对超高分子量聚乙烯的开发与应用分析(精)
超高分子量聚乙烯的开发和应用

超高分子量聚乙烯的开发和应用简介超高分子量聚乙烯(UHMWPE)是一种高分子材料,其分子量可达到数百万,拥有极高的强度、韧性和耐磨性。
UHMWPE的广泛应用,使其成为现代化工产业必备的工程材料之一。
本文将介绍UHMWPE的开发历程、应用领域以及未来研究方向。
历史UHMWPE的历史可以追溯到20世纪50年代初期,当时,一些科学家开始尝试合成高分子材料以替代传统材料如金属、玻璃和陶瓷。
1954年,意大利研究团队首次将ethylene polymerization制成的UHMWPE纤维作为替代材料用于制造复合装甲板。
1962年,杜邦公司首次试制出UHMWPE的三维结构,用于制造运输装备的零部件。
历经多年的发展,UHMWPE不仅应用于工程领域如汽车工业、机械工业和航空航天工业等,同时也广泛应用于生物医学领域,如体外和体内植入器械、假肢和医疗器械等。
特性UHMWPE具有许多优越的特性,使其被广泛应用。
其中包括:高强度UHMWPE具有极高的强度。
其强度比钢高5倍,比普通聚乙烯高10到100倍。
UHMWPE具有极高的耐磨性,对各种材料的摩擦具有良好的抗性。
韧性UHMWPE具有很好的韧性,即使弯曲、压缩或撕裂,也能够恢复原状。
耐化学性UHMWPE对酸、碱、溶剂和其他化学物质具有良好的抵抗力。
耐高温性UHMWPE具有良好的耐高温性,在高温条件下仍能保持其优越的性能。
应用领域航空航天工业在航空航天工业中,UHMWPE应用于飞行器的减震器、导向轮、拉线和降落伞等。
机械工业在机械工业中,UHMWPE被广泛应用于制造轴承、齿轮、导轨和电子元件等。
在汽车工业中,UHMWPE应用于制造行车部件,如刹车系统、离合器齿轮和轮胎等。
生物医学领域在生物医学领域中,由于UHMWPE具有良好的生物相容性、耐磨性、耐热性和抗菌性等特性,使其在假肢、人造血管、人工心脏瓣膜等医疗器械中得到广泛应用。
纤维制造业UHMWPE纤维的力学性质和结构稳定性,使其成为抗弹药、射爆、电热等方向的研究热点。
超高分子量聚乙烯的开发和应用【材料工程学论文】

超高分子量聚乙烯的开发和应用【材料工程学论文】超高分子量聚乙烯的开发和应用1引言UHMWPE是一种线型结构的具有优异综合性能的热塑性工程塑料。
世界上最早由美国Allied Chemical公司于1957年实现工业化,此后德国Hoechst公司、美国Hercules公司、日本三井石油化学公司等也投入工业化生产。
我国上海高桥化工厂于1964年最早研制成功并投入工业生产,70年代后期又有广州塑料厂和北京助剂二厂投入生产。
限于当时条件,产物分子量约150万左右,随着工艺技术的进步,目前北京助剂二厂的产品分子量可达100万~300万以上。
UHMWPE的发展十分迅速,80年代以前,世界平均年增长率为8.5%,进入80年代以后,增长率高达15%~20%。
而我国的平均年增长率在30%以上。
1978年世界消耗量为12,000~12,500吨,而到1990年世界需求量约5万吨,其中美国占70%。
UHMWPE平均分子量约35万~800万,因分子量高而具有其它塑料无可比拟的优异的耐冲击、耐磨损、自润滑性、耐化学腐蚀等性能。
而且,UHMWPE耐低温性能优异,在-40℃时仍具有较高的冲击强度,甚至可在-269℃下使用。
