超高分子量聚乙烯
超高分子量聚乙烯标准

超高分子量聚乙烯标准
超高分子聚乙烯(UHMWPE) 是一种具有高强度、高模量和耐高温、耐腐蚀、耐老化等特性的塑料材料。
关于它的标准,通常包括以下几个方面:
1.分子量: UHMWPE的分子通常不低于3.0x10^6,这使得其具有较高的强度和硬度。
2.密度: UHMWPE的密度通常在0.932-0.950g/cm3之间,这使得其具有较好的轻量化和防震性能。
3.耐磨系数: UHMWPE的耐磨系数不大于1.0x10^-11m3/N.m,这表明其具有较好的耐磨性能。
4.抗拉强度: UHMWPE的抗拉强度通常不低于20MPa,这使得其具有较高的承重能力和抗冲击能力。
5.化学性能: UHMWPE具有较好的化学稳定性,能够抵抗大多数酸、碱和有机溶剂的侵蚀。
6.热性能: UHMWPE具有较好的热稳定性和耐热性,能够在较高温度下使用。
7.电性能: UHMWPE具有良好的电绝缘性能,可用于制造绝缘器件。
8.环境性能: UHMWPE具有较好的环境适应性,能够在恶劣环境下使用。
此外,UHMWPE还具有较好的加工性能和使用性能,可以用于制造各种塑料制品。
同时,UHMWPE按其制造工艺可分为短纤维和长纤维两种类型。
需要注意的是,具体的标准可能会因产品类型、用途和生产商的不同而有所差异。
因此,在实际应用中,建议根据具体需求选择符合标准的UHMWPE材料。
制表:审核:批准:。
超高分子量聚乙烯(UHMWPE

超高分子量聚乙烯(UHMWPE)是一种综合性能十分优异的热塑性工程塑料,其耐磨性能超群、摩擦系数极低、耐腐蚀性突出,可与“塑料王”聚四氟乙烯媲美,应用范围广泛。
但由于其熔体粘度很高(高达109Pa*s),流动性极差(熔融指数为零)加热时处于高粘弹态,加工性能的超高难度极大的限制了它的应用。
超高分子量同众多的聚合物材料相比,具有磨擦系数小,磨耗低、耐化学药品性优良、耐冲击、耐压性、抗冻性、保温性、自润滑性、抗结垢性、耐应力开裂性、卫生性等优良特性。
完全卫生无毒,可用于接触食品和药物密度在所有工程塑料中最小,比聚四氟乙烯轻56% 磨擦系数为0.07-0.11,相当于冰-冰之间的磨擦,和抗结垢性,可以显著节省输送能耗。
抗磨耗性居塑料之首,是塑料的5-7倍,钢管的7-10倍,黄铜管的27倍。
抗冲击强度高,尤其是低温抗冲击性优异,是目前已知塑料中最高的
优异的化学稳定性;除极少数溶剂对其有腐蚀性外,常见的无机、有机酸、碱、盐和有机溶剂对这种材料都没有腐蚀性。
超高分子量聚乙烯在化学稳定性上类似于聚四氟乙烯,是一种惰性材料。
优异的抗老化性能,在自然日照条件下,超高分子量聚乙烯的老化寿命为50年。
超高分子量聚乙烯的基本特性与应用领域

超高分子量聚乙烯的基本特性与应用领域超高分子量聚乙烯(Ultra-High Molecular Weight Polyethylene,简称UHMWPE),是一种具有特殊结构和优异性能的高分子材料。
它以其独特的性质和广泛的应用领域,成为当今高性能材料领域的热门研究课题之一。
本文将重点介绍超高分子量聚乙烯的基本特性和其在不同应用领域的广泛应用。
一、超高分子量聚乙烯的基本特性1. 高分子量:超高分子量聚乙烯的分子量通常在100万到900万之间,是普通聚乙烯的几十甚至上百倍。
这种高分子量使其具有优异的物理性质,如高强度、高韧性和高耐磨性。
2. 超高吸收能力:超高分子量聚乙烯具有出色的吸能性能,可有效吸收冲击能量,减轻物体碰撞时的冲击和振动,使其成为理想的防护材料。
