于M ,N 两点,则MNF2的周6.已知F1, F2是椭圆916长为()A.16B. 8C.25D. 327.已知椭圆的长轴长是短轴长的 2 倍,则椭圆的焦距与短轴长之比为()A.1B.3C. 3D.338.设 F (- 4,0), F(4, 0)为定点,动点M知足 |MF | + |MF | =8,则动点 M的轨迹是1212A.椭圆B.直线C.圆D.线段9.经过双曲线x2y 21右焦点的直线与双曲线交于A, B 两点,若AB4,则这样的直线的4条数为()A.4 条B. 3 条C. 2 条D. 1 条10.已知双曲线 C的离心率为2,焦点为、,点 A在 C上,若F1A 2 F2 A ,则 cos AF2 F1()A.1B.1C.2D.2 434311.直线y kx 1 k R与椭圆 x2y21恒有两个公共点,则的取值范围为()5mA.1,B. 1,C. 1,55,D. 1,55,第 II卷(非选择题)二、填空题(每题 5 分,共 20 分)12.已知双曲线x2y 21y3x,则实数的值为______.的一条渐近线方程为2m m413.抛物线y 212x 上与焦点的距离等于 6 的点的坐标是.14.设、分别是椭圆2(6,4) ,则251 的左,右焦点,为椭圆上任一点,点的坐标为16| PM || PF 1 || 的最小值为 ________.15.有以下四个命题 ①“若 x y0,则互为相反数”的抗命题;②“全等三角形的面积相等”的否命题;③“若,则 x 2 2 x q0 有实根”的逆否命题;④“不等边三角形的三个内角相等”的抗命题.此中真命题为 _______________.三、解答题(共 70 分)16.(此题满分 10 分)斜率为1的直线经过抛物线x 2 4 y 的焦点,且与抛物线订交于A ,B 两点,2求线段的长 .17.(此题满分 12 分)已知 P : x 28x 20 0 ; q :1 m 2 x 1 m 2.( 1)若 p 是 q 的必需条件,求 m 的取值范围;( 2)假如的必需不充足条件,求m 的取值范围 .18.(此题满分 12 分)分别求合适以下条件的双曲线的标准方程.4(Ⅰ)焦点在轴上,焦距是,离心率e;3(Ⅱ)一个焦点为 F 6,0 的等轴双曲线.19.(此题满分12 分)已知双曲线x2y2,若双曲线上一点使得91的左、右焦点分别为、16F1PF2 90,求△ F1PF2的面积.20.(此题满分 12 分)已知椭圆C: x2y 21(a b0),22,a2b2经过点 M (1) ,其离心率为22设直线 l: y kx m 与椭圆订交于A、B 两点.(Ⅰ)求椭圆的方程;(Ⅱ)已知直线与圆x 2y22相切,求证: OA OB (为坐标原点);321.(此题满分 12 分)双曲线 x2y2 1(b 0) 的左、右焦点分别为F1、 F2,直线过 F2且与双曲b2线交于 A、 B两点.( 1)若的倾斜角为,△ F1 AB 是等边三角形,求双曲线的渐近线方程;2( 2)设b 3 ,若的斜率存在,且|AB|=4 ,求的斜率.参照答案1.C2.A 3 .A 4 .D 5 .A6.A7.D 8 .D9.B 10.A11.C12. 413. (3,6) 或 (3, 6)14. 15.①③ 16. 55【分析】由已知可知,抛物线 x 2 4 y 的焦点为 F (0,1) ,(2 分)因此直线的方程为1 1. (5 分)yx2由y1x 1,2)2 4y ,即 y 22 得 (2 y 3y 1 0.(7分)x 24 y,设 A( x 1 , y 1 ), B( x 2 , y 2 ) ,则 y 1 y 2 3 ,因此 | AB | y 1y 2 p 3 2 5. (10分)17.( 1) [3, 3] ;(2) ( , 3] [3, )【分析】由 x 2 8x 20 0 得2 x 10 ,即 P : 2 x10,(3 分)又 q :1m 2 x 1 m 2 .( 1)若 p 是 q 的必需条件,1 m2 2 m 23 3 ,解得3m3 ,( 5 分)则m 210,即m 2,即 m 21 9即 m 的取值范围是[3,3]。