UHMWPE优异的物理机械性能使它广泛应用于机械、运输、纺织、造纸、矿业、农业、化工及体育运动器械等领域,其中以大型包装容器和管道的应用最为广泛。
另外,由于UHMWPE优异的生理惰性,已作为心脏瓣膜、矫形外科零件、人工关节等在临床医学上使用。
2UHMWPE的成型加工由于UHMWPE熔融状态的粘度高达108Pa*s,流动性极差,其熔体指数几乎为零,所以很难用一般的机械加工方法进行加工。
近年来,UHMWPE的加工技术得到了迅速发展,通过对普通加工设备的改造,已使UHMWPE 由最初的压制-烧结成型发展为挤出、吹塑和注射成型以及其它特殊方法的成型。
超高分子量聚乙烯的制备与应用研究

超高分子量聚乙烯的制备与应用研究一、超高分子量聚乙烯的制备方法超高分子量聚乙烯,简称UHMWPE,是一种分子量高达数百万的高分子材料。
目前常用的制备方法主要有以下几种:1.溶液聚合法该方法通过将乙烯溶解在反应溶液中,经过引发剂引发聚合反应得到UHMWPE。
该方法的优点是对反应条件较为宽松,但难以得到高分子量的聚合物。
2.固态加工法该方法是将乙烯通过高压聚合法制备出UHMWPE颗粒,经过热挤压、注塑等固态加工过程制备成所需的UHMWPE制品。
该方法的优点是制品性能稳定,且能够制备超过1000万的大分子量。
3.杂化聚合法该方法是将溶液聚合法和固态加工法相结合,通过引入苯环单体等杂化剂,使聚合反应更为充分,制备出较高分子量的UHMWPE。
二、超高分子量聚乙烯的应用由于UHMWPE具有极高的分子量和热稳定性,以及优异的力学性能和生物相容性,因此在众多领域有着广泛的应用。
1.医疗领域UHMWPE在医疗领域中用于制备关节假体和人工心脏瓣膜等医疗器材,其高分子量和生物相容性能够满足这些器材的高要求。
2.工业领域UHMWPE在工业领域中主要应用于输送机械、轻工机械、造纸机械等设备的轴承、轮套、拉杆、齿轮等零部件中,以提高机械零件的耐磨性、耐腐蚀性和耐疲劳性。
3.防护领域UHMWPE在防护领域应用广泛,如制备高强度的防刺防割服装、防护盾、防弹装备等,其超高的分子量和良好的力学性能能够有效保护人身安全。
4.航空航天领域UHMWPE在航空航天领域中用于制备高速飞机的结构材料、降落伞、太空服等,其超高分子量和热稳定性能够满足极端环境下的工作要求。
5.汽车工程领域UHMWPE在汽车工程领域中用于制备制动片、导向轮、变速器齿轮等汽车零部件,以提高汽车的耐磨性、降低噪音等级、延长使用寿命。
三、超高分子量聚乙烯的未来发展趋势目前,国内外对UHMWPE的制备、性能以及应用等方面都深入研究,为其在更多领域中的应用打下了坚实基础。
未来,随着技术的不断发展和材料需求的提高,UHMWPE的研究方向将主要集中在以下几个方面:1.分子结构精细化设计为了进一步提高UHMWPE的力学性能、热稳定性以及生物相容性等方面的性能,需要对其分子结构进行逐步精细化设计,通过各种方法将其性能提高到更高的水平。
超高分子量聚乙烯的特性及应用进展

超高分子量聚乙烯的特性及应用进展一、本文概述超高分子量聚乙烯(UHMWPE)是一种独特的高分子材料,以其优异的物理性能和广泛的应用领域而备受关注。
本文旨在全面概述超高分子量聚乙烯的基本特性,包括其分子结构、力学行为、热稳定性等方面,同时深入探讨其在多个领域的应用进展,如耐磨材料、航空航天、医疗器械等。
通过对现有文献的综述和分析,本文旨在为研究者和工程师提供有关超高分子量聚乙烯的最新信息,以推动该材料在未来科技和工业领域的发展。
