牛顿定律典型题型

合集下载

高考物理牛顿运动定律题20套(带答案)含解析

高考物理牛顿运动定律题20套(带答案)含解析

高考物理牛顿运动定律题20套(带答案)含解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,质量为M=0.5kg 的物体B 和质量为m=0.2kg 的物体C ,用劲度系数为k=100N/m 的竖直轻弹簧连在一起.物体B 放在水平地面上,物体C 在轻弹簧的上方静止不动.现将物体C 竖直向下缓慢压下一段距离后释放,物体C 就上下做简谐运动,且当物体C 运动到最高点时,物体B 刚好对地面的压力为0.已知重力加速度大小为g=10m/s 2.试求:①物体C 做简谐运动的振幅;②当物体C 运动到最低点时,物体C 的加速度大小和此时物体B 对地面的压力大小. 【答案】①0.07m ②35m/s 2 14N 【解析】 【详解】①物体C 放上之后静止时:设弹簧的压缩量为0x . 对物体C ,有:0mg kx = 解得:0x =0.02m设当物体C 从静止向下压缩x 后释放,物体C 就以原来的静止位置为平衡位置上下做简谐运动,振幅A =x当物体C 运动到最高点时,对物体B ,有:0()Mg k A x =- 解得:A =0.07m②当物体C 运动到最低点时,设地面对物体B 的支持力大小为F ,物体C 的加速度大小为a .对物体C ,有:0()k A x mg ma +-= 解得:a =35m/s 2对物体B ,有:0()F Mg k A x =++ 解得:F =14N所以物体B 对地面的压力大小为14N2.如图,质量分别为m A =1kg 、m B =2kg 的A 、B 两滑块放在水平面上,处于场强大小E=3×105N/C 、方向水平向右的匀强电场中,A 不带电,B 带正电、电荷量q=2×10-5C .零时刻,A 、B 用绷直的细绳连接(细绳形变不计)着,从静止同时开始运动,2s 末细绳断开.已知A 、B 与水平面间的动摩擦因数均为μ=0.1,重力加速度大小g=10m/s 2.求:(1)前2s 内,A 的位移大小; (2)6s 末,电场力的瞬时功率. 【答案】(1) 2m (2) 60W 【解析】 【分析】 【详解】(1)B 所受电场力为F=Eq=6N ;绳断之前,对系统由牛顿第二定律:F-μ(m A +m B )g=(m A +m B )a 1 可得系统的加速度a 1=1m/s 2; 由运动规律:x=12a 1t 12 解得A 在2s 内的位移为x=2m ;(2)设绳断瞬间,AB 的速度大小为v 1,t 2=6s 时刻,B 的速度大小为v 2,则v 1=a 1t 1=2m/s ;绳断后,对B 由牛顿第二定律:F-μm B g=m B a 2 解得a 2=2m/s 2;由运动规律可知:v 2=v 1+a 2(t 2-t 1) 解得v 2=10m/s电场力的功率P=Fv ,解得P=60W3.如图所示,水平地面上固定着一个高为h 的三角形斜面体,质量为M 的小物块甲和质量为m 的小物块乙均静止在斜面体的顶端.现同时释放甲、乙两小物块,使其分别从倾角为α、θ的斜面下滑,且分别在图中P 处和Q 处停下.甲、乙两小物块与斜面、水平面间的动摩擦因数均为μ.设两小物块在转弯处均不弹起且不损耗机械能,重力加速度取g.求:小物块(1)甲沿斜面下滑的加速度; (2)乙从顶端滑到底端所用的时间;(3)甲、乙在整个运动过程发生的位移大小之比. 【答案】(1) g(sin α-()2sin sin cos hg θθμθ-【解析】 【详解】(1) 由牛顿第二定律可得F 合=Ma 甲Mg sin α-μ·Mg cos α=Ma 甲 a 甲=g(sin α-μcos α)(2) 设小物块乙沿斜面下滑到底端时的速度为v ,根据动能定理得W 合=ΔE k mgh -μmgcos θ·θsin h=212mv v=cos 21sin gh θμθ⎛⎫- ⎪⎝⎭a 乙=g (sin θ-μcos θ) t =()2sin sin cos hg θθμθ-(3) 如图,由动能定理得Mgh -μ·Mg cos α·sin hα-μ·Mg (OP -cos sin h αα)=0mgh -μmg cos θ·θsin h-μmg (OQ -cos sin h θθ)=0 OP=OQ根据几何关系得222211x h OP x h OQ ++甲乙4.高铁的开通给出行的人们带来了全新的旅行感受,大大方便了人们的工作与生活.高铁每列车组由七节车厢组成,除第四节车厢为无动力车厢外,其余六节车厢均具有动力系统,设每节车厢的质量均为m ,各动力车厢产生的动力相同,经测试,该列车启动时能在时间t 内将速度提高到v ,已知运动阻力是车重的k 倍.求: (1)列车在启动过程中,第五节车厢对第六节车厢的作用力;(2)列车在匀速行驶时,第六节车厢失去了动力,若仍要保持列车的匀速运动状态,则第五节车厢对第六节车厢的作用力变化多大? 【答案】(1)13m (v t +kg ) (2)1415kmg 【解析】 【详解】(1)列车启动时做初速度为零的匀加速直线运动,启动加速度为a =vt① 对整个列车,由牛顿第二定律得:F -k ·7mg =7ma ②设第五节对第六节车厢的作用力为T ,对第六、七两节车厢进行受力分析,水平方向受力如图所示,由牛顿第二定律得26F+T -k ·2mg =2ma , ③ 联立①②③得T =-13m (vt+kg ) ④ 其中“-”表示实际作用力与图示方向相反,即与列车运动相反. (2)列车匀速运动时,对整体由平衡条件得F ′-k ·7mg =0 ⑤设第六节车厢有动力时,第五、六节车厢间的作用力为T 1,则有:26F '+T 1-k ·2mg =0 ⑥ 第六节车厢失去动力时,仍保持列车匀速运动,则总牵引力不变,设此时第五、六节车厢间的作用力为T 2, 则有:5F '+T 2-k ·2mg =0, ⑦ 联立⑤⑥⑦得T 1=-13kmg T 2=35kmg 因此作用力变化ΔT =T 2-T 1=1415kmg5.在水平长直的轨道上,有一长度为L 的平板车在外力控制下始终保持速度v 0做匀速直线运动.某时刻将一质量为m 的小滑块轻放到车面的中点,滑块与车面间的动摩擦因数为μ,此时调节外力,使平板车仍做速度为v 0的匀速直线运动.(1)若滑块最终停在小车上,滑块和车之间因为摩擦产生的内能为多少?(结果用m ,v 0表示)(2)已知滑块与车面间动摩擦因数μ=0.2,滑块质量m =1kg ,车长L =2m ,车速v 0=4m/s ,取g =10m/s 2,当滑块放到车面中点的同时对该滑块施加一个与车运动方向相同的恒力F ,要保证滑块不能从车的左端掉下,恒力F 大小应该满足什么条件? 【答案】(1)2012m v (2)6F N ≥【解析】解:根据牛顿第二定律,滑块相对车滑动时的加速度mga g mμμ==滑块相对车滑动的时间:0v t a=滑块相对车滑动的距离2002v s v t g=-滑块与车摩擦产生的内能Q mgs μ= 由上述各式解得2012Q mv =(与动摩擦因数μ无关的定值) (2)设恒力F 取最小值为1F ,滑块加速度为1a ,此时滑块恰好达到车的左端,则: 滑块运动到车左端的时间011v t a = 由几何关系有:010122v t Lv t -= 由牛顿定律有:11F mg ma μ+= 联立可以得到:10.5s t=,16F N =则恒力F 大小应该满足条件是:6F N ≥.6.某天,张叔叔在上班途中沿人行道向一公交车站走去,发现一辆公交车正从身旁的平直公路驶过,此时,张叔叔的速度是1m/s ,公交车的速度是15m/s ,他们距车站的距离为50m .假设公交车在行驶到距车站25m 处开始刹车.刚好到车站停下,停车10s 后公交车又启动向前开去.张叔叔的最大速度是6m/s ,最大起跑加速度为2.5m/s 2,为了安全乘上该公交车,他用力向前跑去,求:(1)公交车刹车过程视为匀减速运动,其加速度大小是多少. (2)分析张叔叔能否在该公交车停在车站时安全上车. 【答案】(1)4.5m/s 2 (2)能 【解析】试题分析:(1)公交车的加速度221110 4.5/2v a m s x -==- 所以其加速度大小为24.5/m s (2)汽车从相遇处到开始刹车时用时:11153x x t s v -==汽车刹车过程中用时:1210103v t s a -== 张叔叔以最大加速度达到最大速度用时:32322v v t s a -== 张叔叔加速过程中的位移:2323·72v v x t m +== 以最大速度跑到车站的时间243437.26x x t s s v -==≈ 因341210t t t t s +<++,张叔叔可以在汽车还停在车站时安全上车. 考点:本题考查了牛顿第二定律、匀变速直线运动的规律.7.2019年1月3日10时26分.中国嫦娥四号探测器成功着陆在月球背面南极艾特肯盆地内的冯·卡门撞击坑内。