高二数学第二学期期中考试试卷.doc

高二数学第二学期期中考试试卷.doc

高二数学第二学期期中考试试卷年级:高二 学科:数 学一、选择题(本大题共12小题,每题5分,共60分,请将正确答案填入答题卷) 1.已知球的两个平行截面面积分别为5π和8π,它们位于球心的同一侧,且相距为1,则球半径为A. 4 B .3 C. 2 D. 52. a 、b 为异面直线,二面角M —l —N ,M a ⊥,N b ⊥,如果二面角M —l —N 的平面角为θ,则a ,b 所成的角为A .θB .θ-πC .θ或θ-πD .θ+π3. 下面有四个命题:①各个侧面都是等腰三角形的棱锥是正棱锥;②三条侧棱都相等的棱锥是正棱锥;③底面是正三角形的棱锥是正三棱锥;④顶点在底面上的正射影是底面多边形的内心,又是外心的棱锥必是正棱锥.其中正确命题的个数是. A. 1 B .2 C. 3 D.44.已知平面α∥平面β,直线l ⊂平面α,点P ∈直线l ,平面α、β间的距离为8,则在β内到点P 的距离为10,且到l 的距离为9的点的轨迹是 A.一个圆 B.四个点 C.两条直线 D. 两个点 5. α和β是两个不重合的平面,在下列条件中可判定平面α和β平行的是 A.α内不共线的三点到β的距离相等 B.m l ,是α平面内的直线且ββ//,//m lC. α和β都垂直于平面γ D .m l ,是两条异面直线且ββαα//,//,//,//l m m l 6.一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为A .3πB .4πC .π33D .6π 7.考察下列命题: (1)掷两枚硬币,可能出现“两个正面”、“两个反面”、“一正一反”3种结果; (2)某袋中装有大小均匀的三个红球、二个黑球、一个白球,那么每种颜色的球被摸到的可能性相同;(3)从2,1,0,1,2,3,4----中任取一数,取到的数小于0与不小于0的可能性相同; (4)分别从3个男同学、4个女同学中各选一个作代表,那么每个同学当选的可能性相同;其中正确的命题有A .0个B .1个C .2个D .3个8.△ABC 的BC 边上的高线为AD ,BD=a ,CD=b ,将△ABC 沿AD 折成大小为θ的二面角B-AD-C ,若ba=θcos ,则三棱锥A-BCD 的侧面三角形ABC 是 A .锐角三角形 B .钝角三角形C .直角三角形D 、形状与a 、b 的值有关的三角形9.设,*N x ∈ 求321132-+--+x x x x C C 的值是( )A .2或3或4B .4或7或11C .只有3D .只有710.122331010101909090C C C -+-+ (1010)1090C +除以88的余数是A . -1B .-87C . 1D .87 11. 定义n 2i 1i i ni k k a a a a a ++++=++=∑ ,其中i,n N ∈,且i ≤n,若kk20032003k k)x 3(C(-1)f(x )-=∑==∑∑=-=20031k k i20032003i i a ,xa 则的值为A .2B .0C .-1D .-2 12.四面体的顶点和各棱中点共有10个点,取其中4个不共面的点,则不同的取法共有 A .150种 B .147种 C .144种 D .141种 二、填空题(本大题共4小题,共16分,请将正确答案填入答题卷) 13.在10)32(y x -的展开式中,二项式系数的和是 .14.从装有两个白球、两个黑球的袋中任意取出两个球,取出一个白球一个黑球的概率为 .15. 在北纬45°线上有A 、B 两点,点A 在东经120°,点B 在西经150°,设地球半径为R ,则A 、B 两地的球面距离是 .16. 有下列四个命题:①过平面α外两点有且只有一个平面与平面α垂直;②互相平行的两条直线在同一平面内的射影必是平行线;③直线l 上两个不同点到平面α的距离相等是l ∥α的必要非充分条件;④平面α内存在无数条直线与已知直线l 垂直是α⊥l 的充分非必要条件.其中正确命题的序号是年级:高二学科:数学一、二、填空题(本大题共4小题,共16分)13、___________ __ ___. 14. _______________ __.15、_______________ _. 16、________________ _.三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.17.(本题满分12分)若平面α内的直角△ABC的斜边AB=20,平面α外一点O到A、B、C三点距离都是25,求:点O到平面α的距离.18.(本题满分12分)甲、乙、丙三人值周,从周一至周六,每人值两天,但甲不值周一,乙不值周六,问可以排出多少种不同的值周表?19.(本题满分12分)如图所示在直三棱柱ABC—A1B1C1中,CA=CB=l,∠BCA=90°,侧棱AA1=2,M、N 分别为A1B1,A1A的中点(1) 求的长;(2) 求><11,cos CBBA的值;(3)求证:A1B⊥C1MOCBA20.(本题满分12分)已知(124x)n的展开式中前三项的二项式系数的和等于37,求展式中二项式系数最大的项的系数.21.(本题满分12分)由-1,0,1,2,3这5个数中选3个不同的数作为二次函数y=ax2+bx+c的系数. (1)开口向上且不过原点的抛物线有几条?(2)与x轴的负半轴至少有一个交点的抛物线有多少条?22.(本题满分14分)在五棱锥P-ABCDE中,P A=AB=AE=2a,PB=PE=22a,BC=DE=a,∠EAB=∠ABC=∠DEA=90°.(1)求证:P A⊥平面ABCDE;(2)求二面角A-PD-E的大小;(3)求点C到平面PDE的距离.高 二 数 学 答 案一.BCABD AACBC DD 二.13. 102 14..3215.R π3116. ③ 17. 解:由斜线相等,射影相等知,O 在底面的射影为△ABC 的外心Q ,又△ABC 为Rt △外心在斜边中点,故OQ=221025-==21518. 解法一:(排除法)422131424152426=+-C C C C C C .解法二:分为两类:一类为甲不值周一,也不值周六,有2324C C ; 另一类为甲不值周一,但值周六,有2414C C ,∴一共有2414CC +2324CC =42种方法.19.解:建立空间直角坐标系如图,(1)依题意得B (0,1,0)、N (1,0,1),则3)01()10()01(222=-+-+-=;(2)A 1(1,0,2),B (0,1,0),C (0,0,0),B 1(0,1,2), 则),2,1,0(),2,1,1(11=--=CB BA ,311=⋅CB BA,56==所以1030==; (3)证明:依题意,得C 1(0,0,2)、M (21,21,2)、)2,1,1(1-=B A M C 1=(21,21,0),则=⋅M C B A 11002121=++-, ∴M C B A 11⊥,即A 1B ⊥C 1M20.解:由01237,n n n C C C ++= 得11(1)372n n n ++-= 得8n =.444485835)2(41x x C T ==,该项的系数最大,为835 21.解析:(1)抛物线开口向上且不过原点,记,∴ 选a 的时候有3种选法,再选c 的时候也只有3种,最后选b 也有3种, 由分步计数原理有抛物线3×3×3=27条。

(word完整版)高二下学期数学期中试卷及,文档

(word完整版)高二下学期数学期中试卷及,文档

齐市一中 2021级高二学年下学期期中考试数学〔理科〕试卷一、选择题:本大题共12小题,每题 5 分,共 60 分.在每题给出的四个选项中,只有一项为哪一项吻合题目要求的.2i1.复数z的虚部为〔〕12iA .iB .2.设随机变量遵从正态分布值为i2),假设P(C.1D.1N (1,2)0.8 ,那么 P(01) 的〔〕A.B.C.D.3.如图是函数y f ( x) 的导函数 f '(x) 的图象,那么下面判断正确的选项是〔〕A .在区间(2,1) 上 f (x) 是增函数B .在(1,3)上f (x)是减函数C.在(4,5)上f ( x)是增函数D .当x 4 时, f ( x)取极大值4.甲、乙、丙、丁四位同学各自对A, B 两变量的线性相关性做试验,并用回归分析的方法分别求得相关系数r 与残差平方和 m 以下表:r甲乙丙丁m106115124103那么试验结果表达两变量A, B 有较强的线性相关性的是〔〕A .甲同学B .乙同学C.丙同学D.丁同学5.从 4 名男生和 2 名女生中任选 3 人参加演讲比赛,设随机变量表示所选3 人中女生的人数,那么P(1) 等于〔〕1B .234A .5C.D.5556.某地区空气质量监测资料说明,一天的空气质量为优异的概率是0.75 ,连续两天为优异的概率是0.6 ,某天的空气质量为优异,那么随后一天的空气质量为优异的概率是〔〕A. B .C.D.7.曲线y x ln x 的一条切线的斜率为2,那么切点的横坐标为〔〕A .2B .e1D .1 C.8.x2x3e函数 f (x)3ax 2 的极小值点,那么函数 f ( x) 的极大值为〔〕A.15B. 16C. 17D. 189.由曲线y x2 , y x 3围成的封闭图形的面积为〔〕数学〔理科〕试卷第1页A .1B .1C .1D .712431210 .袋中有 20 个大小相同的球,其中记上0 号的有 10个,记上 n 号的有 n 个(n 1,2,3,4) .现从袋中任取一球, ξ表示所取球的标号, 假设 a 2,E( ) 1, 那么 a 的值为〔〕A . 2B . 2C .D . 311 .设函数 f (x) 在 R 上可导,其导函数为f ' ( x) ,且函数 f ( x) 在 x2 处获取极小值,那么函数 y ' ( )〔〕xf x 的图象可能是A1 B C D12.假设函数f (x) x 2ln x 1在其定义域的一个子区间 (k 1, k 1) 内不是单调2函数,那么实数 k 的取值范围是〔〕A . 1,B . 1,3C . 1,2D . 3,222二、填空题: 本大题共 4 小题, 每题 5 分,共 20 分,将答案填在答题卡的横线上.13.定积分2 1.dx1 x14.函数f (x)xe 1 2x ,那么 f ' (1).15.某工厂为了对新研发的一种产品进行合理定价,将该产品按早先拟订的价格进行试销,获取以下数据:单价 x 元 4 5 6 7 8 9 销量 y 元908483807568由表中数据,求得线性回归方程为 y? 4x a ,假设从这些样本点中任取一点,那么它在回归直线下方的概率为 .16. f ( x), g( x) 都是定义在R 上的函数, g( x) 0, f ' ( x) g( x) f ( x) g ' ( x) , 且f ( x) a x g( x)( a0,a 1) ,f (1)f ( 1)5 , 那么实数 a 的值为.g(1) g( 1)2数学〔理科〕试卷第2页三、解答题:本大题共 4 小题,共40 分 . 解同意写出文字说明,证明过程或演算步骤. 17.〔本小题总分值8分〕某地区在对人们休闲方式的一次检查中,共检查了120 人,其中女性70 人,男性50 人。

