高中文科数学导数大题练习题word版本

合集下载

导数文科大题含详细标准答案

导数文科大题含详细标准答案

导数文科大题含详细答案————————————————————————————————作者:————————————————————————————————日期:导数文科大题1.知函数,. (1)求函数的单调区间;(2)若关于的方程有实数根,求实数的取值范围. 答案解析2.已知, (1)若,求函数在点处的切线方程; (2)若函数在上是增函数,求实数a 的取值范围; (3)令, 是自然对数的底数);求当实数a等于多少时,可以使函数取得最小值为3.解:(1)时,,′(x),′(1)=3,,数在点处的切线方程为,(2)函数在上是增函数,′(x),在上恒成立,即,在上恒成立,令,当且仅当时,取等号, ,的取值范围为(3),′(x),①当时,在上单调递减,,计算得出(舍去);②当且时,即,在上单调递减,在上单调递增,,计算得出,满足条件;③当,且时,即,在上单调递减,,计算得出(舍去);综上,存在实数,使得当时,有最小值3.解析(1)根据导数的几何意义即可求出切线方程.(2)函数在上是增函数,得到f′(x),在上恒成立,分离参数,根据基本不等式求出答案,(3),求出函数的导数,讨论,,的情况,从而得出答案3.已知函数,(1)分别求函数与在区间上的极值;(2)求证:对任意,解:(1),令,计算得出:,,计算得出:或,故在和上单调递减,在上递增,在上有极小值,无极大值;,,则,故在上递增,在上递减,在上有极大值,,无极小值;(2)由(1)知,当时,,,故;当时,,令,则,故在上递增,在上递减,,;综上,对任意,解析(1)求导,利用导数与函数的单调性及极值关系,即可求得及单调区间及极值;4.已知函数,其中,为自然数的底数.(1)当时,讨论函数的单调性;(2)当时,求证:对任意的,.解:(1)当时,,则,,故则在R上单调递减.(2)当时,,要证明对任意的,.则只需要证明对任意的,.设,看作以a为变量的一次函数,要使,则,即,恒成立,①恒成立,对于②,令,则,设时,,即.,,在上,,单调递增,在上,,单调递减,则当时,函数取得最大值,故④式成立,综上对任意的,.解析:(1)求函数的导数,利用函数单调性和导数之间的关系进行讨论即可.(2)对任意的,转化为证明对任意的,,即可,构造函数,求函数的导数,利用导数进行研究即可.5.已知函数(1)当时,求函数在处的切线方程;(2)求在区间上的最小值.解:(1)设切线的斜率为k.因为,所以,所以,所以所求的切线方程为,即(2)根据题意得, 令,可得①若,则,当时,,则在上单调递增.所以②若,则, 当时,,则在上单调递减. 所以③若,则,所以,随x的变化情况如下表:x 1 20 - 0 + 0-e Φ极小值Γ0所以的单调递减区间为,单调递增区间为所以在上的最小值为综上所述:当时,;当时,;当时,解析(1)设切线的斜率为k.利用导数求出斜率,切点坐标,然后求出切线方程.(2)通过,可得.通过①,②,③,判断函数的单调性求出函数的最值.6.已知函数。