专题三:牛顿定律

专题三:牛顿定律

专题三:牛顿定律一、基础知识填空1.牛顿三定律(1)牛顿第一定律的内容:一切物体在不受外力的时候总保持_____________或__________状态;①惯性的决定因素是________;②牛顿第一定律是在___________的基础上,通过推理概括得来;(2)牛顿第三定律①一对相互作用力的特点:_________、_________、_________、__________;②一对平衡力的特点:___________、___________、__________、__________;(3)牛顿第二定律:①公式:____________②实验验证F=ma 中1)图像II 表示____________________;2)图像III 表示___________________;3)图像III 会无限趋近于___________;4)该实验中砝码质量m 和小车质量M 应满足的关系:___________;5)验证a —M 关系时应该以______为纵坐标,_______为横坐标;2.超重和失重①超重的条件:加速度_______(包括____________、____________)②失重的条件:加速度________(包括___________、____________)③完全失重的条件:____________④常见的完全失重的运动________运动、__________运动(含______、__________、__________)二、典题练习题型一:牛顿一、三定律1.在沿水平路面行驶的火车车厢中的水平桌面上放着一个小球,当车厢里的人看到小球突然在桌面上向右运动,说明()A .火车在向左拐弯.B .火车在向右拐弯.C .火车速率一定在变化.D .火车可能在做匀速运动.2.如图所示,一个劈形物体A ,各面均光滑,放在固定的斜面上,上表面水平,在上表面上放一光滑的小球B ,劈形物体A 从静止开始释放,则小球在碰到斜面前的运动轨迹是()A .沿斜面向下的直线B .竖直向下的直线C .无规则曲线D .抛物线图9a F ⅢⅡⅠ3.如图所示,甲、乙两人在冰面上“拔河”.两人中间位置处有一分界线,约定先使对方过分界线者赢.若绳子质量不计,冰面可看成光滑,则下列说法正确的是()A.甲对绳的拉力与绳对甲的拉力是一对平衡力B.甲对绳的拉力与乙对绳的拉力是作用力与反作用力C.若甲的质量比乙大,则甲能赢得“拔河”比赛的胜利D.若乙收绳的速度比甲快,则乙能赢得“拔河”比赛的胜利4.(多选)消防员用绳子将一不慎落入井中的儿童从井内加速向上提的过程中,不计绳子的重力,以下说法正确的是()A.绳子对儿童的拉力大于儿童对绳子的拉力B.绳子对儿童的拉力大于儿童的重力C.消防员对绳子的拉力与绳子对消防员的拉力是一对作用力与反作用力D.消防员对绳子的拉力与绳子对儿童的拉力是一对平衡力题型二:力和运动的定性分析1.如图1所示,一小球自空中自由落下,与正下方的直立轻质弹簧接触,直至速度为零的过程中,关于()A.接触后,小球作减速运动,加速度的绝对值越来越大,速度越来越小,最后等于零B.接触后,小球先做加速运动,后做减速运动,其速度先增加后减小直到为零C.接触后,速度为零的地方就是弹簧被压缩最大之处,加速度为零的地方也是弹簧被压缩最大之处D.接触后,小球速度最大的地方就是加速度等于零的地方2.(多选)设雨滴从很高处竖直下落,所受空气阻力f和其速度v成正比.则雨滴的运动情况是()A.先加速后减速,最后静止B.先加速后匀速C.先加速后减速直至匀速D.加速度逐渐减小到零3.一物体在几个力的共同作用下处于静止状态.现使其中向东的一个力F的值逐渐减小到零,又马上使其恢复到原值(方向不变),则()A.物体始终向西运动B.物体先向西运动后向东运动C.物体的加速度先增大后减小D.物体的速度先增大后减小4.如图所示,处于自然状态下的轻弹簧一端固定在水平地面上,质量为m 的小球从弹簧的另一端所在位置由静止释放,设小球和弹簧一直处于竖直方向,弹簧的劲度系数为k,重力加速度为g.在小球将弹簧压缩到最短的过程中,下列叙述中不正确的是()A .小球的速度先增大后减小B .小球的加速度先减小后增大C.小球速度最大时弹簧的形变量为mg k D .弹簧的最大形变量为mg k 题型三:牛顿第二定律基本应用——瞬时问题1.如图所示,A 、B 两小球分别连在弹簧两端,B 端用细线固定在倾角为30°的光滑斜面上,若不计弹簧质量,在线被剪断瞬间,A 、B 两球的加速度分别为A.都等于2gB.2g 和0C.2g M M M B B A ⋅+和0 D.0和2g M M M B B A ⋅+2.如图所示,在光滑的水平面上,质量分别为m1和m2的木块A 和B 之间用轻弹簧相连,在拉力F 作用下,以加速度a 做匀加速直线运动,某时刻突然撤去拉力F ,此瞬时A 和B 的加速度为a 1和a 2,则()A 、a 1=a 2=0B 、a 1=a ,a 2=0C 、a a a a m m m m m m 21221121,++==D 、a a a a m m 2121,-==3.如图所示,两根完全相同的弹簧下挂一质量为m 的小球,小球与地面间有细线相连,处于静止状态,细线竖直向下的拉力大小为2mg .若剪断细线,则在剪断细线的瞬间,小球的加速度a ()A 、a =g 方向向上B 、a =g 方向向下C 、a =2g 方向向上D 、a =3g 方向向上4.如图所示,质量为m 的小球用水平轻弹簧系住,并用倾角为30°的光滑木板AB 托住,小球恰好处于静止状态.当木板AB 突然向下撤离的瞬间,小球的加速度大小为()A .0B .233g C .g D .33g FA B m5.如图所示,轻弹簧上端与一质量为m 的木块1相连,下端与另一质量为M 的木块2相连,整个系统置于水平放置的光滑木板上,并处于静止状态.现将木板沿水平方向突然抽出,设抽出后的瞬间,木块1、2的加速度大小分别为a 1、a 2.重力加速度大小为g.则有()A .a 1=0,a 2=g B .a 1=g ,a 2=g C .a 1=0,a 2=m +M M g D .a 1=g ,a 2=m +M Mg 6.如图所示,质量分别为m 、2m 的球A 、B 由轻质弹簧相连后再用细线悬挂在正在竖直向上做匀减速运动的电梯内,细线承受的拉力为F ,此时突然剪断细线,在绳断的瞬间,弹簧的弹力大小和小球A 的加速度大小分别为()A.2F32F 3m +g B.F32F 3m +g C.2F3F 3m +g D.F3F 3m+g 题型四:牛顿第二定律应用——超重和失重1.如图所示,固定在水平面上的斜面体C 上放有一个斜劈A ,A 的上表面水平且放有物块B .若A 、B 运动过程中始终保持相对静止.以下说法正确的是()A .若C 斜面光滑,A 和B 由静止释放,在向下运动时,B 物块可能只受两个力作用B .若C 斜面光滑,A 和B 以一定的初速度沿斜面减速上滑,则B 处于超重状态C .若C 斜面粗糙,A 和B 以一定的初速度沿斜面减速上滑,则B 受水平向左的摩擦力D .若C 斜面粗糙,A 和B 以一定的初速度沿斜面加速下滑,则B 处于超重状态2.如图所示,A 、B 两物体叠放在一起,以相同的初速度上抛(不计空气阻力).下列说法正确的是()A .在上升和下降过程中A 对B 的压力一定为零B .上升过程中A 对B 的压力大于A 物体受到的重力C .下降过程中A 对B 的压力大于A 物体受到的重力D .在上升和下降过程中A 对B 的压力等于A 物体受到的重力3.跳水运动员从10m 跳台腾空跃起,先向上运动一段距离达到最高点后,再自由下落进入水池,不计空气阻力,关于运动员在空中上升过程和下落过程以下说法正确的有()A .上升过程处于超重状态,下落过程处于失重状态B .上升过程处于失重状态,下落过程处于超重状态C .上升过程和下落过程均处于超重状态D .上升过程和下落过程均处于完全失重状态4.(多选)某人在地面上用弹簧秤称得体重为490N .他将弹簧秤移至电梯内称其体重,t 0至t 3时间段内,弹簧秤的示数如图11所示,电梯运行的v -t 图可能是(取电梯向上运动的方向为正)()5.如图所示,试管中有一根弹簧,一个质量为m 的小球压在弹簧上.开始时手握住试管处于静止状态,现在突然放手,则小球在开始阶段的运动,在地面上的人看来是()A.自由落体运动B.向上升起一定高度后落下C.向下做加速度小于g 的运动D.向下做加速度大于g 的运动题型五:动力学两类基本问题1.质量m =4kg 的物块,在一个平行于斜面向上的拉力F =40N 作用下,从静止开始沿斜面向上运动,如图所示,已知斜面足够长,倾角θ=37°,物块与斜面间的动摩擦因数µ=0.2,力F 作用了5s ,求物块在5s 内的位移及它在5s 末的速度。