本文将介绍超高分子量聚乙烯的基本结构和性质,包括其分子链长度、结晶度、热稳定性等关键参数,以及这些参数如何影响其宏观性能。
随后,将重点关注UHMWPE在不同应用领域的最新进展,特别是在耐磨材料、航空航天、医疗器械等领域的创新应用。
还将讨论UHMWPE在环保和可持续发展方面的潜力,例如作为可回收材料或生物相容材料的使用。
本文将对超高分子量聚乙烯的未来发展趋势进行展望,包括新材料设计、加工技术改进、应用领域拓展等方面。
通过总结现有研究成果和挑战,本文旨在为相关领域的研究者和工程师提供有价值的参考和指导,以促进超高分子量聚乙烯在科技和工业领域的进一步发展。
二、UHMWPE的基本特性超高分子量聚乙烯(UHMWPE)是一种线性聚合物,其分子量通常超过一百万,赋予了其许多独特的物理和化学特性。
UHMWPE具有极高的抗拉伸强度,其强度甚至可以与钢材相媲美,而其密度却远远低于钢材,这使得它成为一种理想的轻量化材料。
UHMWPE的耐磨性极佳,其耐磨性比一般的金属和塑料都要好,因此在许多需要耐磨的场合,如滑动、摩擦等,UHMWPE都有很好的应用前景。
UHMWPE还具有优良的抗冲击性、自润滑性、耐化学腐蚀性以及良好的生物相容性等特点。
这使得它在许多领域都有广泛的应用,包括但不限于工程、机械、化工、医疗、体育等领域。
特别是在工程领域,UHMWPE的轻量化、高强度、耐磨等特点使得它在制造重载耐磨零件、桥梁缆绳、船舶缆绳等方面有着独特的优势。
超高分子量聚乙烯在汽车工业中的应用案例分析

超高分子量聚乙烯在汽车工业中的应用案例分析超高分子量聚乙烯(Ultra-High Molecular Weight Polyethylene,简称UHMWPE)是一种具有出色性能和广泛应用领域的高分子材料。
在汽车工业中,UHMWPE的应用范围不断扩大,其独特的特性使其成为汽车部件制造的理想选择。
本文将通过分析几个实际案例,探讨UHMWPE在汽车工业中的应用及其优势。
1. 减少磨损和摩擦UHMWPE因其极高的分子量和低摩擦系数,被广泛应用于汽车制动系统。
例如,UHMWPE可以用于制造刹车衬片,其良好的耐磨性和低摩擦系数能够减少制动系统的磨损和噪音。
实际案例表明,采用UHMWPE制造的刹车衬片能够显著提高制动性能,并延长整个制动系统的使用寿命。
2. 提高碰撞安全性能UHMWPE还可以在汽车车身和保险杠等部件中起到缓冲和吸能的作用。
由于其出色的抗冲击性能和高吸能能力,UHMWPE能够减少碰撞时对车身的冲击力,提高汽车的碰撞安全性能。
一些汽车制造商已经采用UHMWPE制造车身结构件,以增强车身的强度和安全性。
3. 减轻重量相较于传统的金属材料,UHMWPE具有极低的密度,因此可以用于制造轻量化的汽车零部件。
例如,UHMWPE可以制作轻便的零件,如汽车内饰件、门板等。
这不仅有助于减轻汽车整体重量,提高燃油效率,还可以减少环境污染。
4. 延长使用寿命由于UHMWPE具有出色的耐用性和耐腐蚀性,因此能够延长汽车零部件的使用寿命。
例如,采用UHMWPE制造的传动系统零件可以减少磨损和摩擦,从而降低维护和更换的频率,并提高整体使用寿命。
此外,UHMWPE还能够抵抗化学物质和恶劣的工作环境,使其在汽车工业中越来越受到青睐。
总结起来,UHMWPE在汽车工业中的应用案例分析表明,其在制动系统、车身结构、轻量化和延长使用寿命等方面具有明显优势。