word版高二数学导数大题练习及详细答案

word版高二数学导数大题练习及详细答案

word 版高二数学导数大题练习及详细答案一、解答题 1.已知函数()()2ln 0f x a x ax a =+-> (1)求()f x 的最大值(2)若()0f x ≤恒成立,求a 的值 2.已知函数()ln f x ax x =+ (1)讨论()f x 的单调区间;(2)设()2xg x =,若对任意的[]11,100x ∈,存在[]20,1x ∈,使()()12f x g x <成立,求实数a 的取值范围. 3.已知函数()1e -=xx f x . (1)求()f x 极值点;(2)若()()4g x f x =-,证明:2x >时,()()f x g x >成立.4.已知()()e 1xf x mx m =+<-.(1)当2m =-时,求曲线()y f x =上的斜率为1-的切线方程;(2)当0x ≥时,()2213222m f x x ≥+-恒成立,求实数m 的范围.5.已知函数()e xf x kx =-,()()28ln ag x x x a R x=--∈.(1)当1k =时,求函数()f x 在区间[]1,1-的最大值和最小值; (2)当()0f x =在1,22⎡⎤⎢⎥⎣⎦有解,求实数k 的取值范围;(3)当函数()g x 有两个极值点1x ,()212x x x <,且11x ≠时,是否存在实数m ,总有()21221ln 51a x m x x x >--成立,若存在,求出实数m 的取值范围,若不存在,请说明理由.6.已知函数()()32131.3f x x a x x =-++ (1)若1a =,求函数()f x 的单调区间; (2)证明:函数()2y f x a =-至多有一个零点. 7.已知函数2()2ln f x x x =-+,()()ag x x a x =+∈R . (1)求函数()f x 的单调区间;(2)若函数()f x 与()g x 有相同的极值点,求函数()g x 在区间1[,3]2上的最值.8.已知函数()322f x x ax bx =++-在2x =-时取得极值,且在点()()1,1f --处的切线的斜率为3- . (1)求()f x 的解析式;(2)若函数()y f x λ=-有三个零点,求实数λ的取值范围. 9.已知函数()321623f x x ax x =+-+在2x =处取得极值. (1)求()f x 的单调区间;(2)求()f x 在[]4,3-上的最小值和最大值.10.已知函数()222(0)e xmx x f x m +-=>. (1)判断()f x 的单调性;(2)若对[]12,1,2x x ∀∈,不等式()()1224e f x f x -≤恒成立,求实数m 的取值范围.【参考答案】一、解答题1.(1)22ln 2ln 2a a --+ (2)2a = 【解析】 【分析】(1)求导求解单调性即可求出最值;(2)要使()0f x ≤成立必须()22ln 2ln 20a a a ϕ=--+≤,求单调性求解即可. (1)因为()()2ln 0f x a x ax a =+->,所以()()20axf x a x-'=>, 由()0f x '>得20x a <<;()0f x '<得2x a>;所以()f x 在20,a⎛⎫⎪⎝⎭上单调递增,在2,a ⎛⎫+∞ ⎪⎝⎭上单调递减,故()222ln 2ln 2max f x f a a a ⎛⎫==--+ ⎪⎝⎭,即()()22ln 2ln 20a a a a ϕ=--+>.(2)要使()0f x ≤成立必须()22ln 2ln 20a a a ϕ=--+≤,因为()2a a aϕ-'=,所以当02a <<,()0a ϕ'<;当2a >时,()0a ϕ'>. 所以()a ϕ在()0,2上单调递减,在()2,+∞上单调递增. 所以()()20min a ϕϕ==,所以满足条件的a 只有2,即2a =. 【点睛】用导数求函数的单调区间或判断函数的单调性问题时应注意如下几方面: (1)在利用导数讨论函数的单调区间时,首先要确定函数的定义域; (2)不能随意将函数的2个独立的单调递增(或递减)区间写成并集形式; (3)利用导数解决含参函数的单调性问题时,一般将其转化为不等式恒成立问题,解题过程中要注意分类讨论和数形结合思想的应用. 2.(1)答案见解析 (2)31a e ≤-【解析】 【分析】(1)由()()110ax f x a x xx+=+=>',按0a ≥,0a <进行分类讨论求解; (2)由已知,转化为()()max max f x g x <,由已知得()()max 12g x g ==,由此能求出实数a 的取值范围. (1)()(]110ax f x a x x x+'=+=>, ①当0a ≥时,由于0x >,故10ax +>,()0f x '>, 所以()f x 的单调递增区间为()0,∞+; ②当0a <时,由()0f x '=,得1x a=-,在区间10,a ⎛⎫- ⎪⎝⎭上()0f x '>,在区间1,a∞⎛⎫-+ ⎪⎝⎭上()0f x '<, 所以,函数()f x 的单调递增区间为10,a ⎛⎫- ⎪⎝⎭,单调递减区间为1,a∞⎛⎫-+ ⎪⎝⎭;(2)由题目知,只需要()()max max f x g x <即可又因为()()max 12g x g ==,所以只需要()max 2f x <即可()max 2f x <即等价于()2f x <恒成立,由变量分离可知2ln xa x-<,[]1,100x ∈,令()2ln xh x x -=,下面求()h x 的最小值, 令()23ln xh x x-+'=,所以()0h x '=得3x e =, 所以()h x 在31,e ⎡⎤⎣⎦为减函数,3,100e ⎡⎤⎣⎦为增函数, 所以()()33min 1h x h e e -==,所以31a e ≤-. 3.(1)极大值点为2x =,无极小值点; (2)证明见解析. 【解析】 【分析】(1)利用导数求出函数的单调区间即得解;(2)令()()()()4e 31e e xx x x F x f x g x --=-=-,利用导数求出函数()F x 的最小值即得证. (1)解:由题意,得()2e xx f x -'=, 令()0f x '>,得2x <;()0f x '<,得2x >; 列表如下:所以f x 极大值点为2x =,无极小值点. (2)证明:()()()4e 34ex x g x f x -=-=, 令()()()()4e 31e exx x x F x f x g x --=-=-, ∴()()()()42442e ee 22e e e xxx x x x x F x +----'=-=.当2x >时,20x -<,24x >,从而42e e 0x -<,∴()0F x '>,()F x 在()2,+∞上是增函数,∴()()221120e e F x F >=-=. ∴当2x >时,()()f x g x >成立.4.(1)10x y +-=;(2)ln 3⎡-⎣.【解析】 【分析】(1)根据导数的几何意义可利用斜率求得切点坐标,由此可得切线方程;(2)令()()2213222m g x f x x ⎛⎫=-+- ⎪⎝⎭,将问题转化为当0x ≥时,()min 0g x ≥恒成立;①当10m +≥时,由导数可证得()g x 单调递增,由()00g ≥可求得m 范围; ②当10+<m 时,利用零点存在定理可说明存在()00g x '=,并得到()g x 单调性,知()()020min 13e e 022x xg x g x ==-++≥,由此可解得0x 的范围,根据00e x x m -=可求得m 范围. (1)当2m =-时,()e 2x f x x =-,()e 2xf x '=-;令()e 21xf x '=-=-,解得:0x =,∴切点坐标为()0,1,∴所求切线方程为:1y x =-+,即10x y +-=;(2)令()()22221313e 222222x m m g x f x x mx x ⎛⎫=-+-=+--+ ⎪⎝⎭,则原问题转化为:当0x ≥时,()0g x ≥恒成立,即()min 0g x ≥恒成立;()e x g x m x '=+-,()e 1x g x ''=-,则当0x ≥时,()0g x ''≥,()g x '∴在[)0,∞+上单调递增,()()01g x g m ''∴≥=+; ①当10m +≥,即1m ≥-时,()0g x '≥,()g x ∴在[)0,∞+上单调递增,()()2min301022m g x g ∴==-+≥,解得:m ≤≤m ⎡∴∈-⎣; ②当10+<m ,即1m <-时,()00g '<,当x →+∞时,()g x '→+∞;()00,x ∴∃∈+∞,使得()00g x '=,即00e x x m -=,则当()00,x x ∈时,()0g x '<;当()0,x x ∈+∞时,()0g x '>;()g x ∴在()00,x 上单调递减,在()0,x +∞上单调递增,()()()()00022022000000min e 1313e e e 222222x x x x x m g x g x mx x x x x -∴==+--+=+---+00213e e 022x x =-++≥, 解得:01e 3x -≤≤,即0ln 3x ≤,又()00,x ∈+∞,(]00,ln3x ∴∈,令()e xh x x =-,则()1e xh x '=-,∴当(]0,ln3x ∈时,()0h x '<,()h x ∴在(]0,ln3上单调递减,()[)000e ln33,1x h x x ∴=-∈--,即[)ln33,1m ∈--;综上所述:实数m 的取值范围为ln 3⎡-⎣.【点睛】思路点睛:本题重点考查了导数中的恒成立问题的求解,解题基本思路是通过构造函数的方式,将问题转化为()min 0g x ≥,从而利用对含参函数单调性的讨论来确定最小值点,根据最小值得到不等式求得参数范围. 5.(1)最大值为e 1-,最小值为1;(2)21e,?e 2⎡⎤⎢⎥⎣⎦; (3)(],1-∞-. 【解析】 【分析】(1)求得'()f x ,利用导数研究函数在区间上的单调性,再利用单调性求其最值即可;(2)分离参数并构造函数()e xh x x=,求其在区间上的值域即可求得参数的范围;(3)根据12,x x 是()g x 的极值点,求得12,,x x a 的等量关系以及取值范围,等价转化目标不等式,且构造函数()()212ln ,02m x m x x x x-=+<<,对参数进行分类讨论,利用导数研究其值域,即可求得参数范围. (1)当1k =时,()e xf x x =-,'()f x e 1x =-,令'()f x 0=,解得0x =,当()1,,0x ∈-时,()f x 单调递减,当()0,1x ∈时,()f x 单调递增; 又()()()111,01,1e 1ef f f -=+==-,且()()11f f >-, 故()f x 在[]1,1-上的最大值为e 1-,最小值为1. (2)令()e xf x kx =-0=,因为1,22x ⎡⎤∈⎢⎥⎣⎦,则0x ≠,故e x k x =, 令()e 1,,22x h x x x ⎡⎤=∈⎢⎥⎣⎦,则'()h x ()2e 1 x x x -=,故当1,12x ⎛⎫∈ ⎪⎝⎭,()h x 单调递减,当()1,2x ∈,()h x 单调递增,又()()2111e,2e 22h h h ⎛⎫=== ⎪⎝⎭,且()122h h ⎛⎫> ⎪⎝⎭,故()h x 的值域为21e,?e 2⎡⎤⎢⎥⎣⎦,则要满足题意,只需21e,?e 2k ⎡⎤∈⎢⎥⎣⎦.即()h x 的取值范围为:21e,?e 2⎡⎤⎢⎥⎣⎦.(3)因为()28ln a g x x x x =--,'()g x 2228282a x x a x x x -+=+-=,因为()g x 有两个极值点12,x x ,故可得12126480,4,02a a x x x x ->+==>, 也即08a <<,且12124,2a x x x x +==. 因为11x ≠,12x x <,故()()10,11,2x ∈⋃,则()21221ln 51a xm x x x >--,即()()()211111124ln 5441x x x m x x x -⎡⎤>---⎣⎦-, 因为140x ->,故上式等价于()11112ln 11x x m x x >+-,即()21111112ln 01m x x x x x ⎡⎤-⎢⎥+>-⎢⎥⎣⎦,又当()0,1x ∈时,1101x x >-,当()1,2x ∈时,1101xx <-,令()()212ln ,02m x m x x x x-=+<<,则'()m x 222mxx mx ++=, 当0m ≥时,'()m x 0>,故()m x 在()0,2单调递增,又()10m =, 故当()0,1x ∈时,()0m x <,当()1,2x ∈时,()0m x >,故不满足题意;当0m <时,令()22n x mx x m =++,若方程()0n x =对应的2440m =-≤时,即1m ≤-时,'()m x 0≤,()m x 单调递减, 又()10m =,故当()0,1x ∈时,()0m x >,当()1,2x ∈时,()0m x <,满足题意; 若2440m =->,即10m -<<时,又()y n x =的对称轴11x m=->,且开口向下, 又()1220n m =+>,不妨取1min ,2b m ⎧⎫=-⎨⎬⎩⎭, 故当()1,x b ∈,'()m x 0>,()m x 单调递增,又()10m =, 故此时()0m x >,不满足题意,舍去; 综上所述:m 的取值范围为(],1-∞-. 【点睛】本题考察利用导数研究函数值域,有解问题,以及利用导数处理恒成立问题;其中第三问中,合理的处理12,,x x a 以及m 多变量问题,以及构造函数,是解决本题的关键,属综合困难题.6.(1)()f x 在(,1)-∞-,(3,)+∞上单调递增,在(1,3)-上单调递减 (2)证明见解析 【解析】 【分析】(1)直接求导后判断单调性即可;(2)先变形得到323033x a x x -=++,构造函数,求导后说明单调性即可证明. (1)当1a =时,()()321313f x x x x =-++,2()23f x x x '=--.令()0f x '=,解得1x =-或3x =,当()(),13,x ∞∞∈--⋃+时,()0f x '>;当(1,3)x ∈-时,()0f x '<, 故()f x 在(,1)-∞-,(3,)+∞上单调递增,在(1,3)-上单调递减.(2)()321()2333y f x a x a x x =-=-++,由于2330x x ++>,所以()20f x a -=等价于3230.33x a x x -=++设()32333x g x a x x =-++, 则()g x '()()222269033x x x xx ++=++,当且仅当0x =或3x =-时,()0g x '=,所以()g x 在(,)-∞+∞上单调递增,故()g x 至多有一个零点,从而()2y f x a =-至多有一个零点. 7.(1)单增区间为(0,1),单减区间为(1,)+∞(2)min ()2g x =,max 10()3g x =【解析】 【分析】(1)求导之后,分别令()0f x '>,()0f x '<即可求出()f x 的单调区间; (2)由有相同的极值点求出a 的值,再利用对勾函数的单调性求出()g x 在区间1,32⎡⎤⎢⎥⎣⎦上的最值.(1)()f x 的定义域:()0,∞+()()22122x f x x x x--'=-+=,由()0f x '>得01x <<,由()0f x '<得1x >, ∴()f x 的单增区间为()0,1,单减区间为()1,+∞. (2)()21ag x x ='-,由(1)知()f x 的极值点为1. ∵函数()f x 与()g x 有相同的极值点, ∴()10g '=,即10a -=,∴1a =,从而()1g x x x =+,()g x 在1,12⎡⎤⎢⎥⎣⎦上单调递减,在(]1,3上递增,又1522g ⎛⎫= ⎪⎝⎭,()1033g =,∴在区间1,32⎡⎤⎢⎥⎣⎦上,()()min 12g x g ==,()max 103g x =. 8.(1)()3232f x x x =+- (2)()2,2- 【解析】 【分析】(1)由已知可得()()2013f f ⎧-=⎪⎨-=-''⎪⎩,可得出关于实数a 、b 的方程组,解出这两个未知数的值,即可得出函数()f x 的解析式;(2)分析可知,直线y λ=与函数()f x 的图象有3个交点,利用导数分析函数()f x 的单调性与极值,数形结合可得出实数λ的取值范围.(1)解:因为()322f x x ax bx =++-,则()232f x x ax b '=++,由题意可得()()212401323f a b f a b ⎧-=-+=⎪⎨-=-+=-''⎪⎩,解得30a b =⎧⎨=⎩,所以,()3232f x x x =+-.当3a =,0b =时,()236f x x x '=+,经检验可知,函数()f x 在2x =-处取得极值. 因此,()3232f x x x =+-.(2)解:问题等价于()f x λ=有三个不等的实数根,求λ的范围.由()2360f x x x '=+>,得2x <-或0x >,由()2360f x x x '=+<,得20x -<<,所以()f x 在(),2-∞-、()0,∞+上单调递增,在()2,0-上单调递减, 则函数()f x 的极大值为()22f -=,极小值为()02f =-,如下图所示:由图可知,当22λ-<<时,直线y λ=与函数()f x 的图象有3个交点, 因此,实数λ的取值范围是()2,2-.9.(1)增区间为(),3-∞-,()2,+∞,减区间为()3,2- (2)()max 312f x =,()min 163f x =- 【解析】 【分析】(1)根据题意得()20f '=,进而得12a =,再根据导数与单调性的关系求解即可;(2)由(1)知[]4,3x ∈-时,()f x 的增区间为[)4,3--,(]2,3,减区间为()3,2-,进而求解()4f -,()3f -,()2f ,()3f 的值即可得答案. (1)解:(1)()226f x x ax '=+-,因为()f x 在2x =处取得极值,所以()24460f a '=+-=,解得12a =. 检验得12a =时,()f x 在2x =处取得极小值,满足条件.所以()26f x x x '=+-,令()0f x '>,解得3x <-或2x >,令()0f x '<,解得32x -<<, 所以()f x 的增区间为(),3-∞-,()2,+∞,减区间为()3,2-; (2)解:令()260f x x x '=+-=,解得3x =-或2x =,由(1)知()f x 的增区间为(),3-∞-,()2,+∞,减区间为()3,2-; 当[]4,3x ∈-时,()f x 的增区间为[)4,3--,(]2,3,减区间为()3,2- 又()()()()321138444642323f -=⨯-+⨯--⨯-+=, ()()()()321131333632322f -=⨯-+⨯--⨯-+=, ()321116222622323f =⨯+⨯-⨯+=-, ()32115333632322f =⨯+⨯-⨯+=-, 所以()max 312f x =,()min 163f x =-. 10.(1)单调增区间为2,2m ⎛⎫-⎪⎝⎭,单调减区间为[)2,,2,m ∞∞⎛⎤--+ ⎥⎝⎦ (2)20,4e ⎛⎤ ⎥-⎝⎦ 【解析】【分析】(1)先对函数求导,然后由导数的正负可求出函数的单调区间, (2)由函数()f x 在[]1,2上为增函数,求出函数的最值,则()()max min 24e 2()()e m g m f x f x -+=-=,然后将问题转化为()224e 24e e m -+≥,从而可求出实数m 的取值范围.(1)()()()()221422(0)e e x x mx m x mx x f x m -+-+-+-=>'=令()0f x '=,解得2x m =-或2x =,且22m-< 当2,x m ∞⎛⎤∈-- ⎥⎝⎦时,()0f x '≤,当2,2x m ⎛⎫∈- ⎪⎝⎭时,()0f x '>, 当[)2,x ∞∈+时,()0f x '≤即()f x 的单调增区间为2,2m ⎛⎫-⎪⎝⎭,单调减区间为[)2,,2,m ∞∞⎛⎤--+ ⎥⎝⎦ (2)由(1)知,当[]0,1,2m x >∈时,()0f x '>恒成立所以()f x 在[]1,2上为增函数,即()()max min 242()2,()1e e m m f x f f x f +====.()()12f x f x -的最大值为()()max min 24e 2()()e m g m f x f x -+=-= ()()1224e f x f x ⎡⎤≥-⎣⎦恒成立 ()224e 24e e m -+∴≥ 即24e m ≤-, 又0m > 20,4e m ⎛⎤∴∈ ⎥-⎝⎦故m 的取值范围20,4e ⎛⎤ ⎥-⎝⎦。