2019-2020学年高二下学期期中考试数学(理)试题 Word版含解析

2019-2020学年高二下学期期中考试数学(理)试题 Word版含解析

2019—2020学年第二学期南昌市八一中学高二理科数学期中考试试卷第Ⅰ卷(选择题:共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数z 满足1i 1i z +=-,则||z =( ) A. 2iB. 2C. iD. 1 【★答案★】D【解析】【分析】 根据复数的运算法则,求得复数zi ,即可得到复数的模,得到★答案★. 【详解】由题意,复数11i i z +=-,解得()()()()111111i i i z i i i i +++===--+,所以1z =,故选D . 【点睛】本题主要考查了复数的运算,以及复数的模的求解,其中解答中熟记复数的运算法则是解答的关键,着重考查了推理与运算能力,属于基础题.2. 已知平面α内一条直线l 及平面β,则“l β⊥”是“αβ⊥”的( )A. 充分必要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件【★答案★】B【解析】【分析】根据面面垂直和线面垂直的定义,结合充分条件和必要条件的定义进行判断即可.【详解】解:由面面垂直的定义知,当“l ⊥β”时,“α⊥β”成立,当αβ⊥时,l β⊥不一定成立,即“l β⊥”是“αβ⊥”的充分不必要条件,故选:B .【点睛】本题考查命题充分性和必要性的判断,涉及线面垂直和面面垂直的判定,属基础题.3. 已知水平放置的△ABC 是按“斜二测画法”得到如图所示的直观图,其中B ′O ′=C ′O ′=1,A′O′=32,那么原△ABC的面积是( )A. 3B. 22C.32D.34【★答案★】A【解析】【分析】先根据已知求出原△ABC的高为AO=3,再求原△ABC的面积. 【详解】由题图可知原△ABC的高为AO=3,∴S△ABC=12×BC×OA=12×2×3=3,故★答案★为A【点睛】本题主要考查斜二测画法的定义和三角形面积的计算,意在考察学生对这些知识的掌握水平和分析推理能力.4. 某几何体的三视图如图所示,则这个几何体的体积等于()A. 4B. 6C. 8D. 12【★答案★】A【解析】由三视图复原几何体,是如图所示的四棱锥,它的底面是直角梯形,梯形的上底长为2,下底长为4,高为2,棱锥的一条侧棱垂直底面高为2,所以这个几何体的体积:12422432V+=⨯⨯⨯=,故选A.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.5. 下列命题中,正确的是()A. 经过不同的三点有且只有一个平面B. 分别在两个平面的两条直线一定是异面直线C. 垂直于同一个平面的两条直线是平行直线D. 垂直于同一个平面的两个平面平行【★答案★】C【解析】【分析】根据不在一条直线上的三点确定一个平面,来判断A是否正确;根据分别在两个平面内的两条直线的位置关系不确定,来判断B是否正确;根据垂直于同一平面的两直线平行,来判断C是否正确;根据垂直于同一条直线的两条直线的位置关系是平行、相交或异面,来判断D是否正确.【详解】解:对A,当三点在一条直线上时,平面不唯一,∴A错误;对B,分别在两个平面内的两条直线的位置关系不确定,∴B错误;对C,根据垂直于同一平面的两直线平行,∴C正确;对D,垂直于同一平面的两平面的位置关系是平行、相交,∴D错误.故选C.【点睛】本题考查了空间直线与直线的位置关系及线面垂直的判定与性质,考查了学生的空间想象能力.6. 实数a 使得复数1a i i +-是纯虚数,10b xdx =⎰,1201c x dx =-⎰则a ,b ,c 的大小关系是( ) A. a b c <<B. a c b <<C. b c a <<D. c b a <<【★答案★】C【解析】【分析】 利用复数的乘除运算求出a ,再利用微积分基本定理以及定积分的定义即可求出b ,c ,从而比较其大小关系. 【详解】()()()()11111122a i i a i a a i i i i +++-+==+--+, 1a i i +-是纯虚数, 102a -∴=,1a , 121001122b xdx x ⎛⎫===⎪⎝⎭⎰, 1201c x dx =-⎰表示是以()0,0为圆心, 以1为半径的圆在第一象限的部分与坐标轴围成的14个圆的面积, 21144c ππ∴=⨯⨯=,所以b c a <<. 故选:C【点睛】本题考查了复数的乘除运算、微积分基本定理求定积分、定积分的定义,考查了基本运算求解能力,属于基础题.7. 已知正四棱柱''''ABCD A B C D -的底面是边长为1的正方形,若平面ABCD 内有且仅有1个点到顶点A '的距离为1,则异面直线,AA BC '' 所成的角为 ( ) A. 6π B. 4π C. 3π D. 512π 【★答案★】B【解析】由题意可知,只有点A 到'A 距离为1,即高为1,所以该几何体是个正方体,异面直线11,AA BC 所成的角是4π,故选B.8. 函数3xeyx=的部分图象可能是()A. B.C. D.【★答案★】C【解析】分析:根据函数的奇偶性,及x=1和x=2处的函数值进行排除即可得解.详解:易知函数3xeyx=为奇函数,图象关于原点对称,排除B,当x=1时,y=<1,排除A,当x=4时,4112ey=>,排除D,故选C.点睛:已知函数的解析式判断函数的图象时,可从以下几个方面考虑:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的周期性,判断图象的循环往复;(5)从函数的特征点,排除不合要求的图象.9. 如图所示,三棱锥P ABC -的底面在平面α内,且AC PC ⊥,平面PAC ⊥平面PBC ,点P A B ,,是定点,则动点C 的轨迹是( )A. 一条线段B. 一条直线C. 一个圆D. 一个圆,但要去掉两个点【★答案★】D【解析】 因为平面PAC⊥平面PBC ,AC⊥PC,平面PAC∩平面PBC=PC ,AC ⊂平面PAC ,所以AC⊥平面PBC.又因为BC ⊂平面PBC ,所以AC⊥BC.所以∠ACB=90°.所以动点C 的轨迹是以AB 为直径的圆,除去A 和B 两点.选D.点睛:求轨迹实质是研究线面关系,本题根据面面垂直转化得到线线垂直,再根据圆的定义可得轨迹,注意轨迹纯粹性.10. 如图,以等腰直角三角形ABC 的斜边BC 上的高AD 为折痕,把△ABD 和△ACD 折成互相垂直的两个平面后,某学生得出下列四个结论:①BD ⊥AC ;②△BAC 等边三角形;③三棱锥D -ABC 是正三棱锥;④平面ADC ⊥平面AB C.其中正确的是( )A. ①②④B. ①②③C. ②③④D. ①③④【★答案★】B【解析】【分析】根据翻折后垂直关系得BD ⊥平面ADC ,即得BD ⊥AC ,再根据计算得△BAC 是等边三角形,最后可确定选项.【详解】由题意知,BD ⊥平面ADC ,故BD ⊥AC ,①正确;AD 为等腰直角三角形斜边BC 上的高,平面ABD ⊥平面ACD ,所以AB =AC =BC ,△BAC 是等边三角形,②正确;易知DA =DB =DC ,又由②知③正确;由①知④错.故选B .【点睛】本题考查线面垂直判定与性质,考查推理论证求解能力,属中档题.11. 如图所示,在正三棱锥S —ABC 中,M 、N 分别是SC .BC 的中点,且MN AM ⊥,若侧棱23SA =,则正三棱锥S —ABC 外接球的表面积是()A. 12πB. 32πC. 36πD. 48π【★答案★】C【解析】分析】 根据题目条件可得∠ASB =∠BSC =∠ASC =90∘,以SA ,SB ,SC 为棱构造正方体,即为球的内接正方体,正方体对角线即为球的直径,即可求出球的表面积.