强大的耐磨性、低摩擦系数、高抗冲击性能和耐腐蚀性使得UHMWPE成为理想的汽车部件材料。
超高分子量聚乙烯在机械制造领域的应用研究

超高分子量聚乙烯在机械制造领域的应用研究超高分子量聚乙烯(Ultra-high molecular weight polyethylene,简称UHMWPE)是一种特殊的聚合物材料,具有优异的性能和广泛的应用前景。
本文将探讨UHMWPE在机械制造领域的应用研究,并分析其在该领域的优势和挑战。
一、UHMWPE的特性UHMWPE是一种超高分子量聚合物材料,具有以下主要特性:1. 高分子量:UHMWPE的分子量通常在100万到1000万之间,是常规聚乙烯的数倍甚至数十倍,使其具有出色的力学性能和耐磨性。
2. 高强度:尽管UHMWPE密度相对较低,但其强度却非常高,可与钢铁相媲美。
它拥有出色的抗拉强度和抗冲击性,在高强度载荷下仍能保持稳定。
3. 良好的自润滑性:UHMWPE表面具有良好的自润滑性,具有低摩擦系数和良好的耐磨性。
这一特性使其在机械制造领域中的润滑工作得以显著简化。
4. 良好的化学稳定性:UHMWPE对大多数化学品、溶剂和腐蚀物具有良好的抵抗能力,在恶劣环境下仍能保持良好的性能。
二、UHMWPE在机械制造领域的应用基于其独特的特性,UHMWPE在机械制造领域具有广泛的应用。
以下列举了几个常见的应用领域:1. 轴承和滑动元件:UHMWPE具有良好的自润滑性和低摩擦系数,使其成为制造轴承、滑动元件和轮胎等的理想材料。
它能够减少能量损耗、降低噪音、提高工作效率。
2. 运输设备部件:UHMWPE可以制造耐磨、耐腐蚀的输送带和滚筒,用于矿石、煤炭等物料的运输。
通过使用UHMWPE材料,可以延长设备的使用寿命,减少维护和更换成本。
3. 导向元件:UHMWPE的高强度和自润滑性使其成为制造导向元件的理想选择。
它广泛应用于链条、导轨、链轮等机械部件,提供平稳、可靠的导向功能。
4. 制造工具和模具:UHMWPE可以制造切削工具、模具和挤压模等,应用于金属加工、塑料加工等制造过程中。
其优异的耐磨性和化学稳定性保证了制造过程的高效和质量。
超高分子量聚乙烯热成形工艺研究及应用

超高分子量聚乙烯热成形工艺研究及应用超高分子量聚乙烯(UHMWPE)是一种优良的工程塑料,具有高密度、高强度、高耐磨性和化学稳定性等优点,在航空航天、医疗器械、汽车零部件等领域得到广泛应用。
随着热成形工艺的不断发展,UHMWPE热成形技术也逐渐成为了一种流行的加工方法。
本文将对UHMWPE热成形工艺的研究及应用进行探讨。
1. UHMWPE 热成形工艺UHMWPE 热成形工艺是将 UHMWPE 板材通过加热软化,利用压力将其塑成所需形状的一种塑料加工方法。
该工艺可以分为热压成型、热吹拉成型和热成形吹塑成型三种方法。
1.1 热压成型热压成型是将加热软化的UHMWPE板材放置于成型模具中,然后利用压力将其塑成所需形状。
该方法可以制造平面件、箔材、薄壁管片等。
1.2 热吹拉成型热吹拉成型是将加热软化的UHMWPE板材拉伸成细丝,并将其冷却固化。
该方法可以制造细丝、棒材、管道等。
1.3 热成形吹塑成型热成形吹塑成型是将加热软化的UHMWPE板材通过吹塑成型方法制成三维形状的零件。
该方法可以制造容器、箱子等。