牛顿第二定律25种题型

牛顿第二定律25种题型

牛顿第二定律25种题型牛顿第二定律是一个非常重要的物理定律,可以应用到各种不同的题型中。

以下是一些可能的题型:1. 计算给定物体的质量和加速度,求解作用力的大小。

2. 给定物体的质量和作用力的大小,求解加速度。

3. 给定物体的质量和加速度,求解作用力的方向。

4. 考虑多个作用力作用在物体上,求解物体的加速度。

5. 考虑摩擦力对物体运动的影响,求解加速度。

6. 考虑空气阻力对物体自由落体的影响,求解加速度。

7. 考虑弹簧力对物体振动的影响,求解加速度。

8. 考虑物体在斜面上的运动,求解加速度。

9. 考虑物体在圆周运动中的加速度。

10. 考虑物体的质量随时间变化,求解加速度。

11. 考虑非惯性系中的物体运动,求解加速度。

12. 考虑相对论效应对物体运动的影响,求解加速度。

13. 考虑电磁力对带电粒子的影响,求解加速度。

14. 考虑磁场对带电粒子的影响,求解加速度。

15. 考虑引力对天体运动的影响,求解加速度。

16. 考虑光子动量对物体的影响,求解加速度。

17. 考虑量子力学效应对微观粒子的影响,求解加速度。

18. 考虑弯曲时空对物体运动的影响,求解加速度。

19. 考虑黑洞的引力对物体的影响,求解加速度。

20. 考虑物体受到辐射的影响,求解加速度。

21. 考虑物体在非常高温或低温环境中的运动,求解加速度。

22. 考虑物体在高速运动中的加速度。

23. 考虑物体在微重力环境中的运动,求解加速度。

24. 考虑物体受到外部激励力的影响,求解加速度。

25. 考虑物体在复杂场景中的运动,求解加速度。

这些题型涵盖了牛顿第二定律在不同情景下的应用,从基本的直线运动到相对论和量子力学等高级领域。

每种题型都需要根据具体情况进行分析和计算,以求得正确的加速度。

专题02牛顿运动定律的六大题型(原卷版)

专题02牛顿运动定律的六大题型(原卷版)

专题02牛顿运动定律的六大题型(原卷版)专题02:牛顿运动定律的六大题型(原卷版)1. 题型一:概念理解题题目描述请简述牛顿运动定律的基本内容,并说明其应用范围。

解题步骤1. 牛顿运动定律分为三条,分别是:(1)牛顿第一定律,也称为惯性定律,指出一个物体若受到外力作用,其运动状态将发生改变;若不受外力作用,其运动状态将保持静止或匀速直线运动。

(2)牛顿第二定律,也称为加速度定律,指出物体受到的合外力等于物体的质量与加速度的乘积,即 F = ma。

(3)牛顿第三定律,也称为作用与反作用定律,指出任何两个物体之间的作用力与反作用力大小相等、方向相反,并作用在同一直线上。

2. 牛顿运动定律适用于低速、宏观的物体,不适用于高速、微观的粒子。

2. 题型二:计算题题目描述一个质量为2kg的物体受到一个3N的水平力和一个45N的竖直力作用,求物体的加速度和摩擦力。

解题步骤1. 分析物体受力情况,可得物体受到的合外力为:F_合 = F_水平 + F_竖直 = 3N + 45N = 48N2. 根据牛顿第二定律,计算物体的加速度:a = F_合 / m = 48N / 2kg = 24m/s²3. 由于物体在水平方向上没有受到摩擦力,所以摩擦力为0。

3. 题型三:应用题题目描述一个物体从静止开始沿着光滑的斜面滑下,已知斜面倾角为30°,物体的质量为3kg,求物体滑下斜面10m时的速度和所用时间。

解题步骤1. 分析物体受力情况,可得物体受到的合外力为:F_合 = m * g * sin30° = 3kg * 9.8m/s² * 0.5 = 14.7N2. 根据牛顿第二定律,计算物体的加速度:a = F_合 / m = 14.7N / 3kg = 4.9m/s²3. 利用运动学公式 v² = 2 * a * s,计算物体滑下斜面10m时的速度:v = √(2 * 4.9m/s² * 10m) = 9.4m/s4. 利用运动学公式 t = v / a,计算物体滑下斜面10m所用时间:t = 9.4m/s / 4.9m/s² = 2s4. 题型四:综合题题目描述一个质量为5kg的物体在水平地面上受到一个5N的推力和一个20N的摩擦力作用,已知物体初始速度为0,求物体在推力作用下移动10m的时间和最终速度。

牛顿定律与典型题型总结

牛顿定律与典型题型总结

牛顿定律与典型题型总结牛顿定律是物理学中的基石,对理解物体的运动和相互作用具有至关重要的意义。

本文将深入探讨牛顿定律,并对相关的典型题型进行总结,帮助大家更好地掌握这一重要的物理知识。

一、牛顿第一定律牛顿第一定律,也被称为惯性定律,其内容为:任何物体都要保持匀速直线运动或静止的状态,直到外力迫使它改变运动状态为止。

从这个定律,我们可以得出惯性的概念。

惯性是物体保持原有运动状态的性质,质量是衡量物体惯性大小的唯一量度。

质量越大,惯性越大;质量越小,惯性越小。

例如,在一辆行驶的公交车上,当车突然刹车时,站立的乘客会向前倾倒。

这是因为乘客原本具有向前的运动惯性,当车刹车时,脚受到摩擦力而停止运动,但身体上部由于惯性仍要保持向前运动的状态,从而导致向前倾倒。

相关题型:1、判断题:一个物体的速度为零,它一定处于静止状态。

(错误,速度为零不一定是静止状态,可能只是瞬间的情况,如竖直上抛的物体到达最高点时速度为零,但并非静止)2、选择题:关于惯性,下列说法正确的是()A 只有静止的物体才有惯性B 只有运动的物体才有惯性C 质量大的物体惯性大D 质量小的物体惯性大答案:C二、牛顿第二定律牛顿第二定律指出:物体的加速度跟作用力成正比,跟物体的质量成反比,加速度的方向跟作用力的方向相同。

其数学表达式为 F = ma ,其中 F 表示作用力,m 表示物体的质量,a 表示加速度。

这一定律揭示了力、质量和加速度之间的定量关系。

当作用力增大时,加速度也随之增大;质量越大,相同作用力下产生的加速度越小。

例如,一个质量为 2kg 的物体,受到一个 10N 的水平拉力作用,根据牛顿第二定律,其加速度 a = F / m = 10 / 2 = 5m/s²,物体将以5m/s²的加速度做加速运动。