(word完整版)高中文科数学导数练习题

(word完整版)高中文科数学导数练习题

专题 8:导数(文)经典例题分析考点一:求导公式。

例 1. f (x) 是 f (x) 1 x32x 1 的导函数,则 f ( 1) 的值是。

3分析: f ' x x 22,所以 f ' 1 1 23答案: 3考点二:导数的几何意义。

例 2.已知函数 y f ( x) 的图象在点 M (1, f (1)) 处的切线方程是 y 1x 2 ,则2f (1) f (1)。

分析:由于 k 1,所以25,所以 f 15,所以221f ' 1,由切线过点M (1,f (1)),可得点M的纵坐标为2f 1 f ' 13答案: 3例 3.曲线y x32x24x 2 在点 (1, 3) 处的切线方程是。

分析: y'3x24x 4 ,点 (1, 3) 处切线的斜率为k 3 4 4 5 ,所以设切线方程为 y5x b ,将点 (1, 3) 带入切线方程可得b 2 ,所以,过曲线上点(1,3)处的切线方程为:5x y 2 0答案: 5x y 20评论:以上两小题均是对导数的几何意义的考察。

考点三:导数的几何意义的应用。

例 4.已知曲线 C :y x33x 22x,直线 l : y kx ,且直线l 与曲线C相切于点x0 , y0 x00 ,求直线l的方程及切点坐标。

解析:直线过原点,则 k y0 x0 0 。

由点x0, y0在曲线 C 上,则x0y 0 x 0 3 3x 0 22x 0 , y 0x 0 23x 02。

又 y' 3x 26x2 ,在x 0x 0 , y 0处 曲 线 C 的 切 线 斜 率 为 k f ' x 03x 0 2 6x 02 ,23x 0 22 6x 02 ,整理得: 2 x 0 3x 0 0 ,解得: x 03 0x 03x 0或 x 02(舍),此时,y 03 , k 1 。