2. UHMWPE 热成形工艺的优点与传统的加工方法相比,UHMWPE 热成形工艺具有以下优点:2.1 塑性好热成形工艺可以使 UHMWPE 板材软化,提高其塑性,从而更容易地成型。
2.2 成型精度高UHMWPE 热成形工艺可以通过模具提高成型精度,而传统的机械加工容易产生误差。
2.3 可制成复杂形状热成形工艺可以制成任意复杂形状的零件,而传统的机械加工受到加工方式和模具限制。
2.4 节约材料热成形工艺可以将UHMWPE板材塑成所需形状,减少浪费材料。
3. UHMWPE 热成形工艺的应用UHMWPE 热成形工艺在航空航天、医疗器械、汽车零部件等领域有着广泛的应用。
3.1 航空航天UHMWPE 热成形工艺可以制造航空航天领域的零部件,如复合材料结构件、卫星隔热材料等。
3.2 医疗器械UHMWPE 热成形工艺可以制造医疗器械,如骨科材料、人造关节等。
超高分子量聚乙烯的性能与应用

超高分子量聚乙烯的性能与应用超高分子量聚乙烯(Ultra High Molecular Weight Polyethylene,简称UHMWPE),这名字听起来是不是有点拗口?但它在我们的生活中可发挥着不小的作用呢!我记得有一次去参观一家工厂,看到工人们正在操作一台大型机器,生产的就是用超高分子量聚乙烯制成的零部件。
当时我好奇地凑过去看,只见那原材料像是一大卷白色的塑料布,软软的,还有点弹性。
工人师傅告诉我,可别小瞧了这东西,它的性能可厉害着呢!先来说说它的耐磨性吧。
超高分子量聚乙烯的耐磨性那真是一绝!比一般的金属材料都要强好多倍。
比如说,在矿山运输矿石的传送带上,那些矿石不断地摩擦着传送带,如果用普通的材料,没几天就得磨损得不成样子,需要频繁更换,费时费力又费钱。
但要是用上超高分子量聚乙烯做的传送带,就能大大延长使用寿命,减少维修和更换的次数。
它的耐冲击性也相当出色。
就像有一次我在公园里看到小朋友们玩滑梯,那滑梯的表面就是用超高分子量聚乙烯做的。
小朋友们滑下来的时候冲击力可不小,但这滑梯却丝毫没有受损的迹象。
这是因为超高分子量聚乙烯能够承受很大的冲击力而不变形,保障了小朋友们玩耍的安全。
还有它的自润滑性,这可是个很神奇的特点。
想象一下,两块普通的材料相互摩擦,会产生很大的阻力,甚至会发热。
但超高分子量聚乙烯就不一样了,它自身就像是涂了一层润滑油一样,摩擦系数特别低。
在一些需要减少摩擦的机械部件中,比如轴承、齿轮等,使用超高分子量聚乙烯就能让机器运转得更加顺畅,减少能量的损耗。
超高分子量聚乙烯的耐化学腐蚀性也很强。
在化工厂里,各种化学物质对材料的腐蚀性很大。
但用超高分子量聚乙烯制作的管道、容器等,可以很好地抵抗这些化学物质的侵蚀,保证生产的安全和稳定。
基于这些优异的性能,超高分子量聚乙烯在很多领域都得到了广泛的应用。
在医疗领域,它可以用来制作人工关节,替代那些受损的关节,帮助患者重新恢复行动能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对超高分子量聚乙烯的开发与应用分析关键词:超高分子量聚乙烯工程塑料 1 引言UHMWPE是一种线型结构的具有优异综合性能的热塑性工程塑料。
世界上最早由美国Allied Chemical公司于1957年实现工业化,此后德国Hoechst公司、美国Hercules公司、日本三井石油化学公司等也投入工业化生产。
我国上海高桥化工厂于1964年最早研制成功并投入工业生产,70年代后期又有广州塑料厂和北京助剂二厂投入生产。