【详解】∵M ,N 分别为棱SC ,BC 的中点,∴MN ∥SB∵三棱锥S −ABC 为正棱锥,∴SB ⊥AC (对棱互相垂直)∴MN ⊥AC又∵MN ⊥AM ,而AM ∩AC =A ,∴MN ⊥平面SAC ,∴SB ⊥平面SAC∴∠ASB =∠BSC =∠ASC =90∘以SA ,SB ,SC 为从同一定点S 出发的正方体三条棱,将此三棱锥补成以正方体,则它们有相同的外接球,正方体的对角线就是球的直径. ∴236R SA ==,∴R =3,∴V =36π.故选:C【点睛】本题主要考查了三棱锥的外接球的表面积,考查空间想象能力,由三棱锥构造正方体,它的对角线长就是外接球的直径,是解决本题的关键. 12. 已知椭圆22221(0)x y a b a b+=>>上一点A 关于原点的对称点为点B ,F 为其右焦点,若AF BF ⊥,设ABF α∠=,且,64ππα⎡⎤∈⎢⎥⎣⎦,则该椭圆离心率e 的取值范围为( ) A. 2,312⎡⎤-⎢⎥⎣⎦B. 2,12⎡⎫⎪⎢⎪⎣⎭C. 23,22⎡⎤⎢⎥⎣⎦D. 36,33⎡⎤⎢⎥⎣⎦【★答案★】A【解析】【分析】 根据直角三角形性质得A 在圆上,解得A 点横坐标,再根据条件确定A 横坐标满足条件,解得离心率.【详解】由题意得OA OB OF c ===,所以A 在圆222=x y c +上,与22221x y a b +=联立解得22222()Aa cb xc -=, 因为ABF α∠=,且,64ππα⎡⎤∈⎢⎥⎣⎦, 所以22sin 22sin ()2sin [,]A A a a c a c a c AF c e x c x c e e eααα---=∴-=∴=∈因此2222222()()()a c a c b a c e c e---≤≤, 解得22222222(2)()(2)2()a c c b a c a c c a a c -≤-≤--≤-≤-,,即222,20a c a c ac ≤--≥,即2212,120312e e e e ≤--≥∴≤≤-,选A. 【点睛】本题考查椭圆离心率,考查基本分析化简求解能力,属中档题.第Ⅱ卷(非选择题:共90分)二、填空题:本大题共4小题,每小题5分,共20分.请将★答案★填在答题卡的相应位置.13. ()ππsin cos x x dx -+=⎰__________. 【★答案★】0【解析】【分析】求出被积函数的原函数,然后分别代入积分上限和积分下限作差得出★答案★.【详解】()()ππsin cos cos sin x x dx x x ππ--+=-+⎰()()()cos sin cos sin 110ππππ=-+---+-=-=⎡⎤⎣⎦.故★答案★为:0【点睛】本题主要考查了定积分的计算,解题的关键是确定原函数,属于基础题.14. 在三棱锥P ABC -中,6,3PB AC ==,G 为PAC ∆的重心,过点G 作三棱锥的一个截面,使截面平行于直线PB 和AC ,则截面的周长为_________.【★答案★】8【解析】【分析】如图所示,过点G 作EF ∥AC ,分别交PA ,PC 于点E ,F .过点F 作FM ∥PB 交BC 于点M ,过点E 作EN ∥PB 交AB 于点N .可得四点EFMN 共面,进而得到23EF MN AC AC ==,根据比例可求出截面各边长度,进而得到周长. 【详解】解:如图所示,过点G 作EF ∥AC ,分别交PA ,PC 于点E ,F过点F 作FM ∥PB 交BC 于点M ,过点E 作EN ∥PB 交AB 于点N .由作图可知:EN ∥FM ,∴四点EFMN 共面可得MN ∥AC ∥EF ,EN ∥PB ∥FM . ∴23EF MN AC AC == 可得EF =MN =2.同理可得:EN =FM =2.∴截面的周长为8.故★答案★为:8.【点睛】本题考查了三角形重心的性质、线面平行的判定与性质定理、平行线分线段成比例定理,属于中档题.15. 已知一个正三棱柱,一个体积为4π3的球体与棱柱的所有面均相切,那么这个正三棱柱的表面积是______. 【★答案★】183【解析】【分析】由球的体积可以求出半径,从而得到棱柱的高;由球体与棱柱的所有面均相切,得出球的半径和棱柱底面正三角形边长的关系,求出边长,即求出底面正三角形的面积,得出棱柱的表面积.【详解】由球的体积公式可得24433R ππ=,1R ∴=, ∴正三棱柱的高22h R ==,设正三棱柱的底面边长为a , 则其内切圆的半径为:13132a ⋅=,23a ∴=,∴该正三棱柱的表面积为:21333226183222a R a a a a ⋅+⨯⨯=+=. 故★答案★为:183【点睛】本题考查了球的体积公式、多面体的表面积求法,属于基础题.16. 如图,在矩形ABCD 中,E 为边AB 的中点,将ADE ∆沿直线DE 翻转成1A DE ∆.若M 为线段1A C 的中点,则在ADE ∆翻转过程中,正确的命题是______.(填序号)①BM 是定值;②点M 在圆上运动;③一定存在某个位置,使1DE A C ⊥;④一定存在某个位置,使MB平面1A DE .【★答案★】①②④【解析】【分析】取DC 中点N 再根据直线与平面的平行垂直关系判断即可.【详解】对①, 取DC 中点N ,连接,MN BN ,则1//MN A D ,//NB DE .因为MN NB N ⋂=,1A D DE D ⋂=,故平面1//MNB A DE .易得1MNB A DE ∠=∠为定值,故在ADE ∆翻转过程中MNB ∆的形状不变.故BM 是定值.故①正确.对②,由①得, 在ADE ∆翻转过程中MNB ∆沿着NB 翻折,作MO NB ⊥交NB 于O ,则点M 在以O 为圆心,半径为MO 的圆上运动.故②正确.对③,在DE 上取一点P 使得AP DE ⊥,则1A P DE ⊥,若1DE A C ⊥则因为111A P A C A ⋂=,故DE ⊥面1A CP ,故DE PC ⊥,不一定成立.故③错误.对④,由①有1//MNB A DE ,故MB平面1A DE 成立.综上所述,①②④正确.故★答案★为:①②④ 【点睛】本题主要考查了翻折中线面垂直平行的判定,需要画出对应的辅助线分析平行垂直关系,属于中等题型.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17. 如图,已知点P 是平行四边形ABCD 所在平面外的一点,E ,F 分别是PA ,BD 上的点且PE ∶EA =BF ∶FD ,求证:EF ∥平面PBC .【★答案★】见解析【解析】试题分析:连接AF 并延长交BC 于M .连接PM ,因为AD ∥BC ,∴BF MF FD FA =,又BF PE FD EA =,∴PE MF EA FA=, 所以EF ∥PM ,从而得证.试题解析:连接AF 并延长交BC 于M .连接PM .因为AD ∥BC ,所以=. 又由已知=,所以=. 由平面几何知识可得EF ∥PM ,又EF ⊄平面PBC ,PM ⊂平面PBC ,所以EF ∥平面PBC .18. 如图所示,在长方体ABCD ﹣A 1B 1C 1D 1中,AB =AD =1,AA 1=2,M 是棱CC 1的中点.证明:平面ABM ⊥平面A 1B 1M .【★答案★】证明见解析【解析】【分析】通过长方体的几何性质证得11BM A B ⊥,通过计算证明证得1BM B M ⊥,由此证得BM ⊥平面11A B M ,从而证得平面ABM ⊥平面11A B M .【详解】由长方体的性质可知A 1B 1⊥平面BCC 1B 1,又BM ⊂平面BCC 1B 1,∴A 1B 1⊥BM .又CC 1=2,M 为CC 1的中点,∴C 1M =CM =1.在Rt△B 1C 1M 中,B 1M 2212C M CM =+=, 同理BM 222BC CM =+=,又B 1B =2, ∴B 1M 2+BM 2=B 1B 2,从而BM ⊥B 1M .