所以,直线 l 的方程为 y1x ,切点坐标是8443 , 3 。

(完整word版)高二数学导数大题练习(详细答案)(word文档良心出品).doc

(完整word版)高二数学导数大题练习(详细答案)(word文档良心出品).doc

1.已知函数 f ( x) ax 3bx 2(c 3a 2b) x d 的图象如图所示.(I)求c, d的值;(II )若函数f (x)在x 2处的切线方程为3x y 11 0,求函数 f (x)的解析式;(III )在( II )的条件下,函数y f ( x) 与y 1 f (x) 5x m 的3图象有三个不同的交点,求m 的取值范围.2.已知函数 f (x) a ln x ax 3(a R) .(I)求函数f ( x)的单调区间;( II )函数 f ( x)的图象的在x 4 处切线的斜率为 3 , 若函数2g( x) 1x 3 x2 [ f '( x)m] 在区间(1,3)上不是单调函数,求m 的取值范围.3 23.已知函数 f ( x) x3 ax2 bx c 的图象经过坐标原点,且在 x 1 处取得极大值.(I)求实数a的取值范围;(II )若方程f ( x) (2a 3) 2 恰好有两个不同的根,求 f ( x) 的解析式;9(III )对于(II )中的函数f (x),对任意、R,求证:| f ( 2sin ) f ( 2sin ) | 81 .4.已知常数a0 ,e为自然对数的底数,函数 f ( x) e x x ,g(x)x 2 a ln x .(I)写出f (x)的单调递增区间,并证明e a a;(I I )讨论函数y g( x)在区间(1,e a)上零点的个数.5.已知函数 f (x)ln( x 1) k( x 1) 1.(I)当k 1时,求函数 f ( x)的最大值;(I I )若函数f ( x)没有零点,求实数k的取值范围;6.已知x 2 是函数f (x)(x2ax 2a 3)e x的一个极值点(e 2.718).(I)求实数a的值;(I I )求函数f ( x)在x [3,3]的最大值和最小值.27.已知函数 f ( x)x24x (2 a) ln x, (a R, a 0)(I)当 a=18 时,求函数 f ( x)的单调区间;(I I )求函数f (x)在区间[ e, e2]上的最小值.8.已知函数 f (x) x(x 6) a ln x在x (2, ) 上不具有单调性....(I)求实数a的取值范围;( II )若f ( x)是f (x)的导函数,设g( x) f ( x) 6 22,试证明:对任意两个不相38 x等正数 x1、x2,不等式 | g( x1 ) g ( x2 ) | | x1 x2 | 恒成立.279.已知函数 f ( x) 1 x2 ax (a 1) ln x, a 1.2(I)讨论函数 f (x)的单调性;(II )证明:若a 5, 则对任意 x1 , x2 (0, ), x1 x2 f ( x1 ) f (x2 ),有 1.x1 x210.已知函数 f (x) 1 x2 a ln x, g ( x) (a 1)x , a1.2(I)若函数f ( x), g( x)在区间[1,3]上都是单调函数且它们的单调性相同,求实数 a 的取值范围;(II )若a (1, e] ( e 2.71828 ) ,设 F (x) f (x) g (x) ,求证:当 x , x [1,a] 时,不1 2等式 | F ( x1 ) F ( x2 ) | 1 成立.11.设曲线C:f (x)ln x ex (e 2.71828), f ( x)表示 f ( x)导函数.(I )求函数f ( x)的极值;(II )对于曲线C上的不同两点A( x1, y1),B( x2, y2)x0( x1 ,x2 ) ,使直线AB的斜率等于 f ( x0 ) ., x1 x2,求证:存在唯一的12.定义F (x, y) (1 x) y , x, y ( 0, ) ,(I )令函数f (x) F (3,log2 (2 x x2 4)) ,写出函数 f ( x) 的定义域;使得(II )令函数g( x) F (1,log2 ( x3 ax2 bx 1)) 的图象为曲线,若存在实数bC曲线 C 在x0( 4 x0 1) 处有斜率为-8的切线,求实数a的取值范围;(III )当x, y N*且x y 时,求证 F ( x, y) F ( y, x) .高二数学 数部分大答案1.解:函数 f (x) 的 函数 f ' ( x) 3ax 2 2bx c 3a 2b (I )由 可知 函数 f (x) 的 象 点( 0,3),且 f ' (1)⋯⋯⋯⋯ (2 分)得d 3d 33a2b c 3a2b 0c 0(II )依 意f ' (2)3 且 f ( 2) 5⋯⋯⋯⋯ (4 分)12a 4b 3a 2b3 8a 4b 6a 4b 35解得 a 1,b 6 所以 f ( ) x 3 6 x 29 x 3 ⋯⋯⋯⋯ (8 分) x(III ) f ( x) 3x 2 12 x 9 .可 化 : x 3 6x 2 9 x 3 x 2 4x 3 5x m 有三个不等 根,即: g x x 3 7 x 2 8x m 与 x 有三个交点;g x 3x 214 x 8 3x 2 x 4 ,x,2 22,44,3 343g x+-+ g x增极大减极小增 g268 m, g 416 m .⋯⋯⋯⋯ (10 分)327当且 当 g268 m 0且g 416 m 0 ,有三个交点,327故而,16 m68所求.⋯⋯⋯⋯ (12 分)272.解:(I ) f '( x)a(1 x) ( x 0)(2 分)x当 a 0时, f ( x)的单调增区间为 0,1 , 减区间为 1,当 a 0时 , f (x)的单调增区间为 1,, 减区间为 0,1 ;当 a=1 , f ( x) 不是 函数(5 分)(II ) f ' (4) 3a3得 a 2, f ( x) 2 ln x 2x 34 2g (x)1 x3( m2) x 2 2x, g' (x) x 2 ( m 4)x 2 (6 分)3 2g (x)在区间 (1,3)上不是单调函数 , 且 g' (0) 2g' (1) 0, g' (3) 0.m 3,19, 3) (8 分)m 19 ,(10分)m (33(12 分)3.解:(I ) f (0)0 c 0, f ( x) 3x 2 2axb, f (1) 0 b 2a 3 f ( x)3x 22ax (2a 3) ( x 1)(3x 2a 3),由 f ( x)0 x1或 x2a 3,因 当 x1 取得极大 ,3所以2a 3 1a3 ,所以 a 的取值范围是 : (, 3) ;3(II )由下表:x(,1)12 a 32a 32a 3(1,)3(, )33f (x)+ 0- 0-极大极小f (x)增减增a6(2a3)2a 227依 意得:a6 ( 2a 3)2( 2a 3)2,解得: a9279所以函数 f (x) 的解析式是: f ( x) x 3 9x 2 15x(III ) 任意的 数,都有 22sin 2, 2 2 sin2,在区 [-2,2] 有:f (2)8 36 30 74, f (1) 7, f ( 2)8 36 30 2f ( x)的最大值是 f (1) 7, f ( x)的最小值是 f ( 2)8 36 3074函数 f ( x)在区间 [ 2,2] 上的最大 与最小 的差等于81,所以 | f (2 sin ) f (2sin ) | 81.4.解:(I ) f (x) e x1 0 ,得 f (x) 的 增区 是 (0, ) , ⋯⋯⋯⋯ (2 分)∵ a 0 ,∴ f (a) f (0) 1,∴ e aa 1 a ,即 e aa . ⋯⋯⋯⋯ (4 分)(II ) g (x)a2( x2a)( x 2a )2a,列表2x 2x2,由 g (x)0 ,得 xx2x( 0, 2a2a2a ))2(,22g (x)-+g( x)减极小增当 x2a,函数 yg( x) 取极小 g( 2a )22由( I ) eae 2 ae aa,∴ e aa ,∵a ,∴ e 2 aa22g (1) 1 0 , g(e a ) e 2 aa 2 (e a a)(e aa) 0a (1 ln a) ,无极大 .2 2 2a 2⋯⋯⋯⋯ (8 分)( i )当( ii )当2a 1 ,即 0 a 2 ,函数 yg( x) 在区 (1, e a ) 不存在零点22a1 ,即 a 22若 a (1 ln a) 2 2若 a (1 ln a) 2 2若a(1 ln a) 2 2上所述, y0 ,即 2 a 2e ,函数 y g (x) 在区 (1,e a ) 不存在零点0 ,即 a 2e ,函数 yg( x) 在区 (1, e a ) 存在一个零点 xe ;0 ,即 a 2e ,函数 y g( x) 在区 (1, e a ) 存在两个零点;g(x) 在 (1,e a) 上,我 有 :当 0 a 2e ,函数 f (x) 无零点; 当 a 2e ,函数 f ( x) 有一个零点;当 a 2e ,函数 f (x) 有两个零点.5.解:(I )当 k1 , f( x)2 xx 1f ( x) 定 域 ( 1,+),令 f ( x) 0, 得x2 ,∵当 x (1,2)时 , f ( x) 0 ,当 x (2, )时, f (x) 0 ,∴ f (x)在 (1,2) 内是增函数, 在(2, ) 上是减函数 ∴当 x 2 , f ( x) 取最大 f (2) 0 (II )①当 k 0时 ,函数 y ln( x 1) 象与函数 y k( x 1) 1 象有公共点,∴函数 f ( x) 有零点,不合要求;②当 k 0时 ,11 k kx k ( x 1 k )f ( x)kk⋯⋯⋯⋯⋯⋯ (6 分)1x1x令x1f ( x)0, 得xk1,∵ xk 1 时, f ( x) 0, x1,) 时, f( x) 0 ,k (1,k) (1 ∴11 k在(1,1) 内是增函数,在 [1 ) 上是减函数,f (x)k,1k∴ f ( x) 的最大 是 f (1ln k,)k∵函数 f ( x) 没有零点,∴ ln k 0 , k1 ,因此,若函数 f ( x) 没有零点, 数 k 的取 范 k(1,)6. 解:(I )由 f (x)( x 2 ax 2a 3)e x 可得f (x)(2 x a)e x (x 2 ax 2a 3)e x [ x 2 (2 a) x a3]e x ⋯⋯ (4 分)∵ x 2 是函数 f (x) 的一个极 点,∴ f (2)∴ (a 5)e 2 0 ,解得 a5,1) 增,在 ( 2,) 增,(II )由 fx( x2)( x 1) ex0 ,得 f ( x) 在 (( )由 f (x) 0 ,得 f (x) 在在 (1,2) 减∴ f (2)e 2 是f ( x) 在 x [ 3,3] 的最小 ;⋯⋯⋯⋯⋯ (8 分)e 232e 23e 23f ( 3 ) 7 , f (3)e 3∵ f (3) f (3 ) e 37 1 ( 4e e 7) 0, f (3) f (3 )242442∴ f (x) 在 x [ 3,3] 的最大 是 f (3)e 3 .27.解:(Ⅰ) f (x)x 2 4x 16 ln x ,f ' ( x) 2x 4162( x 2)( x 4)2 分x x由 f ' (x) 0 得 ( x 2)( x 4) 0 ,解得 x4 或 x2注意到 x 0,所以函数 f ( x) 的 增区 是( 4,+∞) 由 f ' (x) 0 得 ( x 2)( x 4) 0 ,解得 -2< x <4, 注意到 x 0,所以函数 f ( x) 的 减区 是 (0,4] .高二数学 数部分大上所述,函数 f ( x) 的 增区 是( 4,+∞), 减区 是 ( 0,4] 6 分(Ⅱ)在 x [e,e 2 ] , f ( x) x 2 4x (2 a) ln x 所以 f ' ( x) 2x 42 a2x 2 4x 2 a ,g ( x) 2x 2xx 4x 2 a当 a 0 ,有 △=16+4×2 ( 2 a) 8a 0 ,此 g (x) 0,所以 f ' (x) 0 , f ( x) 在[ e, e 2 ] 上 增,所以 f (x)min f (e) e 2 4e 2 a 8 分当 a 0 , △=16 4 2(2 a) 8a 0 ,令 f ' (x) 0 ,即 2x 2 4x 2 a 0 ,解得 x 令 f ' (x) 0 ,即 2x 2 4x 2 a0 , ①若 12a≥e 2,即 a ≥2( e21)2 ,2f (x) 在区 [ e, e 2 ] 减,所以 f ( x)min②若 e 12a e 2 ,即 2(e 1) 2a 2(e 2212a 或 x 1 2a ; 22解得 12a x 12a .22f (e 2 ) e 4 4e 2 4 2a .1)2 ,f (x) 在区 [ e,12a] 上 减,在区 [12a, e 2 ] 上 增,22所以 f (x)minf (12a ) a 2a3 ( 2 a) ln(12a) .222③若 12a e(e 1) 2,f ( x)在区[ e, e 2 ]增,2 ≤ ,即 0a ≤2所以 f (x)min f (e) e 2 4e 2 a上所述,当 a ≥2(e 21)2 , f ( x) mina 4 4e 2 4 2a ;当 2(e 1) 2 a 2(e 2 1) 2 , 当 ≤1)2, f ( x) min e 2a 2(e8.解:(I )f ( x)2x a 2x 26xf ( x)mina2a 3 ( 2 a) ln(12a ) ;2 24e2 a14 分6x a ,x∵ f ( x) 在 x (2,) 上不具有 性, ∴在 x (2,) 上 f ( x) 有正也有 也有0,...即二次函数 y 2x 2 6x a 在 x (2,) 上有零点 ⋯⋯⋯⋯⋯⋯ (4 分)∵ y 2x 2 6xa 是 称 是 x3,开口向上的抛物 ,∴ y 2 22 6 2 a2的 数 a 的取 范 ( ,4)(II )由( I ) g( x)2x a 22,x x方法 1: g( x)f (x)2 6 2 xa 2 ( x 0) ,x 2x x 2高二数学 数部分大∵ a 4 ,∴g ( x)2a 42442x 34x 4 ,⋯⋯⋯⋯ (8 分)x2x 3x2x 3x3h( x) 244, h ( x)8 12 4(2 x 3)x 2x 3x 3x 4x 4h( x) 在 (0, 3 ) 是减函数,在 ( 3 , ) 增函数,当 x3, h( x) 取最小382 2 227∴从而 g ( x) 38 ,∴ ( g( x) 380 ,函数 y g( x) 38x 是增函数,x)27 27 27x 1、x 2 是两个不相等正数,不妨x 1x 2 , g (x 2 )3838x 2 g ( x 1 )x 12727∴ g ( x 2 ) g (x 1 )38( x 2 x 1 ) ,∵ x 2x 10 ,∴ g ( x 1 ) g( x 2 ) 3827x 1 x 2 27∴g( x 1 ) g ( x 2 )38 ,即 | g ( x 1 )g ( x 2 ) | 38x 2 |⋯⋯⋯⋯⋯⋯ (12 分)x 1 x 227| x 127方法 2: M ( x 1 , g( x 1 )) 、 N (x 2 , g( x 2 )) 是曲 yg( x) 上任意两相异点,g ( x 1 ) g( x 2 )22( x 1 x 2 ) a ,12 21 2,x 1 x 2x 12x 22x 1 x 2x xx xa 42( x 1 x 2 )a(4a44⋯⋯⋯ (8 分)2 x 12 x 22x 1x 22x 1 x 2 )3x 1 x 22( x 1 x 2 )3 x 1x 2t1 ,t 0 ,令 k MNu(t)2 4t3 4t 2 , u (t)4t(3t2),x 1 x 2由 u (t)0,得 t2, 由 u (t) 0 得 0 t2 ,2323u( t) 在 (0, ) 上是减函数,在 ( ,) 上是增函数,33u(t) 在 t2 取极小38, u(t)38 ,∴所以 g( x 1 )g( x 2 ) 3832727x 1x 227即 | g ( x ) g( x ) |38| x x 2 |1227 1x 29. (1) f ( x) 的定 域 (0,) , f ' ( x)x a a 1 ax a 1 ( x 1)( x 1 a)xxx(i )若 a 1 1, 即 a 2 , f ' ( x)( x 1) 2 . 故 f ( x) 在 (0,) 增加.(ii )若 ax1 1,而 a 1,故1 a 2,则当 x (a 1,1)时 , f ' (x) 0.当 x (0, a 1) 及 x (1,)时 , f ' ( x)0,故 f ( x)在(a 1,1) 减少,在( 0,a-1),(1,) 增加.(iii )若 a1 1,即 a 2,同理可得 f ( x)在 (1, a 1)单调减少 ,在 (0,1), (a 1,) 增加.(II )考 函数 g( x)f ( x) x1 x2 ax (a1) ln x x.2由 g ' ( x) x ( a 1)a 1 2 x a 1(a 1) 1 ( a 1 1) 2 .x x由于 a a5,故 g' ( x) 0,即 g( x)在 (0, )单调增加 ,从而当 x 1 x 2 0 有g(x 1 ) g( x 2 )0,即 f (x 1 )f (x 2 ) x 1x 2 0,高二数学导数部分大题练习故f (x 1)f ( x 2 ) 1 ,当 0 x 1 x 2 时,有 f (x 1 ) f ( x 2 ) f (x 2 ) f ( x 1 )1x 1x 2x 1x 2x 2 x 110.解:(I ) f (x)aa 1 ,x, g ( x)x∵函数 f (x), g(x) 在区间 [1,3] 上都是单调函数且它们的单调性相同,∴当 x [1,3] 时, f (x) g ( x) ( a 1)( x 2 a) 0 恒成立,即 (a 1)( x 2a) 0 恒x成立,∴∵a 1在 x [1,3] 时恒成立,或 a 1在 x [1,3] 时恒成立,ax 2 ax 2 9 x1 ,∴ a1 或 a 9(II ) F ( x)1 x2 a ln x,(a 1)x , F (x) xa (a 1) ( x a)( x 1)2xx ∵ F ( x) 定义域是 (0, ) , a (1, e] ,即 a 1∴ F ( x) 在 (0,1) 是增函数,在 (1,a) 实际减函数,在 ( a, ) 是增函数 ∴当 x 1 时, F ( x) 取极大值 MF (1)a 1 ,2当 x a 时, F ( x) 取极小值 mF (a) aln a1 a2 a ,2∵ x , x2 [1,a] ,∴121| F ( x ) F ( x ) | | M m | M m设 G (a) M m1 a2 a ln a 1,则 G (a) a ln a 1 ,2 2∴ [G (a)]11,∵ a (1, e] ,∴ [ G (a)] 0a∴ G ( a) a ln a 1 在 a (1, e] 是增函数,∴ G ( a)G (1)∴ G(a) 1 a2a ln a1在 a (1, e] 也是增函数221)2∴ G (a) G(e) ,即 G (a) 1 e 2 e 1 (e 1,22 2而 1 e 2 e 1 (e 1)21 (3 1)2 1 1 ,∴ G (a) M m 12 2 2 2 ∴当 x 1 , x 2 [1,a] 时,不等式 | F (x 1 ) F (x 2 ) | 1 成立.11.解:(I ) f ( x) 1 e 1 ex 1x x 0 ,得 xe当 x 变化时, f (x) 与 f ( x) 变化情况如下表:x(0, 1)e1( 1, )eef ( x)+ 0-f ( x) 单调递增 极大值 单调递减 ∴当 x 1 时, f ( x) 取得极大值 f (1)2 ,没有极小值;ee(II )(方法 1)∵ f (x 0 ) k AB ,∴1e ln x 2 ln x 1e( x 2x 1),∴x 0x 2 x 1x 2x 1lnx2x 0 x 1高二数学 数部分大即 x 0 lnx2( x 2 x 1 )x 1g (x 1) x 1 lnx 2( x 2x 1∵ x 1 x 2 ,∴ g (x 1)0 , g (x) x lnx 2( x 2 x 1 )x 1/lnx2x 1) , g (x 1) x 11 0 , g (x 1) 是 x 1 的增函数,x 1g(x 2 ) x 2 lnx 2( x 2 x 2 ) 0 ;x 2g (x 2 ) x 2 lnx 2( x 2/ lnx 2 1 0 , g( x 2 ) 是 x 2 的增函数,x 1 ) ,g(x 2 ) x2x 1x 1∵ x 1x 2 ,∴ g (x 2 ) g( x 1 )x 1 lnx 1(x 1 x 1) 0 ,x 1∴函数 g ( x) x lnx 2(x 2 x 1 ) 在 ( x 1 , x 2 ) 内有零点 x 0 ,x 1又∵ x 21, ln x 2 0,函数 g(x) xln x 2( xx )在 1 2) 是增函数,x 1x 1x 121( x , x∴函数 g ( x) x 2 x 1 ln x 2在 ( x 1 ,x 2 ) 内有唯一零点 x 0 ,命 成立xx 1(方法 2)∵ f (x 0 )kAB ,∴1e ln x 2 ln x 1 e( x 2x 1),x 0x 2 x 1即 x 0 ln x 2 x 0 ln x 1 x 1 x 2 0 , x 0 ( x 1 , x 2 ) ,且 x 0 唯一g ( x) x ln x 2 x ln x 1 x 1 x 2 , g ( x 1 ) x 1 ln x 2 x 1 ln x 1 x 1 x 2 , 再 h(x) x ln x 2x ln x x x 2 , 0x x 2 ,∴ h (x) ln x 2ln x 0∴ h( x) x ln x 2 x ln x x x 2 在 0 x x 2 是增函数∴ g ( x 1 ) h( x 1 ) h(x 2 ) 0 ,同理 g (x 2 ) 0 ∴方程 x ln x 2 x ln x 1 x 1 x 2 0 在 x 0 ( x 1 , x 2 ) 有解∵一次函数在 ( x 1 , x 2 ) g( x) (ln x 2ln x 1) x x 1 x 2 是增函数∴方程 x ln x 2 x ln x 1 x 1 x 2 0 在 x 0 ( x 1 , x 2 ) 有唯一解,命 成立 ⋯⋯⋯(12 分)注: 用函数 性 明,没有去 明曲C 不存在拐点,不 分. 12.解:(I ) log 2 (2 x x 2 4) 0 ,即 2x x 2 4 1得函数 f ( x) 的定 域是 ( 1,3) , (II ) g( x) F (1,log 2 ( x 2 ax 2 bx 1)) x 3 ax 2 bx 1,曲 C 在x 0 ( 4x 01) 有斜率 - 8 的切 ,又由 log 2 (x 3ax 2bx 1)0, g ( x) 3x 22axb,3x 02 2ax 0 b8∴存在 数 b 使得①4 x 01②有解,由①得x 03ax 02bx 0 1③ 1b8 3x 02 2ax 0 , 代入③得 2x 02 ax 0 8 0 ,由 2x 02 ax 08 0 有4 x 01解, ⋯⋯⋯⋯⋯⋯⋯⋯ (8 分)高二数学数部分大方法 1:a 2( x) 8 ,因 4 x0 1 ,所以 2( x0 ) 8 [8,10) ,( x0 ) ( x0 )当 a 10 ,存在数 b ,使得曲C在x0( 4 x0 1) 有斜率-8的切方法 2:得2 ( 4)2⋯⋯⋯⋯⋯⋯(10 分)a ( 4) 8 0或 2 ( 1) 2 a ( 1) 8 0 ,a 10或a 10, a 10.方法 3:是 2 ( 4) 2 a ( 4) 8 0的集,即 a 102 ( 1)2 a ( 1) 8 0ln(1 x) , x xln(1 x)(III )令h( x)1,由h( x) 1 xx2 x又令 p( x) x ln(1 x), x 0, p ( x) 1 1 x 0 ,x (1 x) 2 1 x (1 x) 21p( x)在[ 0, )减. ⋯⋯⋯⋯⋯⋯⋯⋯(12)分当 x 0时有 p( x) p(0) 0, 当x 1时有 h ( x) 0,h( x)在[1, ) 减,1 x y时,有 ln(1 x) ln(1 y), y ln(1 x) x ln(1 y), (1 x) y (1 y)x,x y当 x, y N 且 x y时 F (x, y) F ( y, x).。