限于当时条件,产物分子量约150万左右,随着工艺技术的进步,目前北京助剂二厂的产品分子量可达100万~300万以上。
UHMWPE的发展十分迅速,80年代以前,世界平均年增长率为8.5%,进入80年代以后,增长率高达15%~20%。
而我国的平均年增长率在30%以上。
1978年世界消耗量为12,000~12,500吨,而到1990年世界需求量约5万吨,其中美国占70%。
UHMWPE平均分子量约35万~800万,因分子量高而具有其它塑料无可比拟的优异的耐冲击、耐磨损、自润滑性、耐化学腐蚀等性能。
而且,UHMWPE耐低温性能优异,在-40℃时仍具有较高的冲击强度,甚至可在-269℃下使用。
UHMWPE优异的物理机械性能使它广泛应用于机械、运输、纺织、造纸、矿业、农业、化工及体育运动器械等领域,其中以大型包装容器和管道的应用最为广泛。
另外,由于UHMWPE优异的生理惰性,已作为心脏瓣膜、矫形外科零件、人工关节等在临床医学上使用。
2 UHMWPE的成型加工由于UHMWPE熔融状态的粘度高达108Pa*s,流动性极差,其熔体指数几乎为零,所以很难用一般的机械加工方法进行加工。
近年来,UHMWPE的加工技术得到了迅速发展,通过对普通加工设备的改造,已使UHMWPE由最初的压制-烧结成型发展为挤出、吹塑和注射成型以及其它特殊方法的成型。
2.1 一般加工技术(1)压制烧结压制烧结是UHMWPE最原始的加工方法。
此法生产效率颇低,易发生氧化和降解。
为了提高生产效率,可采用直接电加热法〔1〕;另外,Werner和Pfleiderer公司开发了一种超高速熔结加工法〔2〕,采用叶片式混合机,叶片旋转的最大速度可达150m/s,使物料仅在几秒内就可升至加工温度。
(2)挤出成型挤出成型设备主要有柱塞挤出机、单螺杆挤出机和双螺杆挤出机。
双螺杆挤出多采用同向旋转双螺杆挤出机。
60年代大都采用柱塞式挤出机,70年代中期,日、美、西德等先后开发了单螺杆挤出工艺。
日本三井石油化学公司最早于1974年取得了圆棒挤出技术的成功。
北京化工大学于1994年底研制出Φ45型UHMWPE专用单螺杆挤出机,并于1997年取得了Φ65型单螺杆挤出管材工业化生产线的成功。
(3)注塑成型日本三井石油化工公司于1974年开发了注塑成型工艺,并于1976年实现了商业化,之后又开发了往复式螺杆注塑成型技术。
1985年美国Hoechst公司也实现了UHMWPE的螺杆注塑成型工艺。
北京塑料研究所1983年对国产XS-ZY-125A型注射机进行了改造,成功地注射出啤酒罐装生产线用UHMWPE托轮、水泵用轴套,1985年又成功地注射出医用人工关节等。
(4)吹塑成型UHMWPE加工时,当物料从口模挤出后,因弹性恢复而产生一定的回缩,并且几乎不发生下垂现象,故为中空容器,特别是大型容器,如油箱、大桶的吹塑创造了有利的条件。
UHMWPE吹塑成型还可导致纵横方向强度均衡的高性能薄膜,从而解决了HDPE薄膜长期以来存在的纵横方向强度不一致,容易造成纵向破坏的问题。
2.2 特殊加工技术 2.2.1 冻胶纺丝以冻胶纺丝—超拉伸技术制备高强度、高模量聚乙烯纤维是70年代末出现的一种新颖纺丝方法。
荷兰DSM公司最早于1979年申请专利,随后美国Allied公司、日本与荷兰联合建立的Toyobo-DSM公司、日本Mitsui公司都实现了工业化生产。