又A 1B 1∩B 1M =B 1,∴BM ⊥平面A 1B 1M ,∵BM ⊂平面ABM ,∴平面ABM ⊥平面A 1B 1M .【点睛】本小题主要考查面面垂直的证明,考查空间想象能力和逻辑推理能力,属于中档题.19. 以平面直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知点M 的直角坐标为()1,0,若直线l 的极坐标方程为2cos 104ρθπ⎛⎫+-= ⎪⎝⎭,曲线C 的参数方程是244x m y m ⎧=⎨=⎩,(m 为参数).(1)求直线l 的直角坐标方程和曲线C 的普通方程;(2)设直线l 与曲线C 交于,A B 两点,求11MA MB +. 【★答案★】(1)10x y --=,24y x =;(2)1【解析】【试题分析】(1) 2cos 104πρθ⎛⎫+-= ⎪⎝⎭展开后利用公式直接转化为直角坐标方程.对C 消去m 后得到直角坐标方程.(2)求出直线l 的参数方程,代入抛物线,利用直线参数的几何意义求得11MA MB+的值. 【试题解析】(1)由2cos 104πρθ⎛⎫+-= ⎪⎝⎭,得cos sin 10ρθρθ--=, 令cos x ρθ=,sin y ρθ=,得10x y --=.因为244x m y m⎧=⎨=⎩,消去m 得24y x =, 所以直线l 的直角坐标方程为10x y --=,曲线C 的普通方程为24y x =.(2)点M 的直角坐标为()1,0,点M 在直线l 上. 设直线l 的参数方程为21222t x ty ⎧=+⎪⎪⎨⎪=⎪⎩,(t 为参数),代入24y x =,得24280t t --=.设点,A B 对应的参数分别为1t ,2t ,则1242t t +=,128t t =-,所以121211t t MA MB t t -+== ()21212224323218t t t t t t +-+==. 20. 如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,//AD BC ,090ADC ∠=,平面PAD ⊥底面ABCD ,为AD 中点,M 是棱PC 上的点,.(1)求证:平面POB ⊥平面PAD ;(2)若点M 是棱的中点,求证://PA 平面.【★答案★】(1)见解析;(2)见解析【解析】【详解】(1)证明: ∵AD 中点,且,∴DO BC =又//AD BC ,090ADC ∠=,∴ 四边形BCDO 是矩形,∴BO OD ⊥,又平面PAD ⊥平面ABCD ,且平面PAD 平面ABCD OD =,BO ⊂平面ABCD ,∴BO ⊥平面PAD ,又BO ⊂平面POB ,∴ 平面POB ⊥平面PAD .(2)如下图,连接AC 交BO 于点E ,连接EM ,由(1)知四边形BCDO 是矩形,∴//OB CD ,又为AD 中点,∴E 为AC 中点,又是棱AC 的中点,∴//EM PA ,又EM ⊂平面,平面, ∴//PA 平面21. 如图,四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,底面ABCD 为梯形,//AB CD ,223AB DC ==,AC BD F ⋂=.且PAD ∆与ABD ∆均为正三角形,E 为AD 的中点,G 为PAD ∆重心.(1)求证://GF 平面PDC ;(2)求异面直线GF 与BC 的夹角的余弦值.【★答案★】(1)证明见解析;(2)33952. 【解析】试题分析:(1)连接AG 交PD 于H ,连接GH ,由重心性质推导出GFHC ,根据线面平行的判定定理可得GF 平面PDC ;(2)取线段AB 上一点Q ,使得13BQ AB =,可证GFQ ∠ 即是异面直线GF 与BC 的夹角,由余弦定理可得结果.试题解析:(1)方法一:连AG 交PD 于H ,连接CH .由梯形ABCD ,//AB CD 且2AB DC =,知21AF FC = 又E 为AD 的中点,G 为PAD ∆的重心,∴21AG GH =,在AFC ∆中,21AG AF GH FC ==,故GF //HC . 又HC ⊆平面PCD ,GF ⊄ 平面PCD ,∴GF //平面PDC .方法二:过G 作//GN AD 交PD 于N ,过F 作//FM AD 交CD 于M ,连接MN ,G 为PAD ∆的重心,23GN PG ED PE ==,22333GN ED ∴==,又ABCD 为梯形,//AB CD ,12CD AB =,12CF AF ∴=13MF AD ∴=,233MF ∴= ∴GN FM = 又由所作,//FM AD 得GN //FM ,GNMF ∴为平行四边形.//GN AD //,GF MN GF PCD MN PCD ⊄⊆面,面,∴ //GF 面PDC(2) 取线段AB 上一点Q ,使得13BQ AB =,连FQ ,则223FQ BC ==, 1013,33EF GF ==,1316,33EQ GQ == ,在GFQ ∆中 222339cos 2?52GF FQ GQ GFQ GF FQ +-∠== ,则异面直线GF 与BC 的夹角的余弦值为33952. 角函数和等差数列综合起来命题,也正体现了这种命题特点.【方法点晴】本题主要考查线面平行的判定定理、异面直线所成的角、余弦定理,属于中挡题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面. 本题(1)是就是利用方法①证明的.22. 已知函数()1ln (2)(1),f x a x a a R x=+-+∈.(Ⅰ)试求函数()f x 的单调区间;(Ⅱ)若不等式()(ln )x f x a x e ≥-对任意的(0,)x ∈+∞恒成立,求实数a 的取值范围. 【★答案★】(1) 见解析(2) 1,1e ⎡⎫+∞⎪⎢-⎣⎭【解析】 【详解】(Ⅰ)因为()()1ln 21,(,0).f x a x a a R x x ⎛⎫=+-+∈> ⎪⎝⎭所以()()2211.ax a a a f x x x x'-++=-= ①若10a -≤≤,则()0f x '<,即()f x 在区间∞(0,+)上单调递减; ②若0a >,则当10a x a +<<时,()0f x '< ;当1a x a +>时,()0f x '>; 所以()f x 在区间10,a a +⎛⎫ ⎪⎝⎭上单调递减,在区间1,a a +⎛⎫+∞ ⎪⎝⎭上单调递增; ③若1a <-,则当10a x a +<<时,()0f x '>;当1a x a+>时,()0f x '<; 所以函数在区间上单调递增,在区间1,a a +⎛⎫+∞⎪⎝⎭上单调递减. 综上所述,若10a -≤≤,函数在区间上单调递减;; 若,函数在区间上单调递减,在区间1,a a +⎛⎫+∞ ⎪⎝⎭上单调递增; 若1a <-,函数在区间上单调递增,在区间1,a a +⎛⎫+∞⎪⎝⎭上单调递减. (Ⅱ)依题意得()()()1ln 210x x f x a x e ae a x ⎛⎫≥-⇔+-+≥ ⎪⎝⎭, 令()()121x h x ae a x ⎛⎫=+-+ ⎪⎝⎭.因为()10h ≥,则()11a e -≥,即101a e ≥>-. 于是,由()1210x ae a x ⎛⎫+-+≥ ⎪⎝⎭,得1201x a e a x +-≥+, 即211x a x a xe-≥+对任意0x >恒成立. 设函数()21(0)x x F x x xe -=>,则()()()2211x x x F x x e +-='-. 当01x <<时,()0F x '>;当1x >时,()0F x '<;所以函数()F x 在()0,1上单调递增,在()1,+∞上单调递减;所以()()max 11F x F e ⎡⎤==⎣⎦. 于,可知11a a e ≥+,解得11a e ≥-.故a 的取值范围是1,1e ⎡⎫+∞⎪⎢-⎣⎭感谢您的下载!快乐分享,知识无限!不积跬步无以至千里,不积小流无以成江海!。