导数文科测试题及答案

导数文科测试题及答案

导数文科测试题及答案一、单项选择题(每题3分,共30分)1. 函数y=x^2的导数是()A. 2xB. x^2C. 2D. x答案:A2. 函数y=3x的导数是()A. 3B. 3xC. 1D. 0答案:A3. 函数y=x^3的导数是()A. 3x^2B. x^3C. 3D. x^2答案:A4. 函数y=sin(x)的导数是()A. cos(x)B. sin(x)C. -sin(x)D. -cos(x)答案:A5. 函数y=e^x的导数是()A. e^xB. e^(-x)C. 1D. 0答案:A6. 函数y=ln(x)的导数是()A. 1/xB. xC. ln(x)D. 1答案:A7. 函数y=1/x的导数是()A. -1/x^2B. 1/x^2C. -1/xD. 1/x答案:A8. 函数y=x^(1/2)的导数是()A. 1/2x^(-1/2)B. 1/2x^(1/2)C. 1/2D. 2x^(-1/2)答案:A9. 函数y=tan(x)的导数是()A. sec^2(x)B. tan(x)C. 1D. sec(x)答案:A10. 函数y=arcsin(x)的导数是()A. 1/sqrt(1-x^2)B. 1/xC. xD. sqrt(1-x^2)答案:A二、填空题(每题4分,共20分)11. 函数y=x^4的导数是________。

答案:4x^312. 函数y=cos(x)的导数是________。

答案:-sin(x)13. 函数y=ln(1+x)的导数是________。

答案:1/(1+x)14. 函数y=x^(-2)的导数是________。

答案:-2x^(-3)15. 函数y=arccos(x)的导数是________。

答案:-1/sqrt(1-x^2)三、解答题(每题10分,共50分)16. 求函数y=x^2-2x+1的导数。

答案:y'=2x-217. 求函数y=e^(2x)的导数。

高中文科数学导数练习题(优选.)

高中文科数学导数练习题(优选.)