中国纺织大学化纤所从1985年开始该项目的研究,逐步形成了自己的技术,制得了高性能的UHMWPE纤维〔3〕。
UHMWPE冻胶纺丝过程简述如下:溶解UHMWPE于适当的溶剂中,制成半稀溶液,经喷丝孔挤出,然后以空气或水骤冷纺丝溶液,将其凝固成冻胶原丝。
在冻胶原丝中,几乎所有的溶剂被包含其中,因此UHMWPE大分子链的解缠状态被很好地保持下来,而且溶液温度的下降,导致冻胶体中UHMWPE折叠链片晶的形成。
这样,通过超倍热拉伸冻胶原丝可使大分子链充分取向和高度结晶,进而使呈折叠链的大分子转变为伸直链,从而制得高强度、高模量纤维。
UHMWPE纤维是当今世界上第三代特种纤维,强度高达30.8cN/dtex,比强度是化纤中最高的,又具有较好的耐磨、耐冲击、耐腐蚀、耐光等优良性能。
它可直接制成绳索、缆绳、渔网和各种织物:防弹背心和衣服、防切割手套等,其中防弹衣的防弹效果优于芳纶。
国际上已将UHMWPE纤维织成不同纤度的绳索,取代了传统的钢缆绳和合成纤维绳等。
UHMWPE纤维的复合材料在军事上已用作装甲兵器的壳体、雷达的防护外壳罩、头盔等;体育用品上已制成弓弦、雪橇和滑水板等。
2.2.2 润滑挤出(注射) 润滑挤出(注射)成型技术是在挤出(注射)物料与模壁之间形成一层润滑层,从而降低物料各点间的剪切速率差异,减小产品的变形,同时能够实现在低温、低能耗条件下提高高粘度聚合物的挤出(注射)速度。
产生润滑层的方法主要有两种:自润滑和共润滑。
(1)自润滑挤出(注射) UHMWPE的自润滑挤出(注射)是在其中添加适量的外部润滑剂,以降低聚合物分子与金属模壁间的摩擦与剪切,提高物料流动的均匀性及脱模效果和挤出质量。
外部润滑剂主要有高级脂肪酸、复合脂、有机硅树脂、石腊及其它低分子量树脂等。
挤出(注射)加工前,首先将润滑剂同其它加工助剂一起混入物料中,生产时,物料中的润滑剂渗出,形成润滑层,实现自润滑挤出(注射)。
有专利报道〔4〕:将70份石蜡油、30份UHMWPE和1份氧相二氧化硅(高度分散的硅胶)混合造粒,在190℃的温度下就可实现顺利挤出(注射)。
(2)共润滑挤出(注射) UHMWPE的共润滑挤出(注射)有两种情况,一是采用缝隙法〔5、6〕将润滑剂压入到模具中,使其在模腔内表面和熔融物料间形成润滑层;二是与低粘度树脂共混,使其作为产物的一部分(详见3.2.1)。
如:生产UHMWPE薄板时,由定量泵向模腔内输送SH200有机硅油作润滑剂,所得产品外观质量有明显提高,特别是由于挤出变形小,增加了拉伸强度。
2.2.3 辊压成型〔1〕辊压成型是一种固态加工方法,即在UHMWPE的熔点以下对其施加一很大的压力,通过粒子形变,有效地将粒子与粒子融合。
主要设备是一带有螺槽的旋转轮和一带有舌槽的弓形滑块,舌槽与螺槽垂直。
在加工过程中有效地利用了物料与器壁之间的摩擦力,产生的压力足够使UHMWPE粒子发生形变。
在机座末端装有加热支台,经过模口挤出物料。
如将此项辊压装置与挤压机联用,可使加工过程连续化。
2.2.4 热处理后压制成型〔8〕把UHMWPE树脂粉末在140℃~275℃之间进行1min~30min的短期加热,发现UHMWPE的某些物理性能出人意料地大大改善。
用热处理过的UHMWPE粉料压制出的制品和未热处理过的UHMPWE制品相比较,前者具有更好的物理性能和透明性,制品表面的光滑程度和低温机械性能大大提高了。