高二下学期期中联考数学试题word版有答案

高二下学期期中联考数学试题word 版有答案注意事项:1. 本科目考试分试题卷和答题卷,考生须在答题卷上作答。

2. 本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,全卷满分150分,考试时间120分钟。

第Ⅰ卷(选择题,共40分)一、选择题(本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.若全集{}2,1,0,1-=U ,{}3|2<∈=x Z x A ,则=A C U ( ▲ )A.{}2B.{}2,0C.{}2,1-D.{}2,0,1-2.已知复数z 满足i z i 31)1(-=+(i 是虚数单位),则复数z 在复平面内对应的点在( ▲ ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 3.已知 2log ,0()3,0xx x f x x >⎧=⎨≤⎩,则=)]21([f f ( ▲ )A. 13-B. 13C. 3D. 3-4.已知,m n 是两条不同的直线,,αβ是两个不同的平面,则下列命题正确的是 ( ▲ ) A. 若//,//m n αα,则//m n B. 若//,m ααβ⊥,则m β⊥C. 若//,//m m αβ,则//αβD. 若//,,m n m n αβ⊥⊂,则αβ⊥5.等比数列{}n a 中,01>a ,则“31a a <”是“41a a <”的( ▲ )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件 6.若某空间几何体的三视图如图所示,则该几何体的表面积是( ▲ )2cmA. 5B. 325+C. 225+D. 77.已知21,F F 分别是双曲线)0,0(12222>>=-b a bya x 的左、右焦点,若双曲线右支上存在点A ,使42251055俯视图左视图正视图1230F AF ∠=,且线段1AF 的中点在y 轴上,则双曲线的离心率是( ▲ )A. 32+B. 3C. 332 D. 32 8.把函数()cos()(0)6f x x πωω=+>的图像向右平移23π个单位长度后与原图像重合,则当ω取最小值时,()f x 的单调递减区间是( ▲ ) A.5[,]()1212k k k Z ππππ-+∈ B.7[,]()1212k k k Z ππππ--∈ C.225[,]()318318k k k Z ππππ-+∈ D.272[,]()318318k k k Z ππππ--∈ 9.在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,若函数1)(31)(2223+-+++=x ac c a bx x x f 有极值点,则)32sin(π+B 的最小值是( ▲ )A. 0B. 1-C.23 D. 23- 10.设函数)(x f 的定义域为D ,若存在闭区间D b a ⊆],[,使得函数)(x f 满足:①)(x f 在],[b a 上是单调函数;②)(x f 在],[b a 上的值域是]2,2[b a ,则称区间],[b a 是函数)(x f 的“和谐区间”.下列结论错.误.的是( ▲ ) A. 函数)0()(2≥=x x x f 存在“和谐区间” B. 函数)(3)(R x x x f ∈+=不存在“和谐区间” C. 函数)0(14)(2≥+=x x xx f 存在“和谐区间” D. 函数)81(log )(-=xc c x f (0>c 且1≠c )不存在“和谐区间”第Ⅱ卷(非选择题部分,共110分)二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)11.椭圆22143x y +=的长轴长是 ▲ ,离心率是 ▲ . 12.设数列{}n a 是公差为d 的等差数列,99,105642531=++=++a a a a a a .则=n a ▲ ;数列{}n a 的前n 项和n S 取得最大值时,=n ▲ .13.若变量y x ,满足约束条件⎪⎩⎪⎨⎧≤-≥-+≥+-020101x y x y x ,则y x z +=2的最大值为 ▲ ;22)1()1(++-y x 的最小值为 ▲ .14. 若函数221,0(),0(2),0x x x f x a x g x x ⎧+->⎪==⎨⎪<⎩为奇函数,则=a ▲ ,=-)]2([g f ▲ .15. 已知)cos()(m x x x f ++=为奇函数,且m 满足不等式01582<+-m m ,则实数m 的值为▲ .16.正方体1111D C B A ABCD -中,点P 在线段C A 1上运动(包括端点),则BP 与1AD 所成角的取值范围是▲ .17.设M 是ABC ∆内一点,32=⋅,︒=∠60BAC ,定义),,()(p n m M f = 其中p n m ,,分别是MAB MAC MBC ∆∆∆,,的面积,若),,2()(y x M f =,a yx =+41,则a a 22+的取值范围是 ▲ .三、解答题(本大题共5小题,共74分。

高二数学下学期期中联考试题B卷word版本

2016 学年第二学期温州市“十五校结合体”期中考试联考高二年级数学学科 B 卷考生须知:1.本试题卷分选择题和非选择题两部分,共 4 页,满分150 分,考试时间120 分钟。

2.考生答题前,须将自己的姓名、准考据号用黑色笔迹的署名笔或钢笔填写在答题纸上。

3.选择题的答案须用2B 铅笔将答题纸上对应题目的答案标号涂黑,如要变动,须将原填涂处用橡皮擦净4.非选择题的答案一定使用黑色笔迹的署名笔或钢笔写在答题纸上相应地区内,答案写在本试题卷上无效。