最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改专题8:导数(文)经典例题剖析考点一:求导公式。

例1. ()f x '是31()213f x x x =++的导函数,则(1)f '-的值是 。

考点二:导数的几何意义。

例 2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是122y x =+,则(1)(1)f f '+= 。

例3.曲线32242y x x x =--+在点(13)-,处的切线方程是 。

考点三:导数的几何意义的应用。

例 4.已知曲线C :x x x y 2323+-=,直线kx y l =:,且直线l 与曲线C 相切于点()00,y x 00≠x ,求直线l 的方程及切点坐标。

考点四:函数的单调性。

例5.已知()1323+-+=x x ax x f 在R 上是减函数,求a 的取值范围。

考点五:函数的极值。

例6. 设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值。

(1)求a 、b 的值;(2)若对于任意的[03]x ∈,,都有2()f x c <成立,求c 的取值范围。

考点六:函数的最值。

例7. 已知a 为实数,()()()a x x x f --=42。

求导数()x f ';(2)若()01'=-f ,求()x f 在区间[]2,2-上的最大值和最小值。

考点七:导数的综合性问题。

例8. 设函数3()f x ax bx c =++(0)a ≠为奇函数,其图象在点(1,(1))f 处的切线与直线670x y --=垂直,导函数'()f x 的最小值为12-。