相关题型:1、计算题:一个质量为 5kg 的物体,在水平方向受到一个 20N 的拉力,摩擦力为 10N ,求物体的加速度。

高考物理牛顿运动定律常见题型及答题技巧及练习题(含答案)及解析

高考物理牛顿运动定律常见题型及答题技巧及练习题(含答案)及解析

高考物理牛顿运动定律常见题型及答题技巧及练习题(含答案)及解析一、高中物理精讲专题测试牛顿运动定律1.利用弹簧弹射和传送带可以将工件运送至高处。

如图所示,传送带与水平方向成37度角,顺时针匀速运动的速度v =4m/s 。

B 、C 分别是传送带与两轮的切点,相距L =6.4m 。

倾角也是37︒的斜面固定于地面且与传送带上的B 点良好对接。

一原长小于斜面长的轻弹簧平行斜面放置,下端固定在斜面底端,上端放一质量m =1kg 的工件(可视为质点)。

用力将弹簧压缩至A 点后由静止释放,工件离开斜面顶端滑到B 点时速度v 0=8m/s ,A 、B 间的距离x =1m ,工件与斜面、传送带问的动摩擦因数相同,均为μ=0.5,工件到达C 点即为运送过程结束。

g 取10m/s 2,sin37°=0.6,cos37°=0.8,求: (1)弹簧压缩至A 点时的弹性势能;(2)工件沿传送带由B 点上滑到C 点所用的时间;(3)工件沿传送带由B 点上滑到C 点的过程中,工件和传送带间由于摩擦而产生的热量。

【答案】(1)42J,(2)2.4s,(3)19.2J 【解析】 【详解】(1)由能量守恒定律得,弹簧的最大弹性势能为:2P 01sin 37cos372E mgx mgx mv μ︒︒=++解得:E p =42J(2)工件在减速到与传送带速度相等的过程中,加速度为a 1,由牛顿第二定律得:1sin 37cos37mg mg ma μ︒︒+=解得:a 1=10m/s 2工件与传送带共速需要时间为:011v vt a -= 解得:t 1=0.4s工件滑行位移大小为:220112v v x a -=解得:1 2.4x m L =<因为tan 37μ︒<,所以工件将沿传送带继续减速上滑,在继续上滑过程中加速度为a 2,则有:2sin 37cos37mg mg ma μ︒︒-=解得:a 2=2m/s 2假设工件速度减为0时,工件未从传送带上滑落,则运动时间为:22v ta =解得:t 2=2s工件滑行位移大小为:23?1n n n n n 解得:x 2=4m工件运动到C 点时速度恰好为零,故假设成立。

高考物理牛顿运动定律题20套(带答案)