在运动保护用品、防护设备和防爆材料等领域得到广泛应用。
3. 优异的耐磨性:超高分子量聚乙烯具有出色的耐磨性能,在干燥或湿润条件下都能维持较低的摩擦系数。
因此,它被广泛应用于输送设备、滑轨、滑板等需要耐磨性能的领域。
4. 低摩擦系数:超高分子量聚乙烯的表面摩擦系数非常低,易于形成自润滑膜,具有良好的滑动性。
它在食品加工、输送设备和滑动元件等领域具有广泛的应用。
5. 良好的化学稳定性:超高分子量聚乙烯对大多数化学品具有良好的耐腐蚀性能,在恶劣环境下也能保持较好的稳定性。
它被广泛应用于化工、制药等领域的管道、储罐等设备。
二、超高分子量聚乙烯的应用领域1. 高强度绳索与索具:由于超高分子量聚乙烯具有出色的强度和耐磨性,它在船舶、航空、登山和运动器材等领域被广泛用于制造高强度绳索、缆绳和索环等。
2. 自润滑轴承与导轨:超高分子量聚乙烯的低摩擦系数和优良的耐磨性能使其成为理想的自润滑材料,广泛应用于机械设备的轴承、导轨和滑动元件上。
3. 制造业和工业领域:超高分子量聚乙烯在制造业和工业领域有着广泛的应用。
它可以制成机械零部件、密封件、垫片等,用于减振、减噪和降低运动摩擦等方面。
超高分子量聚乙烯 熔点

超高分子量聚乙烯熔点摘要:一、超高分子量聚乙烯简介二、超高分子量聚乙烯的熔点特性三、熔点对超高分子量聚乙烯性能的影响四、提高超高分子量聚乙烯熔点的方法五、应用领域与发展前景正文:一、超高分子量聚乙烯简介超高分子量聚乙烯(UHMWPE)是一种高性能合成材料,具有优异的力学性能、化学稳定性和耐磨性。
其分子量高达100万至500万,被誉为“塑料之王”。
在我国,超高分子量聚乙烯的生产和应用已经取得了显著的成果,广泛应用于航空航天、军工、化工、建筑等领域。
二、超高分子量聚乙烯的熔点特性超高分子量聚乙烯的熔点一般在130-140℃之间,具有一定的熔融流动性。
当温度达到熔点时,超高分子量聚乙烯由固态转变为液态。
在这一过程中,聚合物的分子结构会发生改变,从而影响其性能。
三、熔点对超高分子量聚乙烯性能的影响1.力学性能:随着熔点的升高,超高分子量聚乙烯的力学性能呈下降趋势。
这是因为高温使分子结构松弛,导致材料内部的力学稳定性降低。
2.化学稳定性:熔点对超高分子量聚乙烯的化学稳定性影响较小。
但在高温条件下,其耐化学腐蚀性能略有下降。
3.耐磨性:熔点对超高分子量聚乙烯的耐磨性有一定影响。
一般来说,熔点较低时,材料的耐磨性较好。
四、提高超高分子量聚乙烯熔点的方法1.改进生产工艺:通过调整聚合物的制备工艺,如采用溶液聚合、悬浮聚合等方法,可以提高超高分子量聚乙烯的熔点。
2.添加助剂:在超高分子量聚乙烯中加入一定比例的助剂,如催化剂、抗氧剂等,可以提高材料的熔点。
3.分子结构调整:通过控制分子量分布、分子链分支等手段,对超高分子量聚乙烯的分子结构进行调整,从而提高其熔点。
五、应用领域与发展前景超高分子量聚乙烯在众多领域具有广泛的应用,如航空航天、军工、化工、建筑、交通运输等。
随着科技的进步和市场需求的提高,超高分子量聚乙烯的生产技术和应用领域将不断拓展。
超高分子量聚乙烯 标准

超高分子量聚乙烯标准摘要:一、超高分子量聚乙烯概述二、超高分子量聚乙烯标准分类三、超高分子量聚乙烯标准要求四、超高分子量聚乙烯标准应用五、我国超高分子量聚乙烯标准发展正文:一、超高分子量聚乙烯概述超高分子量聚乙烯(UHMWPE)是一种具有优异综合性能的工程塑料,以其高强度、耐磨、耐腐蚀、耐低温等特性在众多领域得到广泛应用。