(1)求a ,b ,c 的值;(2)求函数()f x 的单调递增区间,并求函数()f x 在[1,3]-上的最大值和最小值。

(完整word版)高二数学导数大题练习题

(完整word版)高二数学导数大题练习题

(完整word 版)高二数学导数大题练习题一、解答题 1.已知函数()1e -=xx f x . (1)求()f x 极值点;(2)若()()4g x f x =-,证明:2x >时,()()f x g x >成立.2.已知函数e ()(ln )=--+xf x a x x a x(a 为实数).(1)当1a =-时,求函数()f x 的单调区间;(2)若函数()f x 在(0,1)内存在唯一极值点,求实数a 的取值范围. 3.对于正实数a ,b (a b >),我们熟知基本不等式:()()G a b A a b <,,,其中()G a b ,a ,b 的几何平均数,()2a bA a b +=,为a ,b 的算术平均数.现定义a ,b 的对数平均数:(),ln ln a bL a b a b-=-.(1)设1x >,求证:12ln x x x<-,并证明()()G a b L a b <,,;(2)若不等式()()(),,,G a b A a b m L a b +>⋅对任意正实数a ,b (a b >)恒成立,求正实数m 的取值范围.4.已知()2,13,1x x x f x x x ⎧-≥-=⎨+<-⎩,()()ln g x x a =+.(1)存在0x 满足:()()00f x g x =,()()00f x g x ''=,求a 的值; (2)当4a ≤时,讨论()()()h x f x g x =-的零点个数.5.已知函数()()2e 2e 1e 2e x xf x x =-++.(1)若函数()()g x f x a =-有三个零点,求a 的取值范围. (2)若()()()()123123f x f x f x x x x ==<<,证明:120x x +>.6.已知函数()()e sin x f x rx r *=⋅∈N ,其中e 为自然对数的底数.(1)若1r =,求函数()y f x =的单调区间;(2)证明:对于任意的正实数M ,总存在大于M 的实数a ,b ,使得当[,]x a b ∈时,|()|1f x ≤.7.已知函数()()24e 1xf x x =-+.(1)求()f x 的极值.(2)设()()()f m f n m n =≠,证明:7m n +<. 8.已知函数()ln xf x x=, ()()1g x k x =-.(1)证明: R k ∀∈,直线y g x 都不是曲线()y f x =的切线;(2)若2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立,求实数k 的取值范围.9.已知函数2()e 1x f x ax x =---. (1)当1a =-时,讨论()f x 的单调性; (2)当0x ≥时,321()22f x x ax ≥-恒成立,求实数a 的取值范围.10.已知函数e ()(1)1xf x b x a=+-+(1)当114a b ==-,时,求曲线()y f x =在点(0,f (0))处的切线方程; (2)当1a =时,()2f x ≥恒成立,求b 的值.【参考答案】一、解答题1.(1)极大值点为2x =,无极小值点; (2)证明见解析. 【解析】 【分析】(1)利用导数求出函数的单调区间即得解;(2)令()()()()4e 31e e xx x x F x f x g x --=-=-,利用导数求出函数()F x 的最小值即得证. (1)解:由题意,得()2e xxf x -'=, 令()0f x '>,得2x <;()0f x '<,得2x >; 列表如下:所以极大值点为2x =,无极小值点(2)证明:()()()4e 34e x x g xf x -=-=,令()()()()4e 31e e xx x x F x f x g x --=-=-, ∴()()()()42442e e e 22e e ex xx x x x x F x +----'=-=. 当2x >时,20x -<,24x >,从而42e e 0x -<,∴()0F x '>,()F x 在()2,+∞上是增函数,∴()()221120e e F x F >=-=. ∴当2x >时,()()f x g x >成立.2.(1)单调递减区间为(0,1),递增区间为(1,)+∞ (2)(e,)+∞ 【解析】 【分析】(1)求导2(1)(e )()--'=x x ax f x x,易知1a =-时,e 0-=+>x x ax e x ,然后由()0f x '<和()0f x '>求解;(2)由(1)知,0a 时,不符合题意, 0a >时,根据函数()f x 在(0,1)内存在唯一极值点,得到()0f x '=在(0,1)内存在唯一变号零点,转化为exa x=在(0,1)内存在唯一根求解. (1)解:函数()y f x =的定义域为(0,)+∞,22e (1)1(1)(e )()1---⎛⎫'=--= ⎪⎝⎭x x x x ax f x a x x x . 当1a =-时,e 0-=+>x x ax e x ,所以当(0,1)x ∈时,()0f x '<;当(1,)x ∈+∞时,()0f x '>. 所以()f x 的单调递减区间为(0,1),递增区间为(1,)+∞. (2)由(1)知,当0a 时,()f x 在(0,1)内单调递减, 所以()f x 在(0,1)内不存在极值点;当0a >时,要使函数()f x 在(0,1)内存在唯一极值点,则2(1)(e )()0--'==x x ax f x x 在(0,1)内存在唯一变号零点, 即方程e 0x ax -=在(0,1)内存在唯一根,所以e xa x=在(0,1)内存在唯一根,即y a =与()ex g x x=的图象在(0,1)内存在唯一交点,因为2(1)e ()0-'=<xx g x x , 所以()g x 在(0,1)内单调递减.又(1)e g =, 当0x →时,()g x ∞→+,所以e a >,即a 的取值范围为(e,)+∞. 3.(1)证明见解析 (2)02m <≤ 【解析】 【分析】(1)令()11ln 2f x x x x ⎛⎫=-- ⎪⎝⎭,利用导数证明当1x >时,()0f x <,即可得到12ln x x x<-. 用分析法证明()()G a b L a b <,,.(2)把题意转化为1112ln a a b m a b b -⎛⎫⋅+ ⎪⎝⎭恒成立.令)1t t =>,即为1ln 01t m t t -⋅-<+恒成立.令()()1ln 11t g t m t t t -=⋅->+,分2m >和02m <≤两种情况求出正实数m 的取值范围. (1)令()11ln 2f x x x x ⎛⎫=-- ⎪⎝⎭,定义域为()0,+∞.则()()222221111212222x x x f x x x x x ---'=--==-. 所以当1x >时,()0f x '<,()f x 在()1,+∞上单调递减. 又()10f =,所以当1x >时,()0f x <.所以当1x >时,11ln 2x x x ⎛⎫<- ⎪⎝⎭,即12ln x x x<-.(*)要证()()G a b L a b <,,ln ln a ba b--,只需证ln ab<令)1t t =>,则由(*),得12ln t t t <-.所以()()G a b L a b <,,.(2)由()()(),,,G a b A a b m L a b +<⋅恒成立,得ln ln 2a b a b m a b -+⋅-恒成立,即1112ln aa b m a b b-⎛⎫⋅<+ ⎪⎝⎭恒成立.令)1t t =>,由()221112ln 2t m t t t -⋅<++恒成立,得()1112ln 2t m t t -⋅<+恒成立. 所以1ln 01t m t t -⋅-<+恒成立. 令()()1ln 11t g t m t t t -=⋅->+,则 ()()()()()()222222121121111mt t t m t g t m t t t t t t -+-+--'=⋅-==++⋅+⋅. (注:()10g =) i.当0∆>,即2m >时,易知方程()22110t m t -+--=有一根1t 大于1,一根2t 小于1,所以()g t 在()11,t 上单调递增.所以()()110g t g >=,不符合题意. ii.当02m <≤时,有()()()222214110mt t t t t -+≤-+=--<, 所以()0g t '<,从而()g t 在()1,+∞上单调递减. 故当1t >时,恒有()()10g t g <=,符合题意. 综上可知,正实数m 的取值范围为02m <≤. 【点睛】导数的应用主要有:(1)利用导函数几何意义求切线方程;(2)利用导数研究原函数的单调性,求极值(最值); (3)利用导数求参数的取值范围. 4.(1)0a =或4; (2)答案见解析. 【解析】 【分析】(1)在1x ≥-有()2000ln 21x x x -=--,构造中间函数并利用导数研究单调性和零点情况,求参数a ,在1x <-上根据已知列方程组求参数a ,即可得结果. (2)讨论a 的范围,利用导数研究()h x 的单调性,结合零点存在性定理判断各情况下零点的个数. (1)1x ≥-时()2f x x x =-,原条件等价于200000ln()1210x x x a x x a ⎧-=+⎪⎨-=>⎪+⎩,∴()2000ln 21x x x -=--,令()()2ln 21x x x x ϕ=-+-,则()221021x x x ϕ'=-+>-, ∴()ϕx 为增函数,由()10ϕ=,则()0x ϕ=有唯一解01x =,所以0a =,1x <-时,()000311x ln x a x a ⎧+=+⎪⎨=⎪+⎩,解得:4a =. 综上,0a =或4. (2)ⅰ.0a <时0x a +>,则0x a >->,()()()22ln ln h x x x x a x x x x ϕ=--+>--=,而()121x x x ϕ'=--,()2120x xϕ''=+>,即()x ϕ'为增函数,又()01ϕ'=, 当()0,1∈x 时()0ϕ'<x ;当()1,x ∈+∞时()0ϕ'>x ,故()()10x ϕϕ≥=, ∴()0h x >恒成立,故0a <时零点个数为0;ⅱ.0a =时,()2ln h x x x x =--,由①知:仅当1x =时()0h x =,此时零点个数为1.ⅲ.01a <≤时,()()()2ln h x x x x a x a =--+>-,则()121h x x x a'=--+,()()2120h x x a ''=+>+,∴()h x '为增函数,2102a h a a ⎛⎫'-=---< ⎪⎝⎭,()11101h a '=->+, ∴()0h x '=仅有一解,设为0(,1)2ax ∈-,则在()0,a x -上()0h x '<,在()0,x +∞上()0h x '>,所以()h x 最小值为()0h x ,故()()010h x h ≤<.又2ln 02422a aa a h ⎛⎫-=+-> ⎪⎝⎭,()()22ln 20h a =-+>,故0,2a x ⎛⎫- ⎪⎝⎭、()0,2x 上()h x 各有一零点,即()h x 有2个零点.ⅳ.14a <<时,(),1a --上()()()()3ln 3ln 4h x x x a x x p x =+-+>+-+=,()()()1103304p x x p x p x '=-=⇒=-⇒≥-=+,∴()h x 无零点,则[)1,-+∞上()()2ln h x x x x a =--+,()121h x x x a'=--+,()()2120h x x a ''=+>+,∴()h x '为增函数,()11301h a '-=--<-+,()11101h a'=->+, ∴()0h x '=有唯一解,设为x ',则()()10h x h '≤<,又()()12ln 10h a -=--+>,()()22ln 20h a =-+>,故()1,x '-、(),2x '上,()h x 各有一个零点,即()h x 有2个零点.ⅴ.4a =时,由(1)知:(]4,1--上()h x 有唯一零点:3x =-;在()1,-+∞上()()2ln 4h x x x x =--+,则()1214h x x x '=--+,()2120(4)h x x ''=+>+, 所以()h x '为增函数,()11301h a '-=--<-+,()4105h '=>,故1(1,1)x ∃∈-使1()0h x '=,则1(1,)x -上()0h x '<,()h x 递减;1(,)x +∞上()0h x '>,()h x 递增; 故1()()h x h x ≥,而1()(1)ln 50h x h <=-<,又(1)2ln30h -=->,(2)2ln 60h =->,故在1(1,)x -、1(),2x 上()h x 各有一个零点, 所以()h x 共有3个零点.综上:0a <时()h x 零点个数为0;0a =时()h x 零点个数为1;04a <<时()h x 零点个数为2;4a =时()h x 零点个数为3. 【点睛】 关键点点睛:(1)根据分段函数的定义域讨论x ,结合函数、方程思想求参数.(2)讨论参数a ,利用二阶导数研究()h x '的单调性,进而判断其符号研究()h x 单调性,并结合零点存在性定理判断区间零点的个数. 5.(1)2(e ,2e 1)--- (2)证明见详解 【解析】 【分析】(1)令e x t =换元得函数2()2(e 1)2eln ,0h t t t t t =-++>,然后通过导数求极值,根据y a =与函数图象有三个交点可得;(2)构造函数1()()()m t h t h t=-,通过导数研究在区间(1,e)上的单调性,然后由单调性结合已知可证.(1)令e x t =,则ln x t =,记2()2(e 1)2eln ,0h t t t t t =-++> 令2e 2(1)(e)()22(e 1)0t t h t t t t--'=-++==,得121,e t t == 当01t <<时,()0h t '>,1e t <<时,()0h t '<,t e >时,()0h t '>所以当1t =时,()h t 取得极大值(1)2e 1h =--,e t =时,()h t 取得极大值2(e)e h =-, 因为函数()()g x f x a =-有三个零点⇔()y h t =与y a =有三个交点, 所以2e 2e 1a -<<--,即 a 的取值范围为2(e ,2e 1)---. (2)记221111()()()2(e 1)2eln 2(e 1)2eln m t h t h t t t tt t t=-=-++-++- 2212(e 1)2(e 1)4eln t t t t t+=-++-+ 4323234e 22(e 1)22(e 1)4e 2(e 1)2()22(e 1)t t t t m t t t t t t +-++-++'=-+++-=记432()22(e 1)4e 2(e 1)2n t t t t t =-++-++ 则32()86(e 1)8e 2(e 1)n t t t t '=-++-+ 记32()86(e 1)8e 2(e 1)s t t t t =-++-+ 则2()2412(e 1)8e s t t t '=-++易知()s t '在区间(1,e)上单调递增,所以()(1)124e 0s t s ''>=-> 所以()s t 在区间(1,e)上单调递增,所以()(1)0s t s >= 所以()n t 在区间(1,e)上单调递增,所以()(1)0n t n >= 所以()m t 在区间(1,e)上单调递增因为()()()()123123f x f x f x x x x ==<<,记312123e ,e ,e x x xt t t ===所以()()()()123123h t h t h t t t t ==<< 由(1)可知,12301e t t t <<<<<所以2221()()()(1)0m t h t h m t =->=,即221()()h t h t >又()()12h t h t =,所以121()()h t h t >因为21e t <<,所以2101t <<由(1)知()h t 在区间(0,1)上单调递增,所以121t t >,即1212e1x xt t +=> 所以120x x +> 【点睛】本题第二问属于极值点偏移问题,关键点在于构造一元差函数,通常构造成00()()()F x f x x f x x =+--或0()()(2)F x f x f x x =--,本题由于采取了换元法转化问题,因此构造函数为1()()()m t h t h t=-. 6.(1)增区间为32,2,44k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦减区间为52,2,44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(2)证明过程见解析. 【解析】 【分析】(1)对函数求导,利用辅助角公式合并为同名三角函数,利用单调增减区间代入公式求解即可.(2)将绝对值不等式转化为11sin e e xxrx ⎛⎫⎛⎫-≤≤ ⎪ ⎪⎝⎭⎝⎭,移向构造新函数,利用导数判定单调性,借助零点定理和隐零点证明新构造函数恒正,再结合三角函数的特有的周期特点寻找M 即可. (1)()e (sin cos )sin 4x x f x x x x π⎛⎫'=+=+ ⎪⎝⎭令22242k x k πππππ-≤+≤+,得32,244x k k ππππ⎡⎤∈-+⎢⎥⎣⎦令322242k x k ππππ+≤+≤π+,得24x k ππ⎡∈+⎢⎣,524k ππ⎤+⎥⎦当32,244x k k ππππ⎡⎤∈-+⎢⎥⎣⎦时, ()0f x '>,()f x 单调递增当24x k ππ⎡∈+⎢⎣,524k ππ⎤+⎥⎦时, ()0,()f x f x '< 单调递減 综上() f x 单调递增区间为32,2,44k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦单调递减区间为 52,2,44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(2)要证|()|1f x ≤,即证e sin 1xrx ⋅≤,即证11sin =e e xx rx ⎛⎫≤ ⎪⎝⎭即证 11sin e e x xrx ⎛⎫⎛⎫-≤≤ ⎪ ⎪⎝⎭⎝⎭在[,]x a b ∈时成立即可,[,]x a b ∈时,1sin 0e 1sin 0e xxrx rx ⎧⎛⎫-≤⎪ ⎪⎪⎝⎭⎨⎛⎫⎪+≥ ⎪⎪⎝⎭⎩. 令1()sin e x h x rx ⎛⎫=- ⎪⎝⎭, 1()cos e xh x r rx ⎛⎫'=+ ⎪⎝⎭当222,k k x rr πππ⎛⎫+ ⎪∈⎪ ⎪⎝⎭时, cos 0,r rx > 所以1()cos 0,e xh x r rx ⎛⎫'=+> ⎪⎝⎭所以()h x 单调递增,2210,e k rk h rππ⎛⎫⎛⎫=-< ⎪ ⎪⎝⎭⎝⎭2221210(0)e k r k h k r ππππ+⎛⎫⎛⎫+ ⎪⎪=±>> ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭0(2)22,k k x rrπππ+∴∃∈ , 满足()00h x =由单调性可知02,k x x r π⎛⎫∈ ⎪⎝⎭, 满足()0()0h x h x <= 又因为当021,,sin 0,0,xk x x rx r e π⎛⎫⎛⎫∈>≥ ⎪ ⎪⎝⎭⎝⎭ 1sin 0xrx e ⎛⎫∴+≥ ⎪⎝⎭,所以1sin 0e 1sin 0e xxrx rx ⎧⎛⎫-≤⎪ ⎪⎪⎝⎭⎨⎛⎫⎪+≥ ⎪⎪⎝⎭⎩能够同时满足, 对于任意的正实数M ,总存在正整数k ,且满足2Mr k π>时, 使得 2k M r π>成立, 所以不妨取 02,,2k Mr a k b x rππ⎛⎫=>= ⎪⎝⎭ 则,a b M >且[,]x a b ∈时,1sin 01sin 0xxrx e rx e ⎧⎛⎫-≤⎪ ⎪⎪⎝⎭⎨⎛⎫⎪+≥ ⎪⎪⎝⎭⎩, 故对于任意的正实数M ,总存在大于M 的实数,a b ,使得当[,]x a b ∈ 时,|()|1f x ≤. 7.(1)极小值为71e 12-+,()f x 无极大值; (2)证明见解析﹒ 【解析】 【分析】(1)根据f (x )的导数判断f (x )的单调性,根据单调性即可求其极值; (2)由函数单调性指数函数性质可得x <72时,f (x )<1,设m <n ,则若()()()f m f n m n =≠,则m <72,n >72,由()()1f m f n =<可求742n <<﹒当m ≤3时,易证7m n +<;当732m <<时,构造函数()()()7p m f m f m =--,根据p (m )单调性即可证明7m n +<﹒ (1)()()227e x f x x =-',由()0f x '=,得72x =.当7,2x ⎛⎫∈-∞ ⎪⎝⎭时,()0f x '<;当7,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>. ∴()f x 的单调递减区间为7,2⎛⎫-∞ ⎪⎝⎭,单调递增区间为7,2⎛⎫+∞ ⎪⎝⎭. 故()f x 的极小值为771e 122f ⎛⎫=-+ ⎪⎝⎭,()f x 无极大值. (2)由(1)可知,()f x 的极值点为72,f (x )在7,2⎛⎫-∞ ⎪⎝⎭上单调递减,在7,2⎛⎫+∞ ⎪⎝⎭上单调递增,∵当x →-∞时,2e 0x →,∴f (x )→1, 故当x <72时,f (x )<1.设m n <,则若()()()f m f n m n =≠,则m <72,n >72,则()()1f m f n =<,则()274e 1142nn n -+<⇒<<.①当3m ≤时,7m n +<,显然成立.②当732m <<时,77,42m ⎛⎫-∈ ⎪⎝⎭,()()()()214274e 3e m m f m f m m m ---=---.设()()()7p m f m f m =--,则()()()214227e em mp m m -=--'. 设()2142e e x xh x -=-,73,2x ⎛⎫∈ ⎪⎝⎭,则()h x 为增函数,则()702h x h ⎛⎫<= ⎪⎝⎭.∵732m <<,∴270m -<,()0p m '>,则()p m 在73,2⎛⎫⎪⎝⎭上为增函数,∴()()()()77()()77022p m p f m f m f n f m p ⎛⎫<⇒--=--<= ⎪⎝⎭,∴()()7f n f m <-.又∵7,42n ⎛⎫∈ ⎪⎝⎭,77,42m ⎛⎫-∈ ⎪⎝⎭,且()f x 在7,42⎛⎫ ⎪⎝⎭上单调递增,∴7n m <-,即7m n +<. 综上,7m n +<. 8.(1)证明见解析 (2)e ,e 1⎡⎫+∞⎪⎢-⎣⎭【解析】 【分析】(1)求出()f x 的导数,设出切点,可得切线的斜率,根据斜率相等,进而构造函数()=ln 1h x x x +-,求出导数和单调区间,即可证明;(2)由2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立转化为()max ln 1x k x x ⎡⎤≥⎢⎥⎢⎥⎣⎦-2e,e x ⎡⎤∈⎣⎦,再 利用导数法求出()()n 1l xx xx ϕ-=在2e,e ⎡⎤⎣⎦的最大值即可求解. (1)由题意可知,()f x 的定义域为()()0,11,+∞,由()ln x f x x=,得()()2ln 1ln x f x x -'=, 直线y g x 过定点()1,0,若直线y g x 与曲线()y f x =相切于点()00000,01ln x x x x x ⎛⎫>≠ ⎪⎝⎭且,则()002000ln 1ln 1ln x x x k x x --==-,即00ln 10x x +-=① 设()()=ln 1,0h x x x x +-∈+∞,则()1=10h x x'+>, 所以()h x 在()0+∞上单调递增,又()1ln1110h =+-=, 从而当且仅当01x =时,①成立,这与01x ≠矛盾. 所以,R k ∀∈,直线y g x 都不是曲线()y f x =的切线. (2)由()()f x g x ≤,得()1ln xxk x ≤-, 22e e ,0e 11e 1x x ∴≤≤∴<-≤-≤-,()l 1n xk x x -∴≥若2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立转化为()maxln 1xk x x ⎡⎤≥⎢⎥⎢⎥⎣⎦-,2e,e x ⎡⎤∈⎣⎦即可. 令()()n 1l x x x x ϕ-=,2e,e x ⎡⎤∈⎣⎦,则()()2ln 1ln 1x x x x x ϕ---+'=⎡⎤⎣⎦,令()ln 1t x x x =--+,2e,e x ⎡⎤∈⎣⎦,则()110t x x'=--<, 所以()t x 在2e,e ⎡⎤⎣⎦上是单调递减;所以()()e lne e 1e<0t x t ≤=--+=-,故()0ϕ'<x()ϕx 在2e,e ⎡⎤⎣⎦上是单调递减;当e x =时,()ϕx 取得最大值为()()e ee e 1ln e e 1ϕ==--,即ee 1k ≥-. 所以实数k 的取值范围为e ,e 1⎡⎫+∞⎪⎢-⎣⎭【点睛】解决此题的关键利用导数的几何意义及两点求斜率,再根据同一切线斜率相等即可证明,对于恒成立问题通常采用分离常数法,进而转化为求函数的最值问题,利用导数法即可求解.9.(1)()f x 在()0+∞,上单调递增,在()0-∞,上单调递减; (2)274e a -≥【解析】 【分析】(1)直接求导,先确定导数的单调性及零点,即可确定()f x 的单调性;(2)当0x =时, a R ∈,当0x >时,参变分离得3211e 2xx x a x++-≥,构造函数()h x 求导得()321e 2()21xx x h x x x ⎛⎫⎪⎝⎭'--=--,再构造函数21e 12()x m x x x ---=确定()h x 单调性后,即可求出实数a 的取值范围. (1)当1a =-时,2()e 1x f x x x =+--,()e 21x f x x '=+-,易得()'f x 在R 上递增,又(0)0f '=,故当()0x ∈+∞,时,()0f x '>,()f x 单调递增;故当(),0x ∈-∞时,()0f x '<,()f x 单调递减,所以()f x 在()0+∞,上单调递增,在()0-∞,上单调递减; (2)当0x =时,不等式321()22f x x ax ≥-恒成立,可得a R ∈;当0x >时,由2321e 122xax x x ax ---≥-恒成立可得3211e 2x x x a x++-≥恒成立, 设3211e 2()xx x h x x ++-=,则()4223333111e 222(2)1e e 22x x xh x x x x x x x x x x x⎛⎫⎛⎫+-⋅-⋅+'+=--+-- ⎪ ⎪⎝⎭⎭=⎝()()()33322211e 22e 1222x x x x x x x x x x x x ⎛⎫ ⎪⎝⎭=⎛⎫-+-+----- ⎪⎝⎭=-, 可设21e 12()x m x x x ---=,可得e 1()x x m x =--',设e 1,e 1()()x x k x k x x '-=--=,由0x >,可得()0k x '>恒成立,可得()k x 在()0+∞,递增,即()m x '在()0+∞,递增,所以()(0)0m x m ''>=,即()0m x '>恒成立,即()m x 在()0+∞,递增, 所以()(0)0m x m >=,再令()0h x '=,可得2x =,当02x <<时,()0h x '>,()h x 在()0,2上递增,当2x >时,()0h x '<,()h x 在()2,+∞递减,所以2max 7e ()(2)4h x h -==,所以274e a -≥;综上可得274e a -≥. 【点睛】本题关键点在于参变分离构造函数求导后,通过因式分解将导数变为()321e 2()21xx x h x x x ⎛⎫⎪⎝⎭'--=--,再把分子的因式构造成函数21e 12()x m x x x ---=,确定()(0)0m x m >=后,即得()h x '的正负,进而求解.10.(1)25y x =+ (2)0b = 【解析】 【分析】(1)利用切点和斜率求得切线方程.(2)由()2f x ≥恒成立构造函数()()2g x f x =-,对b 进行分类讨论,结合()'g x 研究()g x 的最小值,由此求得b 的值. (1)当114a b ==-,时,()4e 21x f x x =-+,则()4e 2x f x '=- 又因为(0)5,(0)2f f '==所以曲线()y f x =在点(0,f (0))处的切线方程为()520y x -=-, 即25y x =+. (2)当1a =时,令函数()()()2e 11xg x f x b x =-=+--,则()2f x ≥恒成立等价于()0g x ≥恒成立. 又()e 1,x g x b '=+-.当1b ≥时,()e 10,x g x b '=+->,g (x )在R 上单调递增,显然不合题意; 当1b <时,令()e 10,x g x b '=+-<,得ln(1)x b <-.令()e 10x g x b '=+->,得()ln 1x b >-,所以函数g (x )在(,ln(1))b -∞-上单调递减,在(ln(1),)b -+∞上单调递增, 所以当ln(1)x b =-时,函数g (x )取得最小值. 又因为()00g =,所以0x =为g (x )的最小值点. 所以ln(1)0b -=,解得0b =.。