高考物理牛顿运动定律题20套(带答案)一、高中物理精讲专题测试牛顿运动定律1.如图所示,传送带的倾角θ=37°,上、下两个轮子间的距离L=3m ,传送带以v 0=2m/s 的速度沿顺时针方向匀速运动.一质量m=2kg 的小物块从传送带中点处以v 1=1m/s 的初速度沿传送带向下滑动.已知小物块可视为质点,与传送带间的动摩擦因数μ=0.8,小物块在传送带上滑动会留下滑痕,传送带两个轮子的大小忽略不计,sin37°=0.6,cos37°=0.8,重力加速度g 取10m/s 2.求(1)小物块沿传送带向下滑动的最远距离及此时小物块在传送带上留下的滑痕的长度. (2)小物块离开传送带时的速度大小. 【答案】(1)1.25m;6m (2)55/5m s 【解析】 【分析】 【详解】(1)由题意可知0.8tan 370.75μ=>=o ,即小物块所受滑动摩擦力大于重力沿传送带向下的分力sin 37mg o,在传送带方向,对小物块根据牛顿第二定律有:cos37sin 37mg mg ma μ-=o o解得:20.4/a m s =小物块沿传送带向下做匀减速直线运动,速度为0时运动到最远距离1x ,假设小物块速度为0时没有滑落,根据运动公式有:2112v x a=解得:1 1.25x m =,12Lx <,小物块没有滑落,所以沿传送带向下滑动的最远距离1 1.25x m =小物块向下滑动的时间为11=v t a传送带运动的距离101s v t = 联立解得15s m =小物块相对传送带运动的距离11x s x ∆=+解得: 6.25x m ∆=,因传送带总长度为26L m =,所以传送带上留下的划痕长度为6m ; (2)小物块速度减小为0后,加速度不变,沿传送带向上做匀加速运动 设小物块到达传送带最上端时的速度大小为2v 假设此时二者不共速,则有:22122L v a x ⎛⎫=+ ⎪⎝⎭解得:255/v m s =20v v <,即小物块还没有与传送带共速,因此,小物块离开传送带时的速度大小为55/m s .2.如图甲所示,一长木板静止在水平地面上,在0t =时刻,一小物块以一定速度从左端滑上长木板,以后长木板运动v t -图象如图所示.已知小物块与长木板的质量均为1m kg =,小物块与长木板间及长木板与地面间均有摩擦,经1s 后小物块与长木板相对静止()210/g m s=,求:()1小物块与长木板间动摩擦因数的值; ()2在整个运动过程中,系统所产生的热量.【答案】(1)0.7(2)40.5J 【解析】 【分析】()1小物块滑上长木板后,由乙图知,长木板先做匀加速直线运动,后做匀减速直线运动,根据牛顿第二定律求出长木板加速运动过程的加速度,木板与物块相对静止时后木板与物块一起匀减速运动,由牛顿第二定律和速度公式求物块与长木板间动摩擦因数的值.()2对于小物块减速运动的过程,由牛顿第二定律和速度公式求得物块的初速度,再由能量守恒求热量. 【详解】()1长木板加速过程中,由牛顿第二定律,得1212mg mg ma μμ-=; 11m v a t =;木板和物块相对静止,共同减速过程中,由牛顿第二定律得2222mg ma μ⋅=; 220m v a t =-;由图象可知,2/m v m s =,11t s =,20.8t s = 联立解得10.7μ=()2小物块减速过程中,有:13mg ma μ=; 031m v v a t =-;在整个过程中,由系统的能量守恒得2012Q mv = 联立解得40.5Q J =【点睛】本题考查了两体多过程问题,分析清楚物体的运动过程是正确解题的关键,也是本题的易错点,分析清楚运动过程后,应用加速度公式、牛顿第二定律、运动学公式即可正确解题.3.四旋翼无人机是一种能够垂直起降的小型遥控飞行器,目前正得到越来越广泛的应用.一架质量m =2 kg 的无人机,其动力系统所能提供的最大升力F =36 N ,运动过程中所受空气阻力大小恒为f =4 N .(g 取10 m /s 2)(1)无人机在地面上从静止开始,以最大升力竖直向上起飞.求在t =5s 时离地面的高度h ; (2)当无人机悬停在距离地面高度H =100m 处,由于动力设备故障,无人机突然失去升力而坠落.求无人机坠落到地面时的速度v ;(3)接(2)问,无人机坠落过程中,在遥控设备的干预下,动力设备重新启动提供向上最大升力.为保证安全着地(到达地面时速度为零),求飞行器从开始下落到恢复升力的最长时间t 1.【答案】(1)75m (2)40m/s (355s 【解析】 【分析】 【详解】(1)由牛顿第二定律 F ﹣mg ﹣f=ma 代入数据解得a=6m/s 2上升高度代入数据解得 h=75m . (2)下落过程中 mg ﹣f=ma 1 代入数据解得落地时速度 v 2=2a 1H , 代入数据解得 v=40m/s(3)恢复升力后向下减速运动过程 F ﹣mg+f=ma 2 代入数据解得设恢复升力时的速度为v m ,则有由 v m =a 1t 1 代入数据解得.4.如图,竖直墙面粗糙,其上有质量分别为m A =1 kg 、m B =0.5 kg 的两个小滑块A 和B ,A 在B 的正上方,A 、B 相距h =2. 25 m ,A 始终受一大小F 1=l0 N 、方向垂直于墙面的水平力作用,B 始终受一方向竖直向上的恒力F 2作用.同时由静止释放A 和B ,经时间t =0.5 s ,A 、B 恰相遇.已知A 、B 与墙面间的动摩擦因数均为μ=0.2,重力加速度大小g =10 m/s 2.求:(1)滑块A 的加速度大小a A ; (2)相遇前瞬间,恒力F 2的功率P .【答案】(1)2A 8m/s a =;(2)50W P =【解析】 【详解】(1)A 、B 受力如图所示:A 、B 分别向下、向上做匀加速直线运动,对A : 水平方向:N 1F F = 竖直方向:A A A m g f m a -= 且:N f F μ=联立以上各式并代入数据解得:2A 8m/s a =(2)对A 由位移公式得:212A A x a t = 对B 由位移公式得:212B B x a t =由位移关系得:B A x h x =- 由速度公式得B 的速度:B B v a t = 对B 由牛顿第二定律得:2B B B F m g m a -= 恒力F 2的功率:2B P F v = 联立解得:P =50W5.如图所示,水平面上AB 间有一长度x=4m 的凹槽,长度为L=2m 、质量M=1kg 的木板静止于凹槽右侧,木板厚度与凹槽深度相同,水平面左侧有一半径R=0.4m 的竖直半圆轨道,右侧有一个足够长的圆弧轨道,A 点右侧静止一质量m1=0.98kg 的小木块.射钉枪以速度v 0=100m/s 射出一颗质量m0=0.02kg 的铁钉,铁钉嵌在木块中并滑上木板,木板与木块间动摩擦因数μ=0.05,其它摩擦不计.若木板每次与A 、B 相碰后速度立即减为0,且与A 、B 不粘连,重力加速度g=10m/s 2.求:(1)铁钉射入木块后共同的速度v ;(2)木块经过竖直圆轨道最低点C 时,对轨道的压力大小F N; (3)木块最终停止时离A 点的距离s.【答案】(1)2/v m s = (2)12.5N F N = (3) 1.25L m ∆= 【解析】(1) 设铁钉与木块的共同速度为v ,取向左为正方向,根据动量守恒定律得:0001()m v m m v =+解得:2m v s =;(2) 木块滑上薄板后,木块的加速度210.5m a g s μ==,且方向向右板产生的加速度220.5mgma s Mμ==,且方向向左设经过时间t ,木块与木板共同速度v 运动则:12v a t a t -=此时木块与木板一起运动的距离等于木板的长度22121122x vt a t a t L ∆=--=故共速时,恰好在最左侧B 点,此时木块的速度11m v v a t s'=-=木块过C 点时对其产生的支持力与重力的合力提供向心力,则:'2N v F mg m R-=代入相关数据解得:F N =12.5N.由牛顿第三定律知,木块过圆弧C 点时对C 点压力为12.5N ; (3) 木块还能上升的高度为h ,由机械能守恒有:201011()()2m m v m m gh +=+ 0.050.4h m m =<木块不脱离圆弧轨道,返回时以1m/s 的速度再由B 处滑上木板,设经过t 1共速,此时木板的加速度方向向右,大小仍为a 2,木块的加速度仍为a 1, 则:21121v a t a t -=,解得:11t s = 此时2211121110.522x v t a t a t m ∆=--='' 3210.5m v v at s=-=碰撞后,v 薄板=0,木块以速度v 3=0.5m/s 的速度向右做减速运动 设经过t 2时间速度为0,则3211v t s a == 2322210.252x v t a t m =-=故ΔL=L ﹣△x'﹣x=1.25m即木块停止运动时离A 点1.25m 远.6.某种弹射装置的示意图如图所示,光滑的水平导轨MN 右端N 处于倾斜传送带理想连接,传送带长度L=15.0m ,皮带以恒定速率v=5m/s 顺时针转动,三个质量均为m=1.0kg 的滑块A 、B 、C 置于水平导轨上,B 、C 之间有一段轻弹簧刚好处于原长,滑块B 与轻弹簧连接,C 未连接弹簧,B 、C 处于静止状态且离N 点足够远,现让滑块A 以初速度v 0=6m/s 沿B 、C 连线方向向B 运动,A 与B 碰撞后粘合在一起.碰撞时间极短,滑块C 脱离弹簧后滑上倾角θ=37°的传送带,并从顶端沿传送带方向滑出斜抛落至地面上,已知滑块C 与传送带之间的动摩擦因数μ=0.8,重力加速度g=10m/s 2,sin37°=0.6,cos37°=0.8.(1)滑块A 、B 碰撞时损失的机械能; (2)滑块C 在传送带上因摩擦产生的热量Q ;(3)若每次实验开始时滑块A 的初速度v 0大小不相同,要使滑块C 滑离传送带后总能落至地面上的同一位置,则v 0的取值范围是什么?(结果可用根号表示) 【答案】(1)9J E ∆= (2)8J Q =03313m/s 397m/s 22v ≤≤ 【解析】试题分析:(1)A 、B 碰撞过程水平方向的动量守恒,由此求出二者的共同速度;由功能关系即可求出损失的机械能;(2)A 、B 碰撞后与C 作用的过程中ABC 组成的系统动量守恒,应用动量守恒定律与能量守恒定律可以求出C 与AB 分开后的速度,C 在传送带上做匀加速直线运动,由牛顿第二定律求出加速度,然后应用匀变速直线运动规律求出C 相对于传送带运动时的相对位移,由功能关系即可求出摩擦产生的热量.(3)应用动量守恒定律、能量守恒定律与运动学公式可以求出滑块A 的最大速度和最小速度.(1)A 与B 位于光滑的水平面上,系统在水平方向的动量守恒,设A 与B 碰撞后共同速度为1v ,选取向右为正方向,对A 、B 有:012mv mv = 碰撞时损失机械能()220111222E mv m v ∆=- 解得:9E J ∆=(2)设A 、B 碰撞后,弹簧第一次恢复原长时AB 的速度为B v ,C 的速度为C v 由动量守恒得:122B C mv mv mv =+ 由机械能守恒得:()()222111122222B C m v m v mv =+ 解得:4/c v m s =C 以c v 滑上传送带,假设匀加速的直线运动位移为x 时与传送带共速由牛顿第二定律得:210.4/a gcos gsin m s μθθ=-= 由速度位移公式得:2212C v v a x -=联立解得:x=11.25m <L 加速运动的时间为t ,有:12.5Cv v t s a -== 所以相对位移x vt x ∆=- 代入数据得: 1.25x m ∆=摩擦生热·8Q mgcos x J μθ=∆= (3)设A 的最大速度为max v ,滑块C 与弹簧分离时C 的速度为1c v ,AB 的速度为1B v ,则C 在传送带上一直做加速度为2a 的匀减速直线运动直到P 点与传送带共速则有:22212c v v a L -=根据牛顿第二定律得:2212.4/a gsin gcos m s θμθ=--=-联立解得:1/c v s =设A 的最小速度为min v ,滑块C 与弹簧分离时C 的速度为2C v ,AB 的速度为1B v ,则C 在传送带上一直做加速度为1a 的匀加速直线运动直到P 点与传送带共速则有:22112c v v a L -=解得:2/c v s =对A 、B 、C 和弹簧组成的系统从AB 碰撞后到弹簧第一次恢复原长的过程中 系统动量守恒,则有:112max B C mv mv mc =+ 由机械能守恒得:()()22211111122222B C m v m v mv =+解得:13/2max c v v s ==同理得:/min v s =0//s v s ≤≤7.如图甲所示,质量为m=2kg 的物体置于倾角为θ=37°的足够长的固定斜面上,t=0时刻对物体施以平行于斜面向上的拉力F ,t 1=0.5s 时撤去该拉力,整个过程中物体运动的速度与时间的部分图象如图乙所示,不计空气阻力,g=10m /s 2,sin37°=0.6,cos37°=0.8.求:(1)物体与斜面间的动摩擦因数μ (2)拉力F 的大小(3)物体沿斜面向上滑行的最大距离s . 【答案】(1)μ=0.5 (2) F =15N (3)s =7.5m 【解析】 【分析】由速度的斜率求出加速度,根据牛顿第二定律分别对拉力撤去前、后过程列式,可拉力和物块与斜面的动摩擦因数为 μ.根据v-t 图象面积求解位移. 【详解】(1)由图象可知,物体向上匀减速时加速度大小为:2210510/10.5a m s -==- 此过程有:mgs inθ+μmgcosθ=ma 2 代入数据解得:μ=0.5(2)由图象可知,物体向上匀加速时加速度大小为:a 1=210/0.5m s =20m/s 2 此过程有:F-mgsinθ-μmgcosθ=ma 1 代入数据解得:F=60N(3)由图象可知,物体向上滑行时间1.5s ,向上滑行过程位移为:s =12×10×1.5=7.5m 【点睛】本题首先挖掘速度图象的物理意义,由斜率求出加速度,其次求得加速度后,由牛顿第二定律求解物体的受力情况.8.一长木板静止在水平地面上,木板长5l m =,小茗同学站在木板的左端,也处于静止状态,现小茗开始向右做匀加速运动,经过2s 小茗从木板上离开,离开木板时小茗的速度为v=4m/s ,已知木板质量M =20kg ,小茗质量m =50kg ,g 取10m/s 2,求木板与地面之间的动摩擦因数μ(结果保留两位有效数字).【答案】0.13 【解析】 【分析】对人分析,由速度公式求得加速度,由牛顿第二定律求人受到木板的摩擦力大小;由运动学的公式求出长木板的加速度,由牛顿第二定律求木板与地面之间的摩擦力大小和木板与地面之间的动摩擦因数. 【详解】对人进行分析,由速度时间公式:v=a 1t 代入数据解得:a 1=2m/s 2 在2s 内人的位移为:x 1=2112a t 代入数据解得:x 1=4m由于x 1=4m <5m ,可知该过程中木板的位移:x 2=l-x 1=5-4=1m 对木板:x 2=2212a t可得:a 2=0.5m/s 2对木板进行分析,根据牛顿第二定律:f-μ(M+m )g=Ma 2 根据牛顿第二定律,板对人的摩擦力f=ma 1 代入数据解得:f=100N 代入数据解得:μ=90.1370≈. 【点睛】本题主要考查了相对运动问题,应用牛顿第二定律和运动学公式,再结合位移间的关系即可解题.本题也可以根据动量定理解答.9.一种巨型娱乐器械可以使人体验超重和失重.一个可乘十多个人的环形座舱套装在竖直柱子上,由升降机送上几十米的高处,然后让座舱自由落下.落到一定位置时,制动系统启动,到地面时刚好停下.已知座舱开始下落时的高度为75m ,当落到离地面30m 的位置时开始制动,座舱均匀减速.重力加速度g 取102/m s ,不计空气阻力. (1)求座舱下落的最大速度; (2)求座舱下落的总时间;(3)若座舱中某人用手托着重30N 的铅球,求座舱下落过程中球对手的压力. 【答案】(1)30m/s (2)5s .(3)75N . 【解析】试题分析:(1)v 2=2gh; v m =30m/s⑵座舱在自由下落阶段所用时间为:2112h gt =t 1=3s 座舱在匀减速下落阶段所用的时间为:t 2=2hv ==2s 所以座舱下落的总时间为:t =t 1+t 2=5s⑶对球,受重力mg 和手的支持力N 作用,在座舱自由下落阶段,根据牛顿第二定律有mg-N=mg解得:N=0根据牛顿第三定律有:N′=N=0,即球对手的压力为零在座舱匀减速下落阶段,根据牛顿第二定律有mg-N=ma根据匀变速直线运动规律有:a=222vh-=-15m/s2解得:N=75N(2分)根据牛顿第三定律有:N′=N=75N,即球对手的压力为75N考点:牛顿第二及第三定律的应用10.如图所示,质量1m kg=的小球套在细斜杆上,斜杆与水平方向成30α=o角,球与杆之间的滑动摩擦因数36μ=,球在竖直向上的拉力20F N=作用下沿杆向上滑动.(210/g m s=)求:(1)求球对杆的压力大小和方向;(2)小球的加速度多大;(3)要使球以相同的加速度沿杆向下加速运动,F应变为多大.【答案】(1)53N方向垂直于杆向上(2)22.5m/s(3) 0N【解析】(1)小球受力如图所示:建立图示坐标,沿y方向,有:(F−mg)cos30∘−FN=0解得:FN=53N根据牛顿第三定律,球对杆的压力大小为3N,方向垂直于杆向上.(2)沿x方向由牛顿第二定律得(F−mg)sin30∘−f=ma而f=μFN解得:a=2.5m/s2(3)沿y方向,有:(mg −F)cos30∘−FN=0沿x方向由牛顿第二定律得(mg −F)sin30∘−f=ma而f=μFN解得:F=0N。