超高分子量聚乙烯纤维及其制品已成为我国重点发展的战略新材料之一。
二、超高分子量聚乙烯标准分类超高分子量聚乙烯标准主要分为以下几类:原料性能标准、制品性能标准、生产工艺标准、测试方法标准等。
这些标准为超高分子量聚乙烯的生产、检测、应用提供了依据。
三、超高分子量聚乙烯标准要求1.原料性能标准:对超高分子量聚乙烯原料的化学成分、物理性能、分子量分布等方面提出要求,确保原料质量。
2.制品性能标准:对超高分子量聚乙烯制品的力学性能、耐磨性能、耐腐蚀性能等方面提出要求,以保证制品质量。
3.生产工艺标准:对超高分子量聚乙烯的生产工艺,如聚合、纺丝、后处理等环节提出要求,以提高生产效率和产品质量。
4.测试方法标准:对超高分子量聚乙烯的测试方法,如力学性能测试、耐磨性能测试、耐腐蚀性能测试等提出要求,确保测试结果的准确性和可靠性。
四、超高分子量聚乙烯标准应用超高分子量聚乙烯标准在生产、检测、应用等环节具有重要的指导作用。
遵循这些标准,有助于提高超高分子量聚乙烯制品的质量,降低生产成本,扩大应用领域,推动产业发展。
五、我国超高分子量聚乙烯标准发展近年来,我国超高分子量聚乙烯产业发展迅速,已形成一定的产业规模。
在国家政策的扶持下,我国超高分子量聚乙烯标准不断完善,逐步与国际接轨。
这有助于提升我国超高分子量聚乙烯产品的国际竞争力,促进产业升级。
总之,超高分子量聚乙烯标准在产业发展中发挥着重要作用。
超高分子量聚乙烯 共聚单体

超高分子量聚乙烯共聚单体
一、超高分子量聚乙烯概述
超高分子量聚乙烯(UHMWPE)是一种高性能的工程塑料,具有优异的力学性能、化学稳定性和耐磨性。
其分子量高达100万至500万,远高于普通聚乙烯。
由于其独特的物理和化学性质,超高分子量聚乙烯被广泛应用于各个领域。
二、共聚单体的作用与分类
共聚单体是指在超高分子量聚乙烯合成过程中,加入一定比例的单体与主链上的单体共同组成聚合物。
共聚单体的作用是改善超高分子量聚乙烯的性能,提高其应用领域的适应性。
根据单体的类型,共聚单体可分为两类:非活性共聚单体和活性共聚单体。
非活性共聚单体:在聚合过程中,非活性共聚单体与主链上的单体不发生化学反应,仅通过物理吸附与主链结合。
这类共聚单体对超高分子量聚乙烯的性能改善作用较弱。
活性共聚单体:活性共聚单体在聚合过程中与主链上的单体发生化学反应,形成共价键连接。
这类共聚单体能够显著改善超高分子量聚乙烯的性能,提高其应用领域。
三、超高分子量聚乙烯共聚单体的应用领域
1.航空航天领域:由于超高分子量聚乙烯共聚单体具有轻质、高强度、耐磨损等优点,可用于制作飞机内饰、发动机零件等。
2.汽车工业:超高分子量聚乙烯共聚单体可用于制作汽车零部件,如传动
系统、刹车系统等,以提高汽车的燃油效率和安全性。
3.建筑领域:超高分子量聚乙烯共聚单体可作为建筑材料的增强剂,提高建筑材料的力学性能和耐久性。
超高分子量聚乙烯 标准

超高分子量聚乙烯标准超高分子量聚乙烯(Ultra-High Molecular Weight Polyethylene,简称UHMWPE)是一种热塑性工程塑料,具有极高的分子量和极好的力学性能,被广泛应用于各种领域。
本文将就超高分子量聚乙烯的标准进行详细介绍。
首先,超高分子量聚乙烯的标准主要包括国际标准、行业标准和企业标准。
国际标准是指由国际标准化组织(ISO)或其他国际组织发布的标准,如ISO 11542-1:2007《聚乙烯用于管道系统的熔体指数和熔体流动速率的测定第1部分,管道用高密度聚乙烯(HDPE)和聚丙烯(PP)的测定》。