2.2.5 射频加工〔9〕采用射频加工UHMWPE是一种崭新的加工方法,它是将UHMWPE粉末和介电损耗高的炭黑粉末均匀混合在一起,用射频辐照,产生的热可使UHMWPE粉末表面发生软化,从而使其能在一定压力下固结。
用这种方法可在数分钟内模压出很厚的大型部件,其加工效率比目前UHMWPE常规模压加工高许多倍。
2.2.6 凝胶挤出法制备多孔膜〔10〕将UHMWPE溶解在挥发溶剂中,连续挤出,然后经一个热可逆凝胶/结晶过程,使其成为一种湿润的凝胶膜,蒸除溶剂使膜干燥。
由于已形成的骨架结构限制了凝胶的收缩,在干燥过程中产生微孔,经双轴拉伸达到最大空隙率而不破坏完整的多孔结构。
这种材料可用作防水、通氧织物和耐化学品服装,也可用作超滤/微量过滤膜、复合薄膜和蓄电池隔板等。
与其它方法相比,由此法制备的多孔UHMWPE膜具有最佳的孔径、强度和厚度等综合性能。
3 UHMWPE的改性 3.1 物理机械性能的改进与其它工程塑料相比,UHMWPE具有表面硬度和热变形温度低、弯曲强度以及蠕变性能较差等缺点。
这是由于UHMWPE的分子结构和分子聚集形态造成的,可通过填充和交联的方法加以改善。
3.1.1 填充改性采用玻璃微珠、玻璃纤维、云母、滑石粉、二氧化硅、三氧化二铝、二硫化钼、炭黑等对UHMWPE进行填充改性,可使表面硬度、刚度、蠕变性、弯曲强度、热变形温度得以较好地改善。
用偶联剂处理后,效果更加明显。
如填充处理后的玻璃微珠,可使热变形温度提高30℃。
玻璃微珠、玻璃纤维、云母、滑石粉等可提高硬度、刚度和耐温性;二硫化钼、硅油和专用蜡可降低摩擦因数,从而进一步提高自润滑性;炭黑或金属粉可提高抗静电性和导电性以及传热性等。
但是,填料改性后冲击强度略有下降,若将含量控制在40%以内,UHMWPE仍有相当高的冲击强度。
3.2.1 交联交联是为了改善形态稳定性、耐蠕变性及环境应力开裂性。
通过交联,UHMWPE的结晶度下降,被掩盖的韧性复又表现出来。
交联可分为化学交联和辐射交联。
化学交联是在UHMWPE中加入适当的交联剂后,在熔融过程中发生交联。
辐射交联是采用电子射线或γ射线直接对UHMWPE制品进行照射使分子发生交联。
UHMWPE的化学交联又分为过氧化物交联和偶联剂交联。
(1)过氧化物交联过氧化物交联工艺分为混炼、成型和交联三步。
混炼时将UHMWPE与过氧化物熔融共混,UHMWPE在过氧化物作用下产生自由基,自由基偶合而产生交联。
这一步要保证温度不要太高,以免树脂完全交联。
经过混炼后得到交联度很低的可继续交联型UHMWPE,在比混炼更高的温度下成型为制件,再进行交联处理。
UHMWPE经过氧化物交联后在结构上与热塑性塑料、热固性塑料和硫化橡胶都不同,它有体型结构却不是完全交联,因此在性能上兼有三者的特点,即同时具有热可塑性和优良的硬度、韧性以及耐应力开裂等性能。
国外曾报道用2,5-二甲基-2,5双过氧化叔丁基己炔-3作交联剂〔11〕,但国内很难找到。
清华大学用廉价易得的过氧化二异丙苯(DCP)作为交联剂进行了研究〔12〕,结果发现:DCP用量小于1%时,可使冲击强度比纯UHMWPE提高15%~20%,特别是DCP用量为0.25%时,冲击强度可提高48%。
随DCP用量的增加,热变形温度提高,可用于水暖系统的耐热管道。
(2)偶联剂交联UHMWPE主要使用两种硅烷偶联剂:乙烯基硅氧烷和烯丙基硅氧烷,常用的有乙烯基三甲氧基硅烷和乙烯基三乙氧基硅烷。