高一物理牛顿运动定律练习及答案.

相关习题:(牛顿运动定律)一、牛顿第一定律练习题一、选择题1.下面几个说法中正确的是[ ]A.静止或作匀速直线运动的物体,一定不受外力的作用B.当物体的速度等于零时,物体一定处于平衡状态C.当物体的运动状态发生变化时,物体一定受到外力作用D.物体的运动方向一定是物体所受合外力的方向2.关于惯性的下列说法中正确的是[ ]A.物体能够保持原有运动状态的性质叫惯性B.物体不受外力作用时才有惯性C.物体静止时有惯性,一开始运动,不再保持原有的运动状态,也就失去了惯性D.物体静止时没有惯性,只有始终保持运动状态才有惯性3.关于惯性的大小,下列说法中哪个是正确的?[ ]A.高速运动的物体不容易让它停下来,所以物体运动速度越大,惯性越大B.用相同的水平力分别推放在地面上的两个材料不同的物体,则难以推动的物体惯性大C.两个物体只要质量相同,那么惯性就一定相同D.在月球上举重比在地球上容易,所以同一个物体在月球上比在地球上惯性小4.火车在长直的轨道上匀速行驶,门窗紧闭的车厢内有一人向上跳起,发现仍落回到原处,这是因为[ ]A.人跳起后,车厢内空气给他以向前的力,带着他随火车一起向前运动B.人跳起的瞬间,车厢的地板给人一个向前的力,推动他随火车一起运动C.人跳起后,车继续前进,所以人落下必然偏后一些,只是由于时间很短,偏后的距离不易观察出来D.人跳起后直到落地,在水平方向上人和车具有相同的速度5.下面的实例属于惯性表现的是[ ]A.滑冰运动员停止用力后,仍能在冰上滑行一段距离B.人在水平路面上骑自行车,为维持匀速直线运动,必须用力蹬自行车的脚踏板C.奔跑的人脚被障碍物绊住就会摔倒D.从枪口射出的子弹在空中运动6.关于物体的惯性定律的关系,下列说法中正确的是[ ]A.惯性就是惯性定律B.惯性和惯性定律不同,惯性是物体本身的固有属性,是无条件的,而惯性定律是在一定条件下物体运动所遵循的规律C.物体运动遵循牛顿第一定律,是因为物体有惯性D.惯性定律不但指明了物体有惯性,还指明了力是改变物体运动状态的原因,而不是维持物体运动状态的原因7.如图所示,劈形物体M的各表面光滑,上表面水平,放在固定的斜面上.在M的水平上表面放一光滑小球m,后释放M,则小球在碰到斜面前的运动轨迹是[ ] A.沿斜面向下的直线B.竖直向下的直线C.无规则的曲线D.抛物线二、填空题8.行驶中的汽车关闭发动机后不会立即停止运动,是因为____,汽车的速度越来越小,最后会停下来是因为____。

牛顿第二定律25种题型

牛顿第二定律25种题型牛顿第二定律是物理学中的基本定律之一,它描述了物体受力时的加速度与力的关系。

下面将详细介绍牛顿第二定律的25种题型。

1. 计算物体的加速度:根据牛顿第二定律,加速度与物体所受力成正比,与物体的质量成反比。

因此,可以通过已知的力和质量来计算物体的加速度。

2. 计算物体所受的力:根据牛顿第二定律,力与物体的质量和加速度成正比。

因此,可以通过已知的质量和加速度来计算物体所受的力。

3. 计算物体的质量:根据牛顿第二定律,质量与力和加速度的比值成正比。

因此,可以通过已知的力和加速度来计算物体的质量。

4. 计算物体的重力:根据牛顿第二定律,物体所受的重力与物体的质量成正比。

因此,可以通过已知的质量和加速度(通常为重力加速度)来计算物体的重力。

5. 计算物体所受的摩擦力:根据牛顿第二定律,物体所受的摩擦力与物体的质量和加速度成正比。

因此,可以通过已知的质量和加速度来计算物体所受的摩擦力。

6. 计算物体所受的弹力:根据牛顿第二定律,物体所受的弹力与物体的质量和加速度成正比。

因此,可以通过已知的质量和加速度来计算物体所受的弹力。

7. 计算物体所受的拉力:根据牛顿第二定律,物体所受的拉力与物体的质量和加速度成正比。

因此,可以通过已知的质量和加速度来计算物体所受的拉力。

8. 计算物体所受的斜面力:当物体沿斜面运动时,可以通过分解力的成分来计算物体所受的斜面力。

9. 计算物体所受的空气阻力:当物体在空气中运动时,可以通过已知的速度和物体的形状来计算物体所受的空气阻力。

10. 计算物体所受的浮力:当物体浸没在液体中时,可以通过已知的液体密度、物体的体积和重力加速度来计算物体所受的浮力。

11. 计算物体所受的离心力:当物体在旋转的平台上运动时,可以通过已知的物体质量、旋转半径和角速度来计算物体所受的离心力。

12. 计算物体所受的引力:当两个物体之间存在引力时,可以通过已知的物体质量和距离来计算物体所受的引力。

牛顿运动定律常见题型

牛顿运动定律复习1、 连接体问题解题思路:整体法与隔离法的灵活运用a) 各部分间没有相对运动,或者虽有相对运动但为匀速运动:整体及各部分有相同的加速度,整体法求加速度,隔离法求各物体受力情况。