行业标准是指由相关行业组织或协会发布的标准,如中国石油和化学工业联合会发布的《PE100聚乙烯管材》标准。
企业标准是指由企业自行制定并执行的标准,通常用于企业内部管理和产品质量控制。
其次,超高分子量聚乙烯的标准涵盖了材料的物理性能、化学性能、加工工艺、产品质量等方面。
其中,物理性能包括密度、熔体流动速率、拉伸强度、断裂伸长率等指标;化学性能包括耐化学腐蚀性、耐热性、耐候性等指标;加工工艺包括挤出、注塑、压延等工艺参数;产品质量包括外观质量、尺寸精度、机械性能等指标。
此外,超高分子量聚乙烯的标准对产品的生产、加工、使用和检测提供了重要的依据和指导。
生产企业应严格按照标准要求选择原材料、控制生产工艺、保证产品质量;加工企业应根据标准要求选择合适的加工工艺、确保产品性能;使用单位应按照标准要求正确使用和维护产品;检测机构应依据标准进行产品检测和评定。
总之,超高分子量聚乙烯的标准是保障产品质量、促进行业发展的重要基础。
只有严格执行标准要求,才能生产出高质量、高性能的超高分子量聚乙烯产品,满足市场需求,赢得客户信赖,推动行业持续健康发展。
希望本文能对超高分子量聚乙烯的标准有所了解,并在实际生产和应用中加以遵守和执行。
超高分子量聚乙烯聚合

超高分子量聚乙烯聚合超高分子量聚乙烯(Ultra-High-Molecular-Weight Polyethylene,简称UHMWPE)是一种具有特殊性能的工程塑料,具有非常高的分子量和独特的结构。
它的分子量通常在几百万到上千万之间,因此也被称为“巨分子”。
超高分子量聚乙烯的主要特点是具有极高的耐磨性、耐化学腐蚀性、高强度和低摩擦系数。
它的耐磨性是普通聚乙烯的几十倍甚至上百倍,比金属材料如钢铁还要耐磨。
这使得UHMWPE广泛应用于机械设备、输送系统、车辆和船舶等领域。
超高分子量聚乙烯的耐化学腐蚀性也是其重要的特点之一。
它能够耐受大部分化学物质的侵蚀,包括酸、碱、溶剂和氧化剂。
这使得UHMWPE成为一种理想的防腐材料,广泛应用于化工、食品、医药等领域。
超高分子量聚乙烯还具有极高的强度和刚度。
尽管它的密度相对较低,但它的拉伸强度比钢铁还要高。
这使得UHMWPE成为一种轻量化材料的选择,特别适用于需要同时满足强度和重量要求的应用,如航空航天、体育器材和防护装备。
除了上述特点,超高分子量聚乙烯还具有低摩擦系数和良好的自润滑性。
它的摩擦系数只有0.05左右,远低于一般的工程塑料。
这使得UHMWPE在润滑条件较差的环境下仍能保持较低的摩擦和磨损,减少能量损失和设备维护成本。
超高分子量聚乙烯的制备主要有两种方法,即熔融法和溶液法。
其中,熔融法是最常用的制备方法。
它通过高温高压下将乙烯单体聚合成聚乙烯颗粒,再经过热压成型或注射成型得到所需的制品。
溶液法则是将乙烯溶解在适当的溶剂中,再加入引发剂进行聚合反应,并通过溶剂的挥发得到超高分子量聚乙烯。
总的来说,超高分子量聚乙烯是一种具有特殊性能的工程塑料,其耐磨性、耐化学腐蚀性、高强度和低摩擦系数使其在多个领域有着广泛的应用。
随着科技的不断发展,超高分子量聚乙烯在工程领域的应用前景将更加广阔,为人们的生活带来更多的便利和发展机遇。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超高分子量聚乙烯超高分子量聚乙烯英文名ultra-high molecular weight polyethylene(简称UHMWPE),是分子量100万以上的聚乙烯。