完整版)导数最新文科高考数学真题

完整版)导数最新文科高考数学真题

完整版)导数最新文科高考数学真题1.曲线y=xex-1在点(1,1)处的切线斜率为2e。

(选项C)2.曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,因此a=3.(选项D)3.根据导函数y'=f'(x)的图象,确定函数y=f(x)的图象为B。

4.函数f(x)=2/x+lnx,其导数为f'(x)=-2/x^2+1/x。

解方程f'(x)=0,得到x=2为f(x)的极小值点。

(选项D)5.如果p:f(x)=q:x是f(x)的极值点,则p是q的必要条件,但不是充分条件。

(选项C)6.曲线y=x^3-x+3在点(1,3)处的切线方程为2x-y+1=0.7.曲线y=kx+lnx在点(1,k)处的切线平行于x轴,因此k=-1.8.曲线y=ax-lnx在点(1,a)处的切线平行于x轴,因此a=1/2.(选项1/2)9.曲线y=-5ex+3在点(0,-2)处的切线方程为5x+y+2=0.10.曲线y=x+1(α∈R)在点(1,2)处的切线经过坐标原点,因此α=2.11.曲线y=x(3lnx+1)在点(1,1)处的切线方程为4x-y-3=0.12.曲线y=e^x上点P处的切线平行于直线2x+y+1=0,因此P的坐标为(-ln2,2)。

13.曲线y=xlnx上点P处的切线平行于直线2x-y+1=0,因此P的坐标为(e,e)。

14.函数y=-x^2没有明显的问题,但是缺少了后面的部分,因此无法确定答案。

15.若函数f(x)=kx-lnx在区间(1,+∞)单调递增,则k的取值范围是[1,+∞)。

16.函数f(x)=(1-cosx)sinx在[-π,π]的图象大致为下凸的W 形,拐点为x=0.17.已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax+(a+2)x+1相切,则2a=8.18.函数y=xe在其极值点处的切线方程为y=-x/e。

19.已知函数f(x)=axlnx,其中a为实数,且f'(x)为f(x)的导函数,若f'(1)=3,则a的值为3.20.曲线y=x^2的在点(1,2)处的切线方程为x-y+1=0.21.函数y=f(x)的导函数y=f'(x)的图象为下凸的W形,则函数y=f(x)的图象可能是D。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中文科数学导数大
题练习题
精品文档
收集于网络,如有侵权请联系管理员删除 高中文科数学导数大题练习题
1、设l 为曲线ln :x C y x
=在点(1,0)处的切线. (1)求l 的方程;
(2)证明:除切点(1,0)之外,曲线C 在直线l 的下方.
2、已知函数2()sin cos f x x x x x =++
(1)若曲线()y f x =在点(,())a f a 处与直线y b =相切,求a 与b 的值;
(2)若曲线()y f x =与直线y b =有两个不同交点,求b 的取值范围.
3、已知函数32()331f x x ax x =+++
(1)
求当a =,讨论()f x 的单调性;
(2)若[2,)x ∈+∞时,()0f x ≥,求a 的取值范围.
4、已知函数()ln ()f x x a x a R =-∈
(1)当2a =时,求曲线()y f x =在点(1,(1))A f 处的切线方程;
(2)求函数()f x 的极值.
5、设函数()ln f x x ax =-,()x g x e ax =-,其中a 为实数.若()f x 在()1,+∞上是单调减函数,且()g x 在()1,+∞上有最小值,求a 的范围.
6、已知函数2()ln (,)f x ax bx x a b R =+-∈
(1)设0a ≥,求)(x f 的单调区间
(2)设0a >,且对于任意0x >,()(1)f x f ≥。

试比较ln a 与2b -的大小。

相关文档
最新文档