b) 各部分间有相对运动且不是匀速运动:整体及部分间没有共同的加速度,且整体的加速度不等于各部分的加速度平均。

必须灵活运用整体法及隔离法求解问题。

整体的加速度用整体法求解,部分的加速度用隔离法求解;受力情况运用整体、隔离及牛三定律等求解。

例1、 如图所示,小车向右做匀加速运动的加速度大小为a ,bc 为固定在小车上的水平横杆,物块M 串在杆上,M 通过细线悬吊着一小铁球m , M 、m 均相对小车静止,细线与竖直方向的夹角为θ.若小车的加速度逐渐增大到2a 时,M 仍与小车保持相对静止,则A .横杆对M 的作用力增加到原来的2倍B .细线的拉力增加到原来的2倍C .细线与竖直方向的夹角增加到原来的2倍D .细线与竖直方向夹角的正切值增加到原来的2倍例2、 如图所示,水平地面上有两块完全相同的木块AB ,水平推力F 作用在A 上,用F AB 代表A 、B 间的相互作用力,下列说法可能正确的是A .若地面是完全光滑的,则F AB =FB .若地面是完全光滑的,则F AB =F /2C .若地面是有摩擦的,且AB 未被推动,可能F AB =F /3D .若地面是有摩擦的,且AB 被推动,则F AB =F /2例3、 如图所示,一质量为M 的直角劈B 放在水平面上,在劈的斜面上放一质量为m 的物体A ,用一沿斜面向上的力F 作用于A 上,使其沿斜面匀速上滑,在A 上滑的过程中直角劈B 相对地面始终静止,则关于地面对劈的摩擦力f 及支持力N 正确的是A .f = 0 ,N = Mg +mgB .f 向左,N <Mg +mgC .f 向右,N <Mg +mgD .f 向左,N =Mg +mg例4、 某人拍得一张照片,上面有一个倾角为α的斜面,斜面上有一辆无动力的小车,小车上悬挂一个小球,如图所示,悬挂小球的悬线与垂直斜面的方向夹角为β,下面判断正确的是A 、如果βα=,小车一定处于静止状态B 、如果0β=,斜面一定是光滑的C 、如果βα>,小车一定是沿斜面加速向下运动D 、无论小车做何运动,悬线都不可能停留图中虚线的右侧例5、 如图所示,一轻绳通过一光滑定滑轮,两端各系一质量为m 1和m 2的物体,m 1放在地面上,当m 2的质量发生变化时,m 1的加速度a 的大小与m 2的关系大致如下图中的图( ).αβF V α B A2、 弹簧类问题可视为特殊的连接体问题,注意关键点:弹簧的弹力不能突变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

★瞬时性问题【1】如图所示,物体甲、乙质量均为m ,弹簧和悬线的质量可以忽略不计.当悬线被烧断的瞬间,甲、乙的加速度数值应是( ) A.甲是0,乙是g B.甲是g ,乙是gC.甲是0,乙是0D.甲是2g,乙是g【2】如右图所示,四个质量均为m 的小球,分别用三条轻绳和一根轻弹簧连接,处于平衡状态,现突然迅速剪断轻绳A 1、B 1,让小球下落。

在剪断轻绳的瞬间,设小球1、2、3、4的加速度分别用a 1、a 2、a 3和a 4表示,则a 1= ,a 2= ,a 3= ,a 4= 。

【3】如图所示,弹簧S 1的上端固定在天花板上,下端连一小球A ,球A 与球B 之间用线相连.球B 与球C 之间用弹簧S 2相连.A 、B 、C 的质量分别为m A 、m B 、m C ,弹簧与线的质量均不计。

开始时它们都处于静止状态.现将A 、B 间的线突然剪断,求线刚剪断时A 、B 、C 的加速度。

【4】如图所示,A 、B 两小球分别连在弹簧两端,B 端用细线固定在倾角为30°的光滑斜面上,若不计弹簧质量,在线被剪断瞬间,A 、B 两球的加速度分别为( ) A 、都等于2g B 、2g和0 C 、2g M M M B B A ⋅+和0 D 、0和2gM M M B B A ⋅+【5】如图所示,质量均为m 的A 、B 两球之间系着一条不计质量的轻弹簧,放在光滑的水平面上,A 球紧靠墙壁.仅用水平力F 将B 球向左推压弹簧,平衡后,突然将力F 撤去的瞬间有( ) A .A 的加速度为F/2m B .A 的加速度为零C .B 的加速度为F/2mD .B 的加速度为F/m【6】如图光滑水平面上物块A 和B 以轻弹簧相连接。

在水平拉力F 作用下以加速度a 作直线运动,设A 和B 的质量分别为m A 和m B ,当突然撤去外力F 时,A 和B 的加速度分别为( ) A 、0、0 B 、a 、0 C 、B A A m m a m +、BA A m m am +-D 、a 、a m m BA-【7】细绳拴一个质量为m 的小球,小球用固定在墙上的水平弹簧支撑,小球与弹簧不粘连,平衡时细绳与竖直方向的夹角为53°,如图所示.以下说法正确的是(已知cos53°=0.6,sin53°=0.8) ( )A .小球静止时弹簧的弹力大小为35mgB .小球静止时细绳的拉力大小为35mgC .细线烧断瞬间小球的加速度立即为gD .细线烧断瞬间小球的加速度立即为53g【8】如图所示,质量为m 的小球用水平轻弹簧系住,并用倾角为30°的光滑木板AB 托住,小球恰好处于静止状态.当木板AB 突然向下撤离的瞬间,小球的加速度大小为( )A .0 B.233gC .g D.33g【9】如图所示,吊篮A 、物体B 、物体C 的质量相等,弹簧质量不计,B 和C 分别固定在弹簧两端,放在吊篮的水平底板上静止不动.将悬挂吊篮的轻绳剪断的瞬间( ) A .吊篮A 的加速度大小为g B .物体B 的加速度大小为gC .物体c 的加速度为3/2gD .A 、B 、C 的加速度大小都等于g【10】(2010•泉州模拟)如图所示,竖直放置在水平面上的轻质弹簧上叠放着两物块A 、B ,A 、B 的质量均为2kg ,它们处于静止状态,若突然将一个大小为10N ,方向竖直向下的力施加在物块A 上,则此瞬间,A 对B 的压力大小为(g =10m/s2) ( ) A .10 N B .20 N C .25 N D .30 N【11】物体A 1、A 2和B 1、B 2的质量均为m ,A 1、A 2用刚性轻杆连接,B 1、B 2用轻质弹簧连接。