分子式:—(—CH2-CH2—)—n—,密度:0.936~0.964g/cm3。
热变形温度(0.46MPa)85℃,熔点130~136℃。
超高分子量聚乙烯(UHMW-PE)是一种线型结构的具有优异综合性能的热塑性工程塑料。
世界上最早由美国AlliedChemical公司于1957年实现工业化,此后德国Hoechst公司、美国Hercules公司、日本三井石油化学公司等也投入工业化生产。
我国于1964年最早研制成功并投入工业生产。
限于当时条件,产物分子量约150万左右,随着工艺技术的进步,目前产品分子量可达100万~400万以上。
超高分子量聚乙烯(UHMW-PE)的发展十分迅速,80年代以前,世界平均年增长率为8.5%,进入80年代以后,增长率高达15%~20%。
而我国的平均年增长率在30%以上。
1978年世界消耗量为12,000~12,500吨,而到1990年世界需求量约5万吨,其中美国占70%。
超高分子量聚乙烯(UHMW-PE)平均分子量约35万~800万,因分子量高而具有其它塑料无可比拟的优异的耐冲击、耐磨损、自润滑性、耐化学腐蚀等性能。
而且,超高分子量聚乙烯(UHMW-PE)耐低温性能优异,在-40℃时仍具有较高的冲击强度,甚至可在-269℃下使用。
超高分子量聚乙烯(UHMW-PE)优异的物理机械性能使它广泛应用于机械、运输、纺织、造纸、矿业、农业、化工及体育运动器械等领域,其中以大型包装容器和管道的应用最为广泛。
另外,由于超高分子量聚乙烯(UHMW-PE)优异的生理惰性,已作为心脏瓣膜、矫形外科零件、人工关节等在临床医学上使用。
由于超高分子量聚乙烯(UHMW-PE)熔融状态的粘度高达108Pa*s,流动性极差,其熔体指数几乎为零,所以很难用一般的机械加工方法进行加工。
近年来,超高分子量聚乙烯(UHMW-PE)的加工技术得到了迅速发展,通过对普通加工设备的改造,已使超高分子量聚乙烯(UHMW-PE)由最初的压制-烧结成型发展为挤出、吹塑和注射成型以及其它特殊方法的成型。
一般加工技术(1)压制烧结压制烧结是超高分子量聚乙烯(UHMW-PE)最原始的加工方法。
此法生产效率颇低,易发生氧化和降解。
为了提高生产效率,可采用直接电加热法〔1〕;另外,Werner和Pfleiderer公司开发了一种超高速熔结加工法〔2〕,采用叶片式混合机,叶片旋转的最大速度可达150m/s,使物料仅在几秒内就可升至加工温度。
(2)挤出成型挤出成型设备主要有柱塞挤出机、单螺杆挤出机和双螺杆挤出机。
双螺杆挤出多采用同向旋转双螺杆挤出机。
60年代大都采用柱塞式挤出机,70年代中期,日、美、西德等先后开发了单螺杆挤出工艺。
日本三井石油化学公司最早于1974年取得了圆棒挤出技术的成功。
我国于1994年底研制出Φ45型超高分子量聚乙烯(UHMW-PE)专用单螺杆挤出机,并于1997年取得了Φ65型单螺杆挤出管材工业化生产线的成功。
(3)注塑成型日本三井石油化工公司于1974年开发了注塑成型工艺,并于1976年实现了商业化,之后又开发了往复式螺杆注塑成型技术。
1985年美国Hoechst公司也实现了超高分子量聚乙烯(UHMW-PE)的螺杆注塑成型工艺。
我国1983年对国产XS-ZY-125A型注射机进行了改造,成功地注射出啤酒罐装生产线用超高分子量聚乙烯(UHMW-PE)托轮、水泵用轴套,1985年又成功地注射出医用人工关节等。