选择题部分( 共 40 分)一、选择题:本大题共10 小题,每题 4 分,共 40 分.在每题给出的四个选项中,只有一项是切合题目要求的.1.若复数与 ( z 1)2 2i 都是纯虚数(此中为虚数单位),则(▲)A. B. C. D.12.设R ,“ cos27”是“ cos19”的(▲)3A.充足不用要条件B.必需不充足条件C.充要条件D.既不充足也不用要条件3. 在复平面内复数83i 、 45i 对应的点分别为、,若复数对应的点为线段AB 的中点,为复数的共轭复数,则z z 的值为(▲)A. B. C. D.4.设常数a R,若(2 x a2 ) 5的二项睁开式中的常数项160,则的值为(▲)xA. 2B.C. 1D.5. 给出以下四个命题:①已知向量a, b 是非零向量,若 a b| a | | b |,则a // b.②定义域为的函数 f ( x) 在,0及 0,上都是增函数,则 f ( x) 在,上是增函数 .③命题“若 m 0,则方程x2x m 0 有实根”的逆否命题为:“若方程x2x m 0 无实根,则 m0 ”.④命题“若实数知足 a 2 ,则a2 4 ”的否命题是假命题.此中真命题的个数有(▲)A. 1个B.2个C. 3个D. 4个6.设(3x x )n的睁开式的各项系数之和为,二项式系数之和为,若M 17N480 ,则睁开式中含项的系数为(▲)A. 40B. 30C.20D. 157.已知条件x2x 6 0;条件x24x 4 m20,假如的充足不用要条件,则的取值范围是(▲)A.1,1 B.4,4C., 11,D., 44,8. 某高中举办“情系母校”活动,学校安排 6 名大学生到高一年级 A,B, C 三个班级参加活动,每个班级安排两名同学,若甲同学一定到A 班级,乙和丙同学均不可以到C 班级,则不一样的安排方法种数为(▲)A.12 B .9 C.6 D .59. 设f (x)是一个三次函数, f '(x) 为其导函数,如下图的是y xf (x) 的图像的一部分,则f ( x) 的极大值与极小值的分别是(▲)A.f (2) 与 f (2) B. f (1) 与 f (1)C.f (2)与f ( 2)D.f (1)与f (1)10.已知函数 f ( x) 2x e2 x(为自然对数的底数),g( x)mx1,( m R) ,若对于随意的x11,1,总存在 x01,1,使得 g x0f x1建立,则实数的取值范围为(▲)A.22B. 1 e2 , e2 1 ,1 e e 1,C., e 21 1 e 2 ,D. e 21,1e 2非选择题部分 ( 共 110分)二、 填空题 : 本大题共 7小题, 多空题每题6 分 , 单空题每题4分,共 36分.11. 已知复数 z 12 i,2 z 2z 1 i ▲;复数的模是▲.2i(为虚数单位),则 z 2z 112. 在 G20 杭州峰会时期, 甲和乙等五名志愿者被随机地分到A 、B 、C 、D 四个不一样的岗位服务,每个岗位起码有一名志愿者,则甲和乙不在同一岗位服务的概率为▲.13. 已知函数 fxsin x f ()cos x ,若 f ( ) 0 ,则 f ( )▲.2 4 214.设复数 zm2i(此中是虚数单位, m R ),若复数在复平面上对应的点位于第三象限,1 2i则的取值范围是▲;复数的模的取值范围是▲.15. 某校高三有 5 名同学报名参加甲、乙、丙三所高校的自主招生考试,每人限报一所高校,则这三所高校中每个学校都起码有 1 名同学报考的概率为▲.16.若将函数1021 0f ( x) x表 示 为 f ( x)aa( x 1)2a ( x 1 )a (x 1 )其 中11 0,a i R ,i0,1,2, ,10 ,则 a 0 a 1 a 2a01▲;a 0a1a 2a10▲ .17. 市内某公共汽车站有 7 个候车位 ( 成一排 ), 现有甲,乙,丙,丁,戊 5 名同学随机坐在某个座位上候车 , 则甲,乙相邻且丙,丁不相邻的不一样的坐法种数为▲ ;(用数字作答) 3 位同学相邻,另 2 位同学也相邻,但 5 位同学不可以坐在一同的不一样的坐法种数为▲ . (用数字作答) 三、解答题:本大题共 5 小题,共 74 分.解答应写出文字说明、证明过程或演算步骤.18. ( 本小题满分 14分 ) 一个口袋中装有个红球( n4 且 nN )和个白球,从中摸两个球,两个球颜色同样则为中奖.(Ⅰ)若一次摸两个球,此中奖的概率为4,求的值;9(Ⅱ)若一次摸一个球,记下颜色后,又把球放回去。

高二数学第二学期文科期中试题(含答案)(优选.)

最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改2014—2015学年第二学期期中考试卷高二数学文科(满分150分,考试时间120分钟)一 选择题:(本大题共10小题,每小题5分,共50分.) 1.化简ii-+11的结果是( )。

(A )1(B )i -(C )—1(D )i2.“1-<x ”是“02>+x x ”的( ).。

(A )充分不必要条件 (B )必要不充分条件 (C )充要条件(D )既不充分也不必要条件3.已知命题 R x p ∈∀:,2≥x ,那么命题p ⌝为( )。

(A )2x x ∀∈≤R , (B )2x x ∃∈<R , (C )2x x ∀∈≤-R , (D )2x x ∃∈<-R , 4.若b<0<a, d<c<0,则 ( )A 、ac > bdB 、d bc a >C 、a + c > b + dD 、a -c > b -d5. 设抛物线28y x =上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是( )。

(A ) 2 (B )4 (C ) 6 (D )106.椭圆171622=+y x 的左右焦点为21,F F ,一直线过1F 交椭圆于,A B 两点,则2ABF ∆的周长为( )。

(A )32(B )16(C )8(D )47.若2m <,则方程22152x y m m+=--所表示的曲线是( )。

(A )焦点在x 轴上的椭圆 (B )焦点在y 轴上的椭圆 (C )焦点在x 轴上的双曲线 (D )焦点在y 轴上的双曲线8.若实数a 、b 满足a+b=2,则3a+3b的最小值是 ( )A 、18B 、6C 、23D 、2439.若曲线2y x ax b =++在点(0,)b 处的切线方程是10x y -+=,则( )。

高二数学下期期中考试.doc

高二数学下期期中考试班次: 学号: 姓名:1( )A. 若a>b,则a 2>b 2B. 若a>b 而c ∈R,则ac 2>bc 2C. 若a>b,则ba11> D. 若a>|b|,则a 2>b 22.已知直线L 1和L 2的斜率是方程0162=-+x x 的两根,则L 1与L 2 所成的角是 ……………………………………………………( ) A .450 B .300 C .150 D .600 3.有下列命题:(1)若两条直线平行,则其斜率必相等;(2)若两条直线互相垂直,则其斜率的乘积必为-1;(3)过点(-1,1),且斜率为2的直线方程是211=+-x y ;(4)同垂直于x 轴的两条直线一定都和y 轴平行。