两个装置都放在水平的支托物上,处于平衡状态,突然迅速地撤去支托物,让物体下落,在撤去支托物瞬间,A 1、A 2所受合外力分别是F A1和F A2,B 1、B 2所受到的合外力分别为F B1和F B2,则( )A 、F A1=0,F A2=2mg ,F B1=0,F B2=2mgB 、F A1=mg ,F A2=mg ,F B1=0,F B2=2mgC 、F A1=0,F A2=2mg ,F B1=mg ,F B2=mgD 、FA1=mg ,F A2=mg ,F B1=mg ,F B2=mg★图像问题【1】静止在光滑水平面上的物体,同时受到两个水平方向的外力F 1与F 2,F 1、F 2的变化如图所示,则关于物体运动状态的说法中正确的是( ) A .速度大小不断增大,方向与F 1相同 B .速度的大小先减小后增大,速度方向与F 1相同 C .加速度的大小先增大后减小,加速度方向与F 1相同D .加速度的大小先减小后增大,加速度方向与F 2相同【2】有两个光滑固定的斜面AB 和BC ,A 和C 两点在同一水平面上,斜面BC 比斜面AB 长(如图a 所示).一个滑块自A 点以速度v A 上滑,到达B 点时速度减小为零,紧接着沿BC 滑下.设滑块从A 点到C 点的总时间是t C ,那么下列四个图(图b )中,正确表示滑块速度的大小v 随时间t 变化的规律的是( )【3】(2010山东烟台)质量为m 的小球放在光滑水平面上,在竖直线MN 的左方受到水平恒力F 1作用(m 可视为质点),在MN 的右方除受F 1外还受到与F 1在同一条直线上的水平恒力F 2作用,现设小球由A 点静止开始运动如图a 所示,小球运动的v-t 图象如图b 所示,由图可知下列说法正确的是( )A .小球在MN 的右左方加速度大小为231t t v -B .F 2的大小为1312t t m v - C .小球在MN 右方运动的时间为D .小球在t =0到t =t 4这段时间最大位移为v 1t 2【4】物体A 、B 都静止在同一水平面上,它们的质量分别是m A 和m B ,与水平面之间的动摩擦因数分别为μA 和μB .用平行于水平面的力F 分别拉物体A 、B ,得到加速度a 和拉力F 的关系图象分别如图中A 、B 所示(1)利用图象求出两个物体的质量m A 和m B .甲同学分析的过程是:从图象中得到F =12N 时,A 物体的加速度a A =4m/s 2,B 物体的加速度a B =2m/s 2,根据牛顿定律导出:,3,6A B Fm m kg m kg a===得; 乙同学的分析过程是:从图象中得出直线A 、B 的斜率为:k A =tan45°=1,k B =tan26°34′=0.5,而1,1,2A B k m kg m kg m===得. 请判断甲、乙两个同学结论的对和错,并分析错误的原因.如果两个同学都错,分析各自的错误原因后再计算正确的结果.(2)根据图象计算A 、B 两物体与水平面之间动摩擦因数μA 和μB 的数值.【5】如图甲所示,质量为1.0 kg 的物体置于固定斜面上,斜面的倾角θ=30°,对物体施以平行于斜面向上的拉力F ,1.0 s 后将拉力撤去,物体运动的v -t 图象如图乙(设斜向上为正,g=10 m/s 2),试求:⑴拉力F 的大小;⑵物块与斜面的动摩擦因数为μ.ccvcc v c c v c cv (b )(a ) A B C D ABa /ms -2 (b ) m 4 θ(a ) -1a-1【6】“神舟”六号飞船完成了预定空间科学和技术试验任务后,返回舱于2005年10月17日4时11分开始从太空向地球表面按预定轨道返回,在离地10km 的高度打开阻力降落伞减速下降,这一过程中若返回舱所受阻力与速度的平方成正比,比例系数(空气阻力系数)为k ,设返回舱总质量M=3000kg ,所受空气浮力恒定不变,且认为竖直降落。

从某时刻开始计时,返回舱的运动v -t 图象如图中的AD 曲线所示,图中AB 是曲线在A 点的切线,切线交于横轴一点B 的坐标为(8,0),CD 是平行横轴的直线,交纵轴于C 点C 的坐标为(0,8)。

g=10m/s 2,请解决下列问题:(1)在初始时刻v 0=160m/s 时,它的加速度多大? (2)推证空气阻力系数k 的表达式并算出其数值。

(3)返回舱在距离高度h=1m 时,飞船底部的4个反推力小火箭点火工作,使其速度由8m/s 迅速减至1m/s 后落在地面上,若忽略燃料质量的减少对返回舱总质量的影响,并忽略此阶段速度变化而引起空气阻力的变化,试估算每支小火箭的平均推力(计算结果取两位有效数字)【7】(2009年上海物理)如图(a ),质量m =1kg 的物体沿倾角θ=37︒的固定粗糙斜面由静止开始向下运动,风对物体的作用力沿水平方向向右,其大小与风速v 成正比,比例系数用k 表示,物体加速度a 与风速v 的关系如图(b )所示。

求: (1)物体与斜面间的动摩擦因数μ; (2)比例系数k 。

(sin370=0.6,cos370=0.8,g=10m/s 2)★传送带问题【1】一水平的浅色长传送带上放置一煤块(可视为质点),煤块与传送带之间的动摩擦因数为μ。

初始时,传送带与煤块都是静止的。

现让传送带以恒定的加速度a 开始运动,当其速度达到0v 后,便以此速度做匀速运动。

经过一段时间,煤块在传送带上留下了一段黑色痕迹后,煤块相对于传送带不再滑动。

求此黑色痕迹的长度。

【2】如图所示,倾角为30°的传送皮带以恒定的速度2m/s 运动,皮带AB 长5m ,将1kg 的物体放在A 点,经2.9s 到达B 点,求皮带和物体间的动摩擦因数μ为多少?若增加皮带的速度,则物体从A 运动到B 的最短时间是多少?(取g =10m/s 2)【3】如图所示,将一物体A 放在匀速传送的传动带的a 点,已知传动带速度大小v =2m/s ,ab=2m ,bc=4m ,A 与传动带的动摩擦因数μ=0.25,试求物块A 运动到C 点共需要多长时间?(sin370=0.6,cos370=0.8,g=10m/s 2)★连接体问题【1】(2010·芜湖市模拟)如图所示,放在粗糙水平面上的物块A 、B 用轻质弹簧秤相连,两物块与水平面间的动摩擦因数均为μ.今对物块A 施加一水平向左的恒力F ,使A 、B 一起向左匀加速运动,设A 、B 的质量分别为m 、M ,则弹簧秤的示数为( )A.MF M +mB.MF mC.F -μ(M +m )g m MD.F -μ(M +m )gm +MM 【2】如图所示,在光滑的水平面上放着紧靠在一起的A 、B 两物体,B 的质量是A 的2倍,B受到向右恒力F B =2 N ,A 受到的水平力F A =(9-2t ) N(t 的单位是s).从t =0开始计时,则( )A .A 物体在3 s 末时刻的加速度是初始时刻的511B .t >4 s 后,B 物体做匀加速直线运动C .t =4.5 s 时,A 物体的速度为零D .t >4.5 s 后,A 、B 的加速度方向相反 【3】如图所示,用水平力F 拉着三个物体A 、B 、C 在光滑的水平面上一起运动.现在中间物体上另置一小物体,且拉力不变,那么中间物体两端绳的拉力大小T a 和T b 的变化情况是 ( ) A .T a 增大,T b 减小 B .T a 增大,T b 增大C .T a 减小,T b 增大D .T a 减小,T b 减小【4】如图所示,质量分别为m 1和m 2的A 、B 两木块叠放在光滑水平面上,A 与B 的动摩擦因数为μ,若要保持A 和B 的相对静止,则施于B 的水平拉力的最大值为多少?若要保持A 和B相对静止,施于A 的水平拉力的最大值为多少? (设最大静摩擦力等于滑动摩擦力)【5】如图所示,将两个相同材料做成的物体A 、B 放在不光滑的斜面上,用沿斜面向上的力F 推A ,使A 、B 沿斜面做匀变速直线运动,则A 物体对B 物体的弹力为多少?如果不加力F ,则物体B 受几个力?已知A 、B 两物体的质量分别为m A 和m B .【6】如图所示,A 、B 两个物体的质量分别是2m 和m ,用一根不计质量的轻杆相连,在水平地面上滑行,已知A 、B 跟地面间的动摩擦因数分别是μ1和μ2,且μ1>μ2,它们开始以速度v 向右滑行. (1)A 、B 可以在水平面上滑行多远?(2)在滑行过程中,杆受拉力还是压力?大小是多少?【7】在光滑的水平面上,A 、B 两物体紧靠在一起,如图所示.A 物体的质量是24kg ,B 物体的质量是120kg .F A 是4N 的水平向右恒力,(163)B F t =-N (t 以s 为单位),是随时间变化的水平力,t=0时,F B 水平向左.从静止开始,经过多少时间,A 、B 两物体开始脱离? 【8】如图所示,A 、B 两物体的质量分别是m 1和m 2,其接触面光滑,与水平面的夹角为θ,若A 、B 与水平地面的动摩擦系数都是μ,用水平力F 推A ,使A 、B 一起加速运动,求: (1)A 、B 间的相互作用力;(2)为维持A 、B 间不发生相对滑动,力F 的取值范围.2 1A B★临界问题【1】如图所示,将质量为m 的滑块放在倾角为θ的固定斜面上。

相关文档
最新文档