(4)吹塑成型超高分子量聚乙烯(UHMW-PE)加工时,当物料从口模挤出后,因弹性恢复而产生一定的回缩,并且几乎不发生下垂现象,故为中空容器,特别是大型容器,如油箱、大桶的吹塑创造了有利的条件。
超高分子量聚乙烯(UHMW-PE)吹塑成型还可导致纵横方向强度均衡的高性能薄膜,从而解决了HDPE薄膜长期以来存在的纵横方向强度不一致,容易造成纵向破坏的问题。
特殊加工技术2.2.1冻胶纺丝以冻胶纺丝—超拉伸技术制备高强度、高模量聚乙烯纤维是70年代末出现的一种新颖纺丝方法。
荷兰DSM公司最早于1979年申请专利,随后美国Allied公司、日本与荷兰联合建立的Toyobo-DSM公司、日本Mitsui公司都实现了工业化生产。
中国纺织大学化纤所从1985年开始该项目的研究,逐步形成了自己的技术,制得了高性能的超高分子量聚乙烯(UHMW-PE)纤维〔3〕。
超高分子量聚乙烯(UHMW-PE)冻胶纺丝过程简述如下:溶解超高分子量聚乙烯(UHMW-PE)于适当的溶剂中,制成半稀溶液,经喷丝孔挤出,然后以空气或水骤冷纺丝溶液,将其凝固成冻胶原丝。
在冻胶原丝中,几乎所有的溶剂被包含其中,因此超高分子量聚乙烯(UHMW-PE)大分子链的解缠状态被很好地保持下来,而且溶液温度的下降,导致冻胶体中超高分子量聚乙烯(UHMW-PE)折叠链片晶的形成。
这样,通过超倍热拉伸冻胶原丝可使大分子链充分取向和高度结晶,进而使呈折叠链的大分子转变为伸直链,从而制得高强度、高模量纤维。
超高分子量聚乙烯(UHMW-PE)纤维是当今世界上第三代特种纤维,强度高达30.8cN/dtex,比强度是化纤中最高的,又具有较好的耐磨、耐冲击、耐腐蚀、耐光等优良性能。
它可直接制成绳索、缆绳、渔网和各种织物:防弹背心和衣服、防切割手套等,其中防弹衣的防弹效果优于芳纶。
国际上已将超高分子量聚乙烯(UHMW-PE)纤维织成不同纤度的绳索,取代了传统的钢缆绳和合成纤维绳等。
超高分子量聚乙烯(UHMW-PE)纤维的复合材料在军事上已用作装甲兵器的壳体、雷达的防护外壳罩、头盔等;体育用品上已制成弓弦、雪橇和滑水板等。
2.2.2润滑挤出(注射)润滑挤出(注射)成型技术是在挤出(注射)物料与模壁之间形成一层润滑层,从而降低物料各点间的剪切速率差异,减小产品的变形,同时能够实现在低温、低能耗条件下提高高粘度聚合物的挤出(注射)速度。
产生润滑层的方法主要有两种:自润滑和共润滑。
(1)自润滑挤出(注射)超高分子量聚乙烯(UHMW-PE)的自润滑挤出(注射)是在其中添加适量的外部润滑剂,以降低聚合物分子与金属模壁间的摩擦与剪切,提高物料流动的均匀性及脱模效果和挤出质量。
外部润滑剂主要有高级脂肪酸、复合脂、有机硅树脂、石腊及其它低分子量树脂等。
挤出(注射)加工前,首先将润滑剂同其它加工助剂一起混入物料中,生产时,物料中的润滑剂渗出,形成润滑层,实现自润滑挤出(注射)。
有专利报道〔4〕:将70份石蜡油、30份超高分子量聚乙烯(UHMW-PE)和1份氧相二氧化硅(高度分散的硅胶)混合造粒,在190℃的温度下就可实现顺利挤出(注射)。
(2)共润滑挤出(注射)超高分子量聚乙烯(UHMW-PE)的共润滑挤出(注射)有两种情况,一是采用缝隙法〔5、6〕将润滑剂压入到模具中,使其在模腔内表面和熔融物料间形成润滑层;二是与低粘度树脂共混,使其作为产物的一部分(详见3.2.1)。
如:生产超高分子量聚乙烯(UHMW-PE)薄板时,由定量泵向模腔内输送SH200有机硅油作润滑剂,所得产品外观质量有明显提高,特别是由于挤出变形小,增加了拉伸强度。