其中真命题的个数是 ………………………………………… ( ) A .0 B .1 C .2 D4、 不等式0234322<+---x x x x 的解集为………………………( )A 、{}4211|<<<<-x x x 或B 、{}41|<<-x xC 、{}24|<<-x xD 、空集5.如果AC<0,且BC<0,那么直线Ax+By+C=0一定不经过…( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限6.若b a ,均为大于1的正数,且8=ab ,则b a 22log log ⋅的最大值是…………………………………………………………………( )A. 2B. 23C. 25D. 497.已知直线C 1:y =mx -1;线段C 2:y =1,|x |≤1,要使C 1与C 2总有公共点,则实数m 的取值范围是…………………………………( )A .[-1,1]B .(-∞,1)C .[)+∞,1D .(][)+∞⋃-∞-,22,8.不等式x x >-1的解集是…………………………………( ) A.{}0<x x B.{}1>x x C.{}1<x x D.{}21<x x9.若直线:y=ax+2和直线y=3x-b 关于直线y=x 对称,则………( )A.a=3,b=2B.a=31,b=6C.a=31,b=-2 D.a=3,b=610.乘某种出租车,行程不足4千米时,车票为10.4元,行程大于或等于4千米而不足16千米的部分,每0.5千米车票0.8元.计程器每0.5千米计一次价,例如当行驶路程x(千米)满足12≤x<12.5时,按12.5千米计价;当12.5≤x<13时,按13千米计价.若某人乘车从A 地到B 地共付费28元,则从A 地到B 地行驶的路程m 千米满足…………( ) A.10.5≤m<11 B.11≤m<11.5 C.14.5≤m<15 D.15≤m<15.511.两条平行线0343=--y x 和0586=+-y x 之间的距离是( )A. 1011B. 58C. 715D. 5412.下列函数中最小值是2的函数是…………………………( )A. y=tgx+ctgxB. y=3422++x xC. y=x x -⋅4D. y=12-+xx二、填空题(每小题4分,共20分) 的取值范围是,则,已知b a b a b a 233151.13-≤-≤-≤+≤ 14.过点(-1,1)的所有直线中,与点(2,-1)距离最远的直线方程为 .15、若2x+y=1, x>0, y>0,则yx11+的最小值是 .16.若x,y 满足约束条件: ⎪⎪⎩⎪⎪⎨⎧≥≤≤≥-+≥-0400202y x y x y x , 则z=2x+y 的最小值是- . ___________110.17轨迹方程是的的距离相等,则点:)和直线,(到点已知点M y l F M -=三、解答题(本大题共44分) 18.(此小题满分10分) 已知点A (2,3)、B (1,1)和直线1l : 3x+4y+8=0,求满足下列条件的直线的方程:① 经过点B,且与直线1l 平行; ② 线段AB 的中垂线方程; ③ 过点A 被两直线1l 和2l :3x+4y-7=0截得的线段CD 长为23的直线方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学期中考试模拟题四
一选择题:本大题共12个小题. 每小题5分,共60分. 在每小题给出的四个选
项中,只有一项是符合题目要求的.
1.已知复数1z i =-,则
2
1
z
z =-
A .2
B .2-
C .2i
D .2i -
2.函数()2
2)(x x f π=的导数是
A. x x f π4)(='
B. x x f 24)(π='
C.x x f 28)(π='
D. x x f π16)(='
3.2
(sin cos )x a x dx π
+⎰=2,则实数a 等于
A 、-1
B 、 1
C 、- D
3.直线y kx b =+与曲线31y ax x =++相切于点(2,3),则b 的值为( ) A .-3 B .9 C .-15 D .-7
5.已知(p
x x
-
2
2)的展x 的项是
27
20,那么正数p 的值是
( )
A . 1
B .2
C .3
D .4
6. 现有排成一排的7个座位,安排3名同学就座,如果要求剩余的4个座位连在一起,那么不同的坐法总数为( )
A. 16
B. 18
C. 24
D. 32
7. 从只有3张中奖的10张彩票中不放回随机逐张抽取,设X 表示直至抽到中奖彩票时的次数,则==)3(X P ( )
A.
10
3 B.
10
7 C.
40
21 D.
40
7
8.曲线y =x 3在点(1,1)处的切线与x 轴及直线x =1所围成的三角形的面积为( ) A.
112 B.16 C.13 D.1
2
9. 11. 有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b ⊆/平面α,直线a ≠
⊂平面α,直线b ∥平面α,则直线b ∥直线a ”的结论显然是错误
的,这是因为
A.大前提错误
B.小前提错误
C.推理形式错误
D.非以上错误 10.一同学在电脑中打出如下若干个圈:○●○○●○○○●○○○○●○○○○○●…若
将此若干个圈依此规律继续下去,得到一系列的圈,那么在前120个圈中的●的个数是
( )
(A)12 (B) 13 (C)14 (D)15 11.6个人分4本不.
同的书,每人至多一本,而且必须分完,那么不同分法的种数是 A .46 B .6
4 C .4
6
4!
A D .46A
12. 已知3)2(312
3
++++=x b bx
x y 是R 上的单调增函数,则b 的取值范围是 ( )
A. 21>-<b b ,或
B. 21≥-≤b b ,或
C. 21<<-b
D. 21≤≤-b
二、填空题:本大题共4个小题,每小题4分,共16分,把答案填在答题卡的相应位置
13.曲线2x y =和曲线x y =
围成一个
叶形图(如图所示阴影部分),其面积是______
14. 将5位志愿者分成3组,分赴三个不同的地区服务,不同的分配方案有 种(用数字作答)。

15.()()2
f x x x c =-在x = 2处有极大值,则常数c 的值为_________;
16.类比平面几何中的勾股定理:若直角三角形ABC 中的两边AB 、AC 互相垂直,则三角形三边长之间满足关系:2
2
2BC AC
AB =+。

若三棱锥A-BCD 的三个侧面ABC 、ACD 、ADB 两
两互相垂直,则三棱锥的侧面积与底面积之间满足的关系为 .
三、解答题:本大题共6个小题,共74分. 解答应写出文字说明,证明过程或
演算步骤. 请将解答务必写在答题卡的相应位置.
17. 已知2
2)n
x
+
的展开式中,第5项的系数与第3项的系数之比是56:3, (1)求展开式中的常数项。

(2)求所有项系数和
18已知a ∈R ,函数f (x )=(-x 2+ax )e x
(x ∈R ,e 为自然对数的底数). (1)当a =2时,求函数f (x )的单调递增区间;
(2)若函数f (x )在(-1,1)上单调递增,求a 的取值范围.
19. 某次乒乓球比赛的决赛在甲乙两名选手之间举行,比赛采用五局三胜制,决出胜负即停止比赛。

按以往的比赛经验,每局比赛中,甲胜乙的概率为32。

(1)求比赛三局甲获胜的概率; (2)求甲获胜的概率;
(3)设比赛的局数为X ,求X 的分布列和数学期望。

20设函数()()2
=---.
f x x x
()2ln11
(Ⅰ)求函数)
f的单调递增区间;
(x
(Ⅱ)若关于x的方程()230
2,4内恰有两个相异的实根,求实
+--=在区间[]
f x x x a
数a的取值范围.
21.(本小题满分14分)
某项综合测验按科目A 、科目B 依次进行,只有当科目A 考试成绩合格时,才可以继续参加科目B 的考试.每个科目只允许有一次补考机会,两个科目成绩均合格方可获得该项合格证书.现在某同学将要参加这项考试,已知他每次考科目A 成绩合格的概率均为3
2,
每次考科目B 成绩合格的概率均为
2
1.假设他在这项综合测验中不放弃所有的考试机会,
且每次的考试成绩互不影响,记他参加考试的次数为X . (Ⅰ)求2X 对应的事件的概率; (Ⅱ)求X 的分布列和期望;
(Ⅲ)求该同学在这项考试中获得合格证书的概率.
22已知函数1()ln (0,)f x a x a a x
=
+≠∈ R
(Ⅰ)若1a =,求函数()f x 的极值和单调区间;
(II) 若在区间[1,e]上至少存在一点0x ,使得0()0f x <成立,求实数a 的取值范围.
附加题
在某校教师趣味投篮比赛中,比赛规则是: 每场投6个球,至少投进4个球且最后2个球都
投进者获奖;否则不获奖. 已知教师甲投进每个球的概率都是2
3

(Ⅰ)记教师甲在每场的6次投球中投进球的个数为X,求X的分布列及数学期望;(Ⅱ)求教师甲在一场比赛中获奖的概率;
(Ⅲ)已知教师乙在某场比赛中,6个球中恰好投进了4个球,求教师乙在这场比赛中获奖的。

相关文档
最新文档