辊压成型是一种固态加工方法,即在超高分子量聚乙烯(UHMW-PE)的熔点以下对其施加一很大的压力,通过粒子形变,有效地将粒子与粒子融合。
主要设备是一带有螺槽的旋转轮和一带有舌槽的弓形滑块,舌槽与螺槽垂直。
在加工过程中有效地利用了物料与器壁之间的摩擦力,产生的压力足够使超高分子量聚乙烯(UHMW-PE)粒子发生形变。
在机座末端装有加热支台,经过模口挤出物料。
如将此项辊压装置与挤压机联用,可使加工过程连续化。
把超高分子量聚乙烯(UHMW-PE)树脂粉末在140℃~275℃之间进行1min~30min的短期加热,发现超高分子量聚乙烯(UHMW-PE)的某些物理性能出人意料地大大改善。
用热处理过的超高分子量聚乙烯(UHMW-PE)粉料压制出的制品和未热处理过的UHMPWE制品相比较,前者具有更好的物理性能和透明性,制品表面的光滑程度和低温机械性能大大提高了。
采用射频加工超高分子量聚乙烯(UHMW-PE)是一种崭新的加工方法,它是将超高分子量聚乙烯(UHMW-PE)粉末和介电损耗高的炭黑粉末均匀混合在一起,用射频辐照,产生的热可使超高分子量聚乙烯(UHMW-PE)粉末表面发生软化,从而使其能在一定压力下固结。
用这种方法可在数分钟内模压出很厚的大型部件,其加工效率比目前超高分子量聚乙烯(UHMW-PE)常规模压加工高许多倍。
将超高分子量聚乙烯(UHMW-PE)溶解在挥发溶剂中,连续挤出,然后经一个热可逆凝胶/结晶过程,使其成为一种湿润的凝胶膜,蒸除溶剂使膜干燥。
由于已形成的骨架结构限制了凝胶的收缩,在干燥过程中产生微孔,经双轴拉伸达到最大空隙率而不破坏完整的多孔结构。
这种材料可用作防水、通氧织物和耐化学品服装,也可用作超滤/微量过滤膜、复合薄膜和蓄电池隔板等。
与其它方法相比,由此法制备的多孔超高分子量聚乙烯(UHMW-PE)膜具有最佳的孔径、强度和厚度等综合性能。
玻璃微珠、玻璃纤维、云母、滑石粉等可提高硬度、刚度和耐温性;二硫化钼、硅油和专用蜡可降低摩擦因数,从而进一步提高自润滑性;炭黑或金属粉可提高抗静电性和导电性以及传热性等。
但是,填料改性后冲击强度略有下降,若将含量控制在40%以内,超高分子量聚乙烯(UHMW-PE)仍有相当高的冲击强度。
交联是为了改善形态稳定性、耐蠕变性及环境应力开裂性。
通过交联,超高分子量聚乙烯(UHMW-PE)的结晶度下降,被掩盖的韧性复又表现出来。
交联可分为化学交联和辐射交联。
化学交联是在超高分子量聚乙烯(UHMW-PE)中加入适当的交联剂后,在熔融过程中发生交联。
辐射交联是采用电子射线或γ射线直接对超高分子量聚乙烯(UHMW-PE)制品进行照射使分子发生交联。
超高分子量聚乙烯(UHMW-PE)的化学交联又分为过氧化物交联和偶联剂交联。
过氧化物交联过氧化物交联工艺分为混炼、成型和交联三步。
混炼时将超高分子量聚乙烯(UHMW-PE)与过氧化物熔融共混,超高分子量聚乙烯(UHMW-PE)在过氧化物作用下产生自由基,自由基偶合而产生交联。
这一步要保证温度不要太高,以免树脂完全交联。
经过混炼后得到交联度很低的可继续交联型超高分子量聚乙烯(UHMW-PE),在比混炼更高的温度下成型为制件,再进行交联处理。
超高分子量聚乙烯(UHMW-PE)经过氧化物交联后在结构上与热塑性塑料、热固性塑料和硫化橡胶都不同,它有体型结构却不是完全交联,因此在性能上兼有三者的特点,即同时具有热可塑性和优良的硬度、韧性以及耐应力开